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Notation

A signed set X is a set X divided in two parts (X, X™), where
X is the set of the positive elements of X and X~ is the set of
the negative elements. The set X = X U X~ is called the support
of X.
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Notation

A signed set X is a set X divided in two parts (X, X™), where
X is the set of the positive elements of X and X~ is the set of
the negative elements. The set X = X U X~ is called the support
of X.

The opposite of a signed set X, denoted by —X, is the signed set
defined by (—X)* = X~ and (—X)™ = X™.

Given a signed set X and a set A we denote by —4 X the signed set
defined by (—aX)™ = (XT\A)U(X  NA) and

(—aX)" = (X" \A)UXTNA).
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Notation

A signed set X is a set X divided in two parts (X, X™), where
X is the set of the positive elements of X and X~ is the set of
the negative elements. The set X = X U X~ is called the support
of X.

The opposite of a signed set X, denoted by —X, is the signed set
defined by (—X)* = X~ and (—X)™ = X™.

Given a signed set X and a set A we denote by —4 X the signed set
defined by (—aX)t = (XT\ A)U (X  NA) and

(—aX)" = (X" \A)UXTNA).

We say that the signed set — X is obtained by a reorientation of
A.
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Circuits

A collection C of signed set of a finite set E is the set of circuits of
an oriented matroid on E if and only if the following axioms are
verified :
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Circuits

A collection C of signed set of a finite set E is the set of circuits of
an oriented matroid on E if and only if the following axioms are
verified :

(Co)néc,

(C1) (symmetry) C = —C,

(C2) (incomparability) for any X, Y € C, if X C Y, then X = Y or
X ==Y,

(C3) (weak elimination) for any X, Y € C,X # —Y, and

e e Xt N Y™, there exists Z € C such that
ZtC(XTUuYf)\{e}and Z= C (X" UY")\{e}.
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e If we forget the signs then (C0),(C2),(C3) reduced to the circuits
axioms of a matroid.

J.L. Ramirez Alfonsin IMAG, Université de Montpellier

nted Matroids : introduction



e If we forget the signs then (C0),(C2),(C3) reduced to the circuits
axioms of a matroid.

e All matroid notions M are also considered as notions of oriented
matroids, in particular, the rank of M is the same rank as in M.
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e If we forget the signs then (C0),(C2),(C3) reduced to the circuits
axioms of a matroid.

e All matroid notions M are also considered as notions of oriented
matroids, in particular, the rank of M is the same rank as in M.

e Let AC E and put —4C = {—aX : X € C}. Itis clear that —sC
is also the set of circuits of an oriented matroid, denoted by — M.
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e If we forget the signs then (C0),(C2),(C3) reduced to the circuits
axioms of a matroid.

e All matroid notions M are also considered as notions of oriented
matroids, in particular, the rank of M is the same rank as in M.

e Let AC E and put —4C = {—aX : X € C}. Itis clear that —sC
is also the set of circuits of an oriented matroid, denoted by — M.

Notation For short, we write X = abcde the signed set X defined
by X ={a,d,e} and X~ = {b, c}.
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Graphs

Let D be the following oriented graph.
e
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Configuration of vectors in the space

Let E = {vi,...,v,} be a set of vectors generating a r-dimensional
vector space over a ordered field, says {vi,...,v,} CIR".
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Configuration of vectors in the space

Let E = {vi1,...,v,} be a set of vectors generating a r-dimensional
vector space over a ordered field, says {vi,...,v,} CIR".

We consider the minimal linear dependencies
n
D Avi=0with ); € R
i=1

We obtain an oriented matroid from E by considering the signed
sets X = (X, X7) where

X+:{i:)\,->0}etX_:{i:)\,-<0}

for all minimal dependencies among v;.
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Configuration of vectors in the space

Let E = {vi1,...,v,} be a set of vectors generating a r-dimensional
vector space over a ordered field, says {vi,...,v,} CIR".

We consider the minimal linear dependencies
n
D Avi=0with ); € R
i=1

We obtain an oriented matroid from E by considering the signed
sets X = (X, X7) where

X+:{i:)\,->0}etX_:{i:)\,-<0}

for all minimal dependencies among v;.
This oriented matroid is called vectorial (or linear).

