Oriented Matroids : introduction

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

São Paulo, Brasil August 2017

J.L. Ramírez Alfonsín Oriented Matroids : introduction IMAG, Université de Montpellier

< □ > < /□ >

A signed set X is a set \underline{X} divided in two parts (X^+, X^-) , where X^+ is the set of the positive elements of X and X^- is the set of the negative elements. The set $\underline{X} = X^+ \cup X^-$ is called the support of X.

Notation

A signed set X is a set \underline{X} divided in two parts (X^+, X^-) , where X^+ is the set of the positive elements of X and X^- is the set of the negative elements. The set $\underline{X} = X^+ \cup X^-$ is called the support of X.

The opposite of a signed set X, denoted by -X, is the signed set defined by $(-X)^+ = X^-$ and $(-X)^- = X^+$.

Notation

A signed set X is a set \underline{X} divided in two parts (X^+, X^-) , where X^+ is the set of the positive elements of X and X^- is the set of the negative elements. The set $\underline{X} = X^+ \cup X^-$ is called the support of X.

The opposite of a signed set X, denoted by -X, is the signed set defined by $(-X)^+ = X^-$ and $(-X)^- = X^+$. Given a signed set X and a set A we denote by $-_A X$ the signed set defined by $(-_A X)^+ = (X^+ \setminus A) \cup (X^- \cap A)$ and $(-_A X)^- = (X^- \setminus A) \cup (X^+ \cap A)$.

J.L. Ramírez Alfonsín

Oriented Matroids : introduction

Notation

A signed set X is a set \underline{X} divided in two parts (X^+, X^-) , where X^+ is the set of the positive elements of X and X^- is the set of the negative elements. The set $\underline{X} = X^+ \cup X^-$ is called the support of X.

The opposite of a signed set X, denoted by -X, is the signed set defined by $(-X)^+ = X^-$ and $(-X)^- = X^+$. Given a signed set X and a set A we denote by $-_A X$ the signed set defined by $(-_A X)^+ = (X^+ \setminus A) \cup (X^- \cap A)$ and $(-_A X)^- = (X^- \setminus A) \cup (X^+ \cap A)$. We say that the signed set $-_A X$ is obtained by a reorientation of

We say that the signed set $-_A X$ is obtained by a reorientation of A.

Circuits

A collection C of signed set of a finite set E is the set of circuits of an oriented matroid on E if and only if the following axioms are verified :

IMAG, Université de Montpellier

Circuits

- A collection C of signed set of a finite set E is the set of circuits of an oriented matroid on E if and only if the following axioms are verified :
- (C0) $\emptyset \notin C$, (C1) (symmetry) C = -C, (C2) (incomparability) for any $X, Y \in C$, if $\underline{X} \subseteq \underline{Y}$, then X = Y or X = -Y, (C3) (weak elimination) for any $X, Y \in C, X \neq -Y$, and $e \in X^+ \cap Y^-$, there exists $Z \in C$ such that
- $Z^+ \subseteq (X^+ \cup Y^+) \setminus \{e\} \text{ and } Z^- \subseteq (X^- \cup Y^-) \setminus \{e\}.$

J.L. Ramírez Alfonsín

• If we forget the signs then (C0),(C2),(C3) reduced to the circuits axioms of a matroid.

IMAG, Université de Montpellier

- If we forget the signs then (C0),(C2),(C3) reduced to the circuits axioms of a matroid.
- All matroid notions \underline{M} are also considered as notions of oriented matroids, in particular, the rank of M is the same rank as in \underline{M} .

- If we forget the signs then (C0),(C2),(C3) reduced to the circuits axioms of a matroid.
- All matroid notions \underline{M} are also considered as notions of oriented matroids, in particular, the rank of M is the same rank as in \underline{M} .
- Let $A \subseteq E$ and put $-_A C = \{-_A X : X \in C\}$. It is clear that $-_A C$ is also the set of circuits of an oriented matroid, denoted by $-_A M$.