IMAG, Université de Montpellier
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Configuration of points in the space

Any configuration of points {p1,...,pn} in the affine space
induces an oriented matroid having as circuits the signed set from
the coefficient of minimal affine dependencies, that is, linear
combinations of the form

> Xipi=0with > X =0, \; € R.
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Example

Let us consider the points in IR? given by the columns of matrix :

e f
A:<_

O~ o

b
0
0

= O

d
310
0 2 3
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Example

Let us consider the points in IR? given by the columns of matrix :
e f

a b c d
4_(-1003 10
o 0 01 0 2 3
Matrix A correspond to points
;
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Example

d
a b

The set of circuits of the corresponding affine oriented matroid is
C(A) = {(abd), (bcr),(der),(ace), (aber), (bcde), (acdf),
(abd), (bcf), (def), (ace), (abef), (bcde), (acdf)}.
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Example

d
a b

The set of circuits of the corresponding affine oriented matroid is
C(A) = {(abd),(bcf),(def), (ace), (abef), (bcde), (acdf),
(abd), (bcf), (def), (ace), (abef), (bcde), (acdf)}.
For instance, (abd) correspond to the affine dependecy
3(—1,0)* — 4(0,0)t + 1(3,0) = (0,0)* with3—4+1=0.
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Radon partitions

The circuits of an affine oriented matroid have a nice geometric
interpretation. They can be thought as minimal Radon partitions.
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Radon partitions

The circuits of an affine oriented matroid have a nice geometric
interpretation. They can be thought as minimal Radon partitions.

Given a circuit C, the convex hull of the positive elements of C
intersect the convex hull of the negative elements of C.
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Example

a b

From the circuit (abd) we see that the point b lies in the segment
[a, b] and from circuit (abef) the segment [a, e] intersect the
segment [b, f] (in the affine real espace).

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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We can check that the oriented matroid obtained form Kj; with the

orientation illustrated below has the same set of circuits that M(A)

Ky and M(A) are isomorphic.
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Let us consider the oriented matroid —yM(A) obtained by
reorienting element d of M(A). The set of circuits of —yM(A) is :

¢ = {(abd)

—
o
ol
)

N—r

—~~
Q
®
—

o

bef’ f), (ace), (abef), (bcde), (aai),
def), (ace), (abef), (bcde), (acdf)}.

(abd), (bef), (
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Let us consider the oriented matroid —yM(A) obtained by
reorienting element d of M(A). The set of circuits of —yM(A) is :

¢ = {(abd)
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e —4sM(A) is a graphic oriented matroid since it can be obtained
by changing the orientation of the edge d.
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Let us consider the oriented matroid —yM(A) obtained by
reorienting element d of M(A). The set of circuits of —yM(A) is :

¢ = {(abd)

—
o
ol
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N—r
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Q
®
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o

bef’ f), (ace), (abef), (bcde), (aai),
def), (ace), (abef), (bcde), (acdf)}.

—~
|
jon
Q.

~—

—~
o
o
-

R

—~

e —4sM(A) is a graphic oriented matroid since it can be obtained
by changing the orientation of the edge d.

e — M(A) also correspond to the affine oriented matroid
illustrated as before under the permutation
o(a) = b,o(b) =a,0(c) =c,o(d) =d,o(e) =f,o(f) =e.
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Minors

(Deletion) Let M = (E,C) be an oriented matroid and let F C E.
Then,
C'={XeC:XCF}

the set of circuits in M contained in F, is the set of circuits of an
oriented matroid in F.
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Minors

(Deletion) Let M = (E,C) be an oriented matroid and let F C E.
Then,
C'={XeC:XCF}

the set of circuits in M contained in F, is the set of circuits of an
oriented matroid in F.

This oriented matroid is called a sub-matroid induced by F, and
denoted by M|f.
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Minors

(Contraction) Let M = (E,C) be an oriented matroid and let
F C E. Then,
Min({X|r : X € C})

the set of non-empty intersections, minimal by inclusion of the
circuits of M with F, is the set of circuits of an oriented matroid in
F.
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Minors

(Contraction) Let M = (E,C) be an oriented matroid and let
F C E. Then,
Min({X|r : X € C})

the set of non-empty intersections, minimal by inclusion of the
circuits of M with F, is the set of circuits of an oriented matroid in
F.