- If we forget the signs then (C0),(C2),(C3) reduced to the circuits axioms of a matroid.
- All matroid notions \underline{M} are also considered as notions of oriented matroids, in particular, the rank of M is the same rank as in \underline{M} .

• Let $A \subseteq E$ and put $-_A C = \{-_A X : X \in C\}$. It is clear that $-_A C$ is also the set of circuits of an oriented matroid, denoted by $-_A M$. Notation For short, we write $X = a\overline{bc}de$ the signed set X defined by $X^+ = \{a, d, e\}$ and $X^- = \{b, c\}$.

Oriented Matroids : introduction

Graphs

Let D be the following oriented graph.

J.L. Ramírez Alfonsín Oriented Matroids : introduction IMAG, Université de Montpellier

Graphs

Let *D* be the following oriented graph. f f d d d

 $\begin{aligned} \mathcal{C}(D) &= \{(a\overline{b}c), (a\overline{b}d), (a\overline{e}f), (c\overline{d}), (b\overline{c}\overline{e}f), (b\overline{d}\overline{e}f), \\ & (\overline{a}b\overline{c}), (\overline{a}b\overline{d}), (\overline{a}\overline{e}\overline{f}), (\overline{c}d), (\overline{b}c\overline{e}\overline{f}), (\overline{b}d\overline{e}\overline{f})\}. \end{aligned}$

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Oriented Matroids : introduction

Configuration of vectors in the space

Let $E = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a set of vectors generating a *r*-dimensional vector space over a ordered field, says ${\mathbf{v}_1, \dots, \mathbf{v}_n} \subseteq \mathbb{R}^r$.

(□ ▶ 《□ ▶ 《三 ▶ 《三 ▶ 《□ ▶ 《□

IMAG, Université de Montpellier

Configuration of vectors in the space

Let $E = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a set of vectors generating a *r*-dimensional vector space over a ordered field, says ${\mathbf{v}_1, \dots, \mathbf{v}_n} \subseteq \mathbb{R}^r$.

We consider the minimal linear dependencies

$$\sum_{i=1}^n \lambda_i \mathbf{v}_i = 0$$
 with $\lambda_i \in {\rm I\!R}$

We obtain an oriented matroid from *E* by considering the signed sets $X = (X^+, X^-)$ where

$$X^+ = \{i : \lambda_i > 0\}$$
 et $X^- = \{i : \lambda_i < 0\}$

for all minimal dependencies among \mathbf{v}_i .

Configuration of vectors in the space

Let $E = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a set of vectors generating a *r*-dimensional vector space over a ordered field, says ${\mathbf{v}_1, \dots, \mathbf{v}_n} \subseteq \mathbb{R}^r$.

We consider the minimal linear dependencies

$$\sum_{i=1}^n \lambda_i \mathbf{v}_i = 0$$
 with $\lambda_i \in {\rm I\!R}$

We obtain an oriented matroid from *E* by considering the signed sets $X = (X^+, X^-)$ where

$$X^+ = \{i : \lambda_i > 0\}$$
 et $X^- = \{i : \lambda_i < 0\}$

for all minimal dependencies among \mathbf{v}_i . This oriented matroid is called vectorial (or linear).

J.L. Ramírez Alfonsín

Oriented Matroids : introduction

Any configuration of points $\{p_1, \ldots, p_n\}$ in the affine space induces an oriented matroid having as circuits the signed set from the coefficient of minimal affine dependencies, that is, linear combinations of the form

$$\sum_i \lambda_i p_i = 0$$
 with $\sum_i \lambda_i = 0, \ \lambda_i \in {
m I\!R}.$

IMAG, Université de Montpellier

Let us consider the points in ${\rm I\!R}^2$ given by the columns of matrix :

IMAG, Université de Montpellier

Let us consider the points in ${\rm I\!R}^2$ given by the columns of matrix :

Matrix \overline{A} correspond to points

IMAG, Université de Montpellier

The set of circuits of the corresponding affine oriented matroid is $\mathcal{C}(\overline{A}) = \{ (a\overline{b}d), (b\overline{c}f), (d\overline{e}f), (a\overline{c}e), (\overline{a}b\overline{e}f), (\overline{b}cd\overline{e}), (a\overline{c}df), (\overline{a}b\overline{d}), (\overline{b}c\overline{f}), (\overline{d}e\overline{f}), (\overline{a}c\overline{e}), (a\overline{b}e\overline{f}), (b\overline{c}d\overline{e}), (\overline{a}c\overline{d}f) \}.$

IMAG, Université de Montpellier

J.L. Ramírez Alfonsín

Oriented Matroids : introduction

The set of circuits of the corresponding affine oriented matroid is $\begin{array}{l} \mathcal{C}(\overline{A}) &= \{(a\overline{b}d), (b\overline{c}f), (d\overline{e}f), (a\overline{c}e), (\overline{a}b\overline{e}f), (\overline{b}cd\overline{e}), (a\overline{c}df), \\ (\overline{a}b\overline{d}), (\overline{b}c\overline{f}), (\overline{d}e\overline{f}), (\overline{a}c\overline{e}), (a\overline{b}e\overline{f}), (b\overline{c}de), (\overline{a}c\overline{d}f)\}. \end{array}$ For instance, $(a\overline{b}d)$ correspond to the affine dependecy $3(-1,0)^t - 4(0,0)^t + 1(3,0)^t = (0,0)^t$ with 3 - 4 + 1 = 0.

J.L. Ramírez Alfonsín

The circuits of an affine oriented matroid have a nice geometric interpretation. They can be thought as minimal Radon partitions.

□ ▶ ◆ @ ▶ ◆ 差 ▶ ◆ 差 ▶ ○ 差 ○ の Q ()

J.L. Ramírez Alfonsín Oriented Matroids : introduction IMAG, Université de Montpellier

The circuits of an affine oriented matroid have a nice geometric interpretation. They can be thought as minimal Radon partitions. Given a circuit C, the convex hull of the positive elements of C intersect the convex hull of the negative elements of C.

From the circuit $(a\overline{b}d)$ we see that the point *b* lies in the segment [a, b] and from circuit $(\overline{a}b\overline{e}f)$ the segment [a, e] intersect the segment [b, f] (in the affine real espace).

We can check that the oriented matroid obtained form K_4 with the orientation illustrated below has the same set of circuits that $M(\overline{A})$

 K_4 and $M(\overline{A})$ are isomorphic.

IMAG, Université de Montpellier

Let us consider the oriented matroid $-_d M(\overline{A})$ obtained by reorienting element d of $M(\overline{A})$. The set of circuits of $-_d M(\overline{A})$ is :

$$\mathcal{C} = \{ (a\overline{bd}), (b\overline{c}f), (\overline{de}f), (a\overline{c}e), (\overline{a}b\overline{e}f), (\overline{b}c\overline{de}), (a\overline{cd}f), (\overline{a}bd), (\overline{b}c\overline{f}), (d\overline{e}\overline{f}), (\overline{a}c\overline{e}), (a\overline{b}\overline{e}\overline{f}), (b\overline{c}de), (\overline{a}c\overline{d}\overline{f}) \}.$$

IMAG, Université de Montpellier

Let us consider the oriented matroid $-_d M(\overline{A})$ obtained by reorienting element d of $M(\overline{A})$. The set of circuits of $-_d M(\overline{A})$ is :

$$\mathcal{C} = \{ (a\overline{bd}), (b\overline{c}f), (\overline{de}f), (a\overline{c}e), (\overline{a}b\overline{e}f), (\overline{b}c\overline{d}e), (a\overline{c}df), \\ (\overline{a}bd), (\overline{b}c\overline{f}), (d\overline{e}\overline{f}), (\overline{a}c\overline{e}), (a\overline{b}\overline{e}\overline{f}), (b\overline{c}de), (\overline{a}c\overline{d}\overline{f}) \} .$$

• $-_d M(\overline{A})$ is a graphic oriented matroid since it can be obtained by changing the orientation of the edge d.