This oriented matroid is called a contraction of M over F, and it is
denoted by M/F.

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Duality

Two signed sets X et Y are said orthogonal, denoted by X L Y, if
either X N Y =0 or if X|xny and Y|xny are neither opposite nor
equal, that is, there exists e, f € X N Y such that

X(e)Y(e) = —X(f)Y(f).
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Duality

Two signed sets X et Y are said orthogonal, denoted by X L Y, if
either X N Y =0 or if X|xny and Y|xny are neither opposite nor
equal, that is, there exists e, f € X N Y such that
X(e)Y(e) = =X (F)Y(f).
Let M = (E,C) be an oriented matroid, then
() there exists a unique signature of C* the cocircuits of M such
that

(1) X LY pourtout XeC et YeC.

(/i) The collection C* is the set of circuits of an oriented matroid
over E, denoted by M* and called dual (or orthogonal) of M.
(iiif) We have M** = M.

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Geometric interpretation of cocircuits

Let E be a set of vectors generating IR? and let M = (E,C) be the
oriented matroid of rank r of linear dependencies of E.
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Geometric interpretation of cocircuits

Let E be a set of vectors generating IR? and let M = (E,C) be the
oriented matroid of rank r of linear dependencies of E.

Let H be a hyperplane of M, i.e., a closed set of E generating a
hyperplane in IRY. We recall that D = E \ H is a cocircuit of M.

Let h be the linear function in IRY such that kernel(h) is H
(unique up to scaling).
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Geometric interpretation of cocircuits

Let E be a set of vectors generating IR? and let M = (E,C) be the
oriented matroid of rank r of linear dependencies of E.

Let H be a hyperplane of M, i.e., a closed set of E generating a
hyperplane in IRY. We recall that D = E \ H is a cocircuit of M.

Let h be the linear function in IRY such that kernel(h) is H
(unique up to scaling).
The signature of D in M* is given by

Dt ={eeD:h(e)>0}and D~ ={ee D: h(e) < 0}.

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Example

Let V = {a, b,c, e, f} be the vectors given in the following matrix
a c f b

e
1 0011
A=[01010
00101
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Example

Let V = {a, b,c, e, f} be the vectors given in the following matrix

a c f b e
1 0011
A=(01010
00101

corresponding to vectors

IMAG, Université de Montpellier
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The set of circuits of M(A’) is given by M(D) \ d where D is the
diagraph.

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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The vector configuration of the dual space V is given by the
columns of

aL CL fL bL eL

-1 -1 0 1 0
1L
A _(1 0 -1 01)

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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We thus have that minimal dependencies among the columns of
At are

C(ALYy=c*(A) ={atelbl ateltcl atflipt atrlct btct elrl,

aLelbl,alelct,alfibl, 2l L, blcl, elfL).

Ramirez Alfonsin IMAG, Université de Montpellier




We thus have that minimal dependencies among the columns of

At are
C(A)y=cC*(A) = {alelbL,aLeLciL7 alflpt alflcl plet, elft,
alelbl, alelct, aTFLbl, 2l ¢t blct, el L),

Recall that M(A™1) is isomorphic to M(D’) where D’ is the
oriented graph dual to the planar signed graph D\ {d}

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Hyperplane-Cocircuits
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Hyperplane-Cocircuits

The set {e, f} of D’ is a minimal cut and thus a circuit of D’ (or a
cocircuit of D\ {d}). It corresponds to the hyperplane

E\{e,f} ={a,b,c} of D\ {d}. The set {abc} is a hyperplane
since r({abc}) =2 and c/({a, b, c}) = {a, b, c}.

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Hyperplane-Cocircuits

Geometrically, the vectors {a, b, c} generate a hyperplane but they
do not form a base.

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Geometric interpretation of cocircuits : affine case

Let E be a configuration of points in the (d — 1)-affine space. Let
D be a cocircuit of the oriented matroid of affine linear
dependecies of E. The signature of D in M* is

Dt =DNHtet D =DNH"

where Ht and H™ are the two open spaces in IR?~! determined
by a hyperplan affine H containing E \ D.