Let us consider the oriented matroid $-_d M(\overline{A})$ obtained by reorienting element d of $M(\overline{A})$. The set of circuits of $-_d M(\overline{A})$ is :

$$\mathcal{C} = \{ (a\overline{bd}), (b\overline{c}f), (\overline{de}f), (a\overline{c}e), (\overline{a}b\overline{e}f), (\overline{b}c\overline{d}e), (a\overline{c}df), \\ (\overline{a}bd), (\overline{b}c\overline{f}), (d\overline{e}\overline{f}), (\overline{a}c\overline{e}), (a\overline{b}\overline{e}\overline{f}), (b\overline{c}de), (\overline{a}c\overline{d}\overline{f}) \} .$$

• $-_d M(\overline{A})$ is a graphic oriented matroid since it can be obtained by changing the orientation of the edge d.

• $-_d M(\overline{A})$ also correspond to the affine oriented matroid illustrated as before under the permutation $\sigma(a) = b, \sigma(b) = a, \sigma(c) = c, \sigma(d) = d, \sigma(e) = f, \sigma(f) = e.$

IMAG, Université de Montpellier

J.L. Ramírez Alfonsín

Oriented Matroids : introduction

(Deletion) Let M = (E, C) be an oriented matroid and let $F \subset E$. Then,

$$\mathcal{C}' = \{ X \in \mathcal{C} : \underline{X} \subseteq F \}$$

the set of circuits in M contained in F, is the set of circuits of an oriented matroid in F.

(Deletion) Let M = (E, C) be an oriented matroid and let $F \subset E$. Then,

 $\mathcal{C}' = \{X \in \mathcal{C} : \underline{X} \subseteq F\}$

the set of circuits in M contained in F, is the set of circuits of an oriented matroid in F.

This oriented matroid is called a sub-matroid induced by F, and denoted by $M|_{F}$.

(Contraction) Let M = (E, C) be an oriented matroid and let $F \subset E$. Then,

 $\mathsf{Min}(\{X|_F:X\in\mathcal{C}\})$

the set of non-empty intersections, minimal by inclusion of the circuits of M with F, is the set of circuits of an oriented matroid in F.

(Contraction) Let M = (E, C) be an oriented matroid and let $F \subset E$. Then,

 $\mathsf{Min}(\{X|_F:X\in\mathcal{C}\})$

the set of non-empty intersections, minimal by inclusion of the circuits of M with F, is the set of circuits of an oriented matroid in F.

This oriented matroid is called a contraction of M over F, and it is denoted by M/F.

Duality

Two signed sets X et Y are said orthogonal, denoted by $X \perp Y$, if either $\underline{X} \cap \underline{Y} = \emptyset$ or if $X|_{X \cap Y}$ and $Y|_{X \cap Y}$ are neither opposite nor equal, that is, there exists $e, f \in \underline{X} \cap \underline{Y}$ such that X(e)Y(e) = -X(f)Y(f).

Duality

Two signed sets X et Y are said orthogonal, denoted by $X \perp Y$, if either $\underline{X} \cap \underline{Y} = \emptyset$ or if $X|_{X \cap Y}$ and $Y|_{X \cap Y}$ are neither opposite nor equal, that is, there exists $e, f \in \underline{X} \cap \underline{Y}$ such that X(e)Y(e) = -X(f)Y(f).

Let M = (E, C) be an oriented matroid, then

(*i*) there exists a unique signature of C^* the cocircuits of <u>M</u> such that

$$(\bot)$$
 $X \perp Y$ pour tout $X \in \mathcal{C}$ et $Y \in \mathcal{C}^*$.

(*ii*) The collection C^* is the set of circuits of an oriented matroid over E, denoted by M^* and called dual (or orthogonal) of M. (*iiii*) We have $M^{**} = M$. Let *E* be a set of vectors generating \mathbb{R}^d and let M = (E, C) be the oriented matroid of rank *r* of linear dependencies of *E*.