IMAG, Université de Montpellier
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Base orientations

A basis orientation of an oriented matroid M is an application from
the set of ordered bases of M to {—1,+1} verifying

(B1) x est alternating

(P) (pivoting property) if (e, x2,...,x,) and (f,x2,...,x,) are two
ordered bases of M with e # f then,

X(fyxo,...x) = —C(e)C(f)x(e,xa,...,xr)

where C is one of the two circuits of M in (e, f,x2,...,x;).

J.L. Ramirez Alfonsin

IMAG, Université de Montpellier
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We notice that if x is a basis orientation of M then M is
determined only by M and .

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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We notice that if x is a basis orientation of M then M is
determined only by M and .

Indeed, we can find the signs of the elements C € C(M) from x as
follows : Choose x, ... Xy, x,41 € M such that C C {x1,...,x 11}
and {x1,...,x} is a base of M. Then,

C(x) = (—1)ix(x1, ey Xi—1, Xi41s---,Xr41) forany x; € C.

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Dual version

We also have the dual version for the pivoting property (P) :

(P*) (pivoting dual property) if (e, x2,...,x,) and (f,x2,...,x;)
are two ordered bases of M with e # f then,

X(fyxa, ..., x,) = —D(e)D(f)x(e,x2, ..., %)

where D is one of the two cocircuits of M complement to the
hyperplane generated by (x2,...,x,) in M.

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Chirotope

A chirotope of rank r over E is an application
x: E"— {—1,0,+1} verifying

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Chirotope

A chirotope of rank r over E is an application
x: E"— {—1,0,+1} verifying

(CHO) x # 0,
(CH1) x is alternating, i.e.,

X(Xo(1)s - s Xo(r)) = sign(a)x(x1, ..., x) forany xi,...,x € E"
and any permutation o.

(CH2) for any x1,...,X, y1,...,Yr € E" such that
X(Viy X2y ooy X ) X(V1s oo oy Yigs X1, Vi1 -+, ¥r) > 0foranyi=1,... r

then
X(Xl)"'axr)'X(yl""ayr) 20

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Chirotope for linear matroids

If M is an oriented matroid of rank r of the linear dependencies of
a set of vectors £ C IR", then the corresponding chirotope x is
given by

x(x1,...,x) = sign(det(xy,...,x))

for any x1,...,x, € E.

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Chirotope for linear matroids

If M is an oriented matroid of rank r of the linear dependencies of
a set of vectors £ C IR", then the corresponding chirotope x is
given by

x(x1,...,x) = sign(det(xy,...,x))

for any x1,...,x, € E.

In this case the axiom (CH?2) is an abstraction of the
Grassmann-Plicker relation for the determinant claiming that if
X1yeees Xry Y1,---,Yr € IR" then

r
det(X17"‘7Xr)'det(.y1a"'7yf) = Zdet(YiaX2:~~-aXr)'dEt(}’1,~~‘7}’:'1:X17y:'+1,~-w}’r)
i=1

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Theorem Let r > 1 be an integer and let E be a finite set. An
application
x:E"— {-1,0,+1}

is a basis orientation of an oriented matroid of rank r over E if
and only if x is a chirotope.

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Contraction Let A C E. Recall that C/A = Min{C\ A: C € C}.
Let a1,...,a,_s be a base of Ain M. Then,

x/A: (E\A)® — {-1,0,+1}
(x1,---y%s) —> X(X1,.-.,Xs,81,.--,3r—5)

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Contraction Let A C E. Recall that C/A = Min{C\ A: C € C}.
Let a1,...,a,_s be a base of Ain M. Then,

x/A: (E\A)® — {-1,0,+1}
(x1,---y%s) —> X(X1,.-.,Xs,81,.--,3r—5)

Deletion Let A C E and suppose that M\ A is of rank s < r.
Recall that C\A={CeC: CNA=0}. Leta,...,a,_s €A
such that E\ AU{a1,...,a,—s} generate M. Then,

x\A: (E\A)S — {-1,0,+1}
(x1,--y%s) —> X(X1,...,Xs,81,...,3r—5)

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Reorientation Let A C E then the set of circuits of —4M is given
by —aC = {—aC : C € C} where the signature of —4C is defined
by (—aC)(x) = (—1)A"H . C(x). Then

—ax: ET — {-1,0,+1}
(x1,..., %) — x(x1,...,x)(=1)A"bx}

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Reorientation Let A C E then the set of circuits of —4M is given
by —aC = {—aC : C € C} where the signature of —4C is defined
by (—aC)(x) = (—1)A"H . C(x). Then

—ax: ET — {-1,0,+1}
(x1,..., %) — x(x1,...,x)(=1)A"bx}

Duality Let E = {1,...,n}. Given a (n — r)-set (x1,...,Xp—r), We

write (x1,...,x;) for one permutation of E \ {x1,...,x,—,}. In
particular, {x1,...,Xp—r,x],...,X,} is a permutation of {1,...,n}
where its sign, denoted by sign{x1, ..., Xn—r,X{,..., X/}, is given

by the parity of the number of inversions of this set. Then,

x*: EMT — {-1,0,+1}
(X5 ooy Xner) > X(X{, ooy x))sign{X1, ..., Xnory X],y .oy XL}

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Vectors and covectors

Let A= (AT,A7), B=(B",B™). We define the composition
AoB=(ATU(BT\A), A-U (B \A).

J.L. Ramirez Alfonsin IMAG, Université de Montpellier
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Vectors and covectors

Let A= (AT,A7), B=(B",B™). We define the composition
AoB=(ATU(BT\A), A-U (B \A).

e This operation is associative but not necessarily commutative
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Vectors and covectors

Let A= (AT,A7), B=(B",B™). We define the composition
AoB = (ATU(BT\A), A-U(B™\A)).
e This operation is associative but not necessarily commutative

e The vector (resp. covector) of an oriented matroid is any
composition of circuits (resp. cocircuits).
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Vectors and covectors

Let A= (AT,A7), B=(B",B™). We define the composition
AoB = (ATU(BT\A), A-U(B™\A)).
e This operation is associative but not necessarily commutative

e The vector (resp. covector) of an oriented matroid is any
composition of circuits (resp. cocircuits).

e If M is an affine oriented matroid then :

— X = (X*,X7) is a vector of M if and only if X forms a Radon’s
partition, i.e., conv(X ™) N conv(X™) # 0.
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Vectors and covectors

Let A= (AT,A7), B=(B",B™). We define the composition
AoB = (ATU(BT\A), A-U(B \A).

e This operation is associative but not necessarily commutative

e The vector (resp. covector) of an oriented matroid is any
composition of circuits (resp. cocircuits).

e If M is an affine oriented matroid then :

— X = (X*,X7) is a vector of M if and only if X forms a Radon’s
partition, i.e., conv(X ™) N conv(X™) # 0.

— Y = (YT, Y ") is a covector of M if and only if there is an
affine hyperplane H (not necessarily generated by points of M)
such that Y~ = ENH and Y = ENH" where H~ and H™ are
the open half-spaces induced by H.
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Vectors and covectors

Theorem A collection V' of signed subsets of a set E is the set of
vectors of an oriented matroid if and only if the following
properties are verified :

(Vo) b eV,
(V1) (symmetry) V = -V,
(V2) (composition) for all X, Y € V we have Xo Y € V,

(V3) (vector strong elimination) for all X, Y € V,ee XTNY~
and f € ( X\ Y)UY\X)U(XTNYT)U(X™ NY7), there exists
ZeVsuchthat ZF C(XTNnY*t)\e, Z-C (X NY )\ eand
fel’.
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Topological representation

A sphere S of S9! is a pseudo-sphere if S is homeomorphic to
S92 in a homeomorphism of S971.
SZ
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Topological representation

There are then two connected components in Ggd-1 \ S, each

homeomorphic to a ball of dimension d — 1 (called sides of S).
SZ

A
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Topological representation

A finite collection {S;,...,S,} of pseudo-spheres in S9! is an
arrangement of pseudo-spheres if