IMAG, Université de Montpellier

Let *E* be a set of vectors generating \mathbb{R}^d and let M = (E, C) be the oriented matroid of rank *r* of linear dependencies of *E*. Let *H* be a hyperplane of \underline{M} , i.e., a closed set of *E* generating a hyperplane in \mathbb{R}^d . We recall that $D = E \setminus H$ is a cocircuit of \underline{M} . Let *h* be the linear function in \mathbb{R}^d such that kernel(h) is *H*

(unique up to scaling).

Oriented Matroids : introduction

J.L. Ramírez Alfonsín
Let *E* be a set of vectors generating \mathbb{R}^d and let M = (E, C) be the oriented matroid of rank *r* of linear dependencies of *E*.

Let *H* be a hyperplane of \underline{M} , i.e., a closed set of *E* generating a hyperplane in \mathbb{R}^d . We recall that $D = E \setminus H$ is a cocircuit of \underline{M} . Let *h* be the linear function in \mathbb{R}^d such that kernel(h) is *H* (unique up to scaling).

The signature of D in M^* is given by

 $D^+ = \{e \in D : h(e) > 0\}$ and $D^- = \{e \in D : h(e) < 0\}.$

Example

Let $V = \{a, b, c, e, f\}$ be the vectors given in the following matrix $A' = \begin{pmatrix} a & c & f & b & e \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$

IMAG, Université de Montpellier

Example

J.L. Ramírez Alfonsín Oriented Matroids : introduction IMAG, Université de Montpellier

The set of circuits of M(A') is given by $M(D) \setminus d$ where D is the diagraph.

The vector configuration of the dual space V is given by the columns of

$$A'^{\perp} = \left(egin{array}{ccccc} -1 & c^{\perp} & f^{\perp} & b^{\perp} & e^{\perp} \\ -1 & -1 & 0 & 1 & 0 \\ -1 & 0 & -1 & 0 & 1 \end{array}
ight)$$

IMAG, Université de Montpellier

We thus have that minimal dependencies among the columns of ${\cal A}'^\perp$ are :

$$\mathcal{C}(A'^{\perp}) = \mathcal{C}^{*}(A') = \{a^{\perp}e^{\perp}b^{\perp}, a^{\perp}e^{\perp}\overline{c^{\perp}}, a^{\perp}\overline{f^{\perp}}b^{\perp}, a^{\perp}\overline{f^{\perp}}c^{\perp}, b^{\perp}c^{\perp}, e^{\perp}f^{\perp}, a^{\perp}\overline{f^{\perp}}b^{\perp}, a^{\perp}\overline{f^{\perp}}c^{\perp}, b^{\perp}c^{\perp}, e^{\perp}f^{\perp}, a^{\perp}\overline{f^{\perp}}b^{\perp}, a^{\perp}\overline{f^{\perp}}c^{\perp}, b^{\perp}c^{\perp}, e^{\perp}f^{\perp}, a^{\perp}\overline{f^{\perp}}b^{\perp}, a^{\perp}\overline{f^{\perp}}c^{\perp}, b^{\perp}c^{\perp}, e^{\perp}f^{\perp}, a^{\perp}\overline{f^{\perp}}b^{\perp}, a^{\perp}\overline{f^{\perp}}c^{\perp}, b^{\perp}\overline{f^{\perp}}c^{\perp}, e^{\perp}f^{\perp}, a^{\perp}\overline{f^{\perp}}c^{\perp}, a^{\perp}\overline{f^{\perp}}c^{\perp}c^{\perp}, a^{\perp}\overline{f^{\perp}}c^{\perp}c^{\perp}, a^{\perp}\overline{f^{\perp}}c^{\perp}$$

IMAG, Université de Montpellier

Recall that $M(A^{\perp})$ is isomorphic to M(D') where D' is the oriented graph dual to the planar signed graph $D \setminus \{d\}$

IMAG, Université de Montpellier

Hyperplane-Cocircuits

▲ロト ▲母 ト ▲臣 ト ▲臣 ト 三臣 - のへの

J.L. Ramírez Alfonsín Oriented Matroids : introduction IMAG, Université de Montpellier

Hyperplane-Cocircuits

The set $\{e, f\}$ of D' is a minimal cut and thus a circuit of D' (or a cocircuit of $D \setminus \{d\}$). It corresponds to the hyperplane $E \setminus \{e, f\} = \{a, b, c\}$ of $D \setminus \{d\}$. The set $\{abc\}$ is a hyperplane since $r(\{abc\}) = 2$ and $cl(\{a, b, c\}) = \{a, b, c\}$.

Oriented Matroids : introduction

Hyperplane-Cocircuits

Geometrically, the vectors $\{a, b, c\}$ generate a hyperplane but they do not form a base.

Geometric interpretation of cocircuits : affine case

Let *E* be a configuration of points in the (d-1)-affine space. Let *D* be a cocircuit of the oriented matroid of affine linear dependecies of *E*. The signature of *D* in M^* is

$$D^+ = D \cap H^+$$
 et $D^- = D \cap H^-$

where H^+ and H^- are the two open spaces in \mathbb{R}^{d-1} determined by a hyperplan affine H containing $E \setminus D$.

A basis orientation of an oriented matroid M is an application from the set of ordered bases of M to $\{-1, +1\}$ verifying (B1) χ est alternating (P) (pivoting property) if $(e, x_2, ..., x_r)$ and $(f, x_2, ..., x_r)$ are two ordered bases of M with $e \neq f$ then,

$$\chi(f, x_2, \ldots x_r) = -C(e)C(f)\chi(e, x_2, \ldots, x_r)$$

where C is one of the two circuits of M in $(e, f, x_2, ..., x_r)$.

J.L. Ramírez Alfonsín

Oriented Matroids : introduction

We notice that if χ is a basis orientation of M then M is determined only by \underline{M} and χ .

IMAG, Université de Montpellier

We notice that if χ is a basis orientation of M then M is determined only by \underline{M} and χ .

Indeed, we can find the signs of the elements $C \in C(\underline{M})$ from χ as follows : Choose $x_1, \ldots, x_r, x_{r+1} \in M$ such that $C \subset \{x_1, \ldots, x_{r+1}\}$ and $\{x_1, \ldots, x_r\}$ is a base of \underline{M} . Then,

 $C(x_i) = (-1)^i \chi(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{r+1})$ for any $x_i \in C$.

Dual version

We also have the dual version for the pivoting property (*P*) : (*P*^{*}) (pivoting dual property) if $(e, x_2, ..., x_r)$ and $(f, x_2, ..., x_r)$ are two ordered bases of *M* with $e \neq f$ then,

$$\chi(f, x_2, \ldots, x_r) = -D(e)D(f)\chi(e, x_2, \ldots, x_r)$$

where *D* is one of the two cocircuits of *M* complement to the hyperplane generated by (x_2, \ldots, x_r) in *M*.

Chirotope

A chirotope of rank r over E is an application $\chi: E^r \longrightarrow \{-1, 0, +1\}$ verifying

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣Q()

IMAG, Université de Montpellier

Chirotope

A chirotope of rank r over E is an application $\chi: E^r \longrightarrow \{-1, 0, +1\}$ verifying (CH0) $\chi \neq 0$. (CH1) χ is alternating, i.e., $\chi(x_{\sigma(1)},\ldots,x_{\sigma(r)}) = sign(\sigma)\chi(x_1,\ldots,x_r)$ for any $x_1,\ldots,x_r \in E^r$ and any permutation σ . (CH2) for any $x_1, \ldots, x_r, y_1, \ldots, y_r \in E^r$ such that $\chi(y_i, x_2, \dots, x_r) \cdot \chi(y_1, \dots, y_{i_1}, x_1, y_{i+1}, \dots, y_r) \ge 0$ for any $i = 1, \dots, r$ then

$$\chi(x_1,\ldots,x_r)\cdot\chi(y_1,\ldots,y_r)\geq 0$$

IMAG, Université de Montpellier

J.L. Ramírez Alfonsín

Oriented Matroids : introduction

If M is an oriented matroid of rank r of the linear dependencies of a set of vectors $E \subset \mathbb{R}^r$, then the corresponding chirotope χ is given by

$$\chi(x_1,\ldots,x_r) = sign(det(x_1,\ldots,x_r))$$

for any $x_1, \ldots, x_r \in E$.