(PS1) Forall AC E={1,...,n} the set Sg = NecaSe is a
topological sphere

(PS2) If SA € Se for AC E,e € E and S, S, denote the two

sides of Se then S5 N Se is a pseudo-sphere of S having as sides
SAﬂS(j_ and S4 NS .
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Topological representation

A finite collection {S;,...,S,} of pseudo-spheres in S9! is an
arrangement of pseudo-spheres if

(PS1) Forall AC E={1,...,n} the set Sg = NecaSe is a
topological sphere

(PS2) If SA € Se for AC E,e € E and S, S, denote the two
sides of Se then S5 N Se is a pseudo-sphere of S having as sides
SAﬂS(j_ and S4 NS .

e The condition (PS1) allows Sy = () (we suppose that () is a
(—1)-sphere).
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Topological representation

A finite collection {S;,...,S,} of pseudo-spheres in S9! is an
arrangement of pseudo-spheres if

(PS1) Forall AC E={1,...,n} the set Sg = NecaSe is a
topological sphere

(PS2) If SA € Se for AC E,e € E and S, S, denote the two

sides of Se then S5 N Se is a pseudo-sphere of S having as sides
SAﬂS(j_ and S4 NS .

e The condition (PS1) allows Sy = () (we suppose that () is a
(—1)-sphere).

e The arrangement is said essential if Sg = ().
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Topological representation

A finite collection {S;,...,S,} of pseudo-spheres in S9! is an
arrangement of pseudo-spheres if

(PS1) Forall AC E={1,...,n} the set Sg = NecaSe is a
topological sphere

(PS2) If SA € Se for AC E,e € E and S, S, denote the two
sides of Se then S5 N Se is a pseudo-sphere of S having as sides
SAﬂS(j_ and S4 NS .

e The condition (PS1) allows Sy = () (we suppose that () is a
(—1)-sphere).

e The arrangement is said essential if Sg = ().

We say that the arrangement is signed if for each pseudo-sphere
Se, e € E it is chosen a positive and a negative side.
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Topological representation

e Every essential arrangement of signed pseudo-sphere S partition
the topological (d — 1)-sphere in a complexe cellular I'(S). Each
cell of I'(S) is uniquely determined by a sign vector in {—,0, +}£
which is the codification of its relative position relative according
to each pseudo-sphere S;. Conversely '(S) characterize S

IMAG, Université de Montpellier
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Topological representation

Two arrangements (resp. signed arrangement) are equivalent if
they are the same up to a homomorphism of S9! (resp. also the
homeorphism preserve the signs). S is called realizable if there
exists arrangement of sphere S’ such that '(S) is isomorphic to

rs.
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Topological representation

Two arrangements (resp. signed arrangement) are equivalent if
they are the same up to a homomorphism of S9! (resp. also the
homeorphism preserve the signs). S is called realizable if there
exists arrangement of sphere S’ such that '(S) is isomorphic to
rs.

Theorem (Topological Representation) A loop-free oriented
matroids of rank d + 1 (up to isomorphism) are in one-to-one
correspondence with arrangements of pseudospheres in S¢ (up to
topological equivalence) or equivalently to affine arrangements of
pseudo-hyperplans in RY~! (up to topological equivalence).
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Topological representation
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Acyclic reorientations

Let M be an oriented matroid on E.
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Acyclic reorientations

Let M be an oriented matroid on E.

e There exists a bijection between the subsets A of E such that
—a M is acyclic and the regions in the corresponding topological
representation of M.
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Acyclic reorientations

Let M be an oriented matroid on E.

e There exists a bijection between the subsets A of E such that
—a M is acyclic and the regions in the corresponding topological
representation of M.

e The number of subsets A of E such that —4 M are acyclic is
equals to t(M;2,0).
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Acyclic reorientations

Let M be an oriented matroid on E.

e There exists a bijection between the subsets A of E such that
—a M is acyclic and the regions in the corresponding topological
representation of M.

e The number of subsets A of E such that —4 M are acyclic is
equals to t(M;2,0).

e The number of subsets A of E such that —5 M are totally cyclic
is equals to t(M;0,2).
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Acyclic reorientations

IMAG, Université de Montpellier