| ロ ト K 聞 ト K 直 ト K 直 ト N Q Cr

If M is an oriented matroid of rank r of the linear dependencies of a set of vectors $E \subset \mathbb{R}^r$, then the corresponding chirotope χ is given by

$$\chi(x_1,\ldots,x_r) = sign(det(x_1,\ldots,x_r))$$

for any $x_1, \ldots, x_r \in E$.

In this case the axiom (*CH*2) is an abstraction of the Grassmann-Plücker relation for the determinant claiming that if $x_1, \ldots, x_r, y_1, \ldots, y_r \in \mathbb{R}^r$ then

$$det(x_1,...,x_r) \cdot det(y_1,...,y_r) = \sum_{i=1}^r det(y_i,x_2,...,x_r) \cdot det(y_1,...,y_{i_1},x_1,y_{i+1},...,y_r)$$

IMAG, Université de Montpellier

J.L. Ramírez Alfonsín

Oriented Matroids : introduction

Theorem Let $r \ge 1$ be an integer and let E be a finite set. An application

$$\chi: E^r \longrightarrow \{-1, 0, +1\}$$

is a basis orientation of an oriented matroid of rank r over E if and only if χ is a chirotope.

Contraction Let $A \subset E$. Recall that $C/A = Min\{C \setminus A : C \in C\}$. Let a_1, \ldots, a_{r-s} be a base of A in M. Then,

$$\begin{array}{rcl} \chi/A: & (E \setminus A)^s & \longrightarrow & \{-1, 0, +1\} \\ & (x_1, \dots, x_s) & \longmapsto & \chi(x_1, \dots, x_s, a_1, \dots, a_{r-s}) \end{array}$$

IMAG, Université de Montpellier

Contraction Let $A \subset E$. Recall that $C/A = Min\{C \setminus A : C \in C\}$. Let a_1, \ldots, a_{r-s} be a base of A in M. Then,

$$\begin{array}{rcl} \chi/A: & (E \setminus A)^s & \longrightarrow & \{-1, 0, +1\} \\ & & (x_1, \dots, x_s) & \longmapsto & \chi(x_1, \dots, x_s, a_1, \dots, a_{r-s}) \end{array}$$

Deletion Let $A \subset E$ and suppose that $M \setminus A$ is of rank s < r. Recall that $C \setminus A = \{C \in C : C \cap A = \emptyset\}$. Let $a_1, \ldots, a_{r-s} \in A$ such that $E \setminus A \cup \{a_1, \ldots, a_{r-s}\}$ generate M. Then,

$$\begin{array}{rcl} \chi \setminus A : & (E \setminus A)^s & \longrightarrow & \{-1, 0, +1\} \\ & & (x_1, \dots, x_s) & \longmapsto & \chi(x_1, \dots, x_s, a_1, \dots, a_{r-s}) \end{array}$$

IMAG, Université de Montpellier

J.L. Ramírez Alfonsín

Oriented Matroids : introduction

Reorientation Let $A \subset E$ then the set of circuits of $-_A M$ is given by $-_A C = \{-_A C : C \in C\}$ where the signature of $-_A C$ is defined by $(-_A C)(x) = (-1)^{|A \cap \{x\}|} \cdot C(x)$. Then

$$\begin{array}{rccc} -_{\mathcal{A}}\chi : & \mathcal{E}^r & \longrightarrow & \{-1,0,+1\} \\ & (x_1,\ldots,x_r) & \longmapsto & \chi(x_1,\ldots,x_r)(-1)^{|\mathcal{A} \cap \{x_1,\ldots,x_r\}|} \end{array}$$

IMAG, Université de Montpellier

(D) < **(P)** < **(P)** < **(P)** < **(P)**

Reorientation Let $A \subset E$ then the set of circuits of $-_A M$ is given by $-_A C = \{-_A C : C \in C\}$ where the signature of $-_A C$ is defined by $(-_A C)(x) = (-1)^{|A \cap \{x\}|} \cdot C(x)$. Then

$$\begin{array}{rccc} -_{\mathcal{A}}\chi: & \mathcal{E}^r & \longrightarrow & \{-1,0,+1\} \\ & (x_1,\ldots,x_r) & \longmapsto & \chi(x_1,\ldots,x_r)(-1)^{|\mathcal{A} \cap \{x_1,\ldots,x_r\}|} \end{array}$$

Duality Let $E = \{1, \ldots, n\}$. Given a (n - r)-set (x_1, \ldots, x_{n-r}) , we write (x'_1, \ldots, x'_r) for one permutation of $E \setminus \{x_1, \ldots, x_{n-r}\}$. In particular, $\{x_1, \ldots, x_{n-r}, x'_1, \ldots, x'_r\}$ is a permutation of $\{1, \ldots, n\}$ where its sign, denoted by $sign\{x_1, \ldots, x_{n-r}, x'_1, \ldots, x'_r\}$, is given by the parity of the number of inversions of this set. Then,

$$\begin{array}{rccc} \chi^*: & E^{n-r} & \longrightarrow & \{-1,0,+1\} \\ & & (x_1,\ldots,x_{n-r}) & \longmapsto & \chi(x'_1,\ldots,x'_r) sign\{x_1,\ldots,x_{n-r},x'_1,\ldots,x'_r\} \end{array}$$

J.L. Ramírez Alfonsín

Oriented Matroids : introduction

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへの

IMAG, Université de Montpellier

• This operation is associative but not necessarily commutative

IMAG, Université de Montpellier

- This operation is associative but not necessarily commutative
- The vector (resp. covector) of an oriented matroid is any composition of circuits (resp. cocircuits).

- This operation is associative but not necessarily commutative
- The vector (resp. covector) of an oriented matroid is any composition of circuits (resp. cocircuits).
- If *M* is an affine oriented matroid then :

 $-X = (X^+, X^-)$ is a vector of M if and only if X forms a Radon's partition, i.e., $conv(X^-) \cap conv(X^+) \neq \emptyset$.

- This operation is associative but not necessarily commutative
- The vector (resp. covector) of an oriented matroid is any composition of circuits (resp. cocircuits).
- If *M* is an affine oriented matroid then :

 $-X = (X^+, X^-)$ is a vector of M if and only if X forms a Radon's partition, i.e., $conv(X^-) \cap conv(X^+) \neq \emptyset$.

 $-Y = (Y^+, Y^-)$ is a covector of M if and only if there is an affine hyperplane H (not necessarily generated by points of M) such that $Y^- = E \cap H^-$ and $Y^+ = E \cap H^+$ where H^- and H^+ are the open half-spaces induced by H.

・ロト ・ 日 ・ ・ ヨ ・ ・

Theorem A collection V of signed subsets of a set E is the set of vectors of an oriented matroid if and only if the following properties are verified :

 $(V0) \emptyset \in V$,

(V1) (symmetry) V = -V,

(V2) (composition) for all $X, Y \in V$ we have $X \circ Y \in V$,

(V3) (vector strong elimination) for all $X, Y \in V, e \in X^+ \cap Y^$ and $f \in (\underline{X} \setminus \underline{Y}) \cup (\underline{Y} \setminus \underline{X}) \cup (X^+ \cap Y^+) \cup (X^- \cap Y^-)$, there exists $Z \in V$ such that $Z^+ \subseteq (X^+ \cap Y^+) \setminus e, Z^- \subseteq (X^- \cap Y^-) \setminus e$ and $f \in \underline{Z}$.

J.L. Ramírez Alfonsín

A sphere S of S^{d-1} is a pseudo-sphere if S is homeomorphic to S^{d-2} in a homeomorphism of S^{d-1} .

IMAG, Université de Montpellier

There are then two connected components in $S^{d-1} \setminus S$, each homeomorphic to a ball of dimension d-1 (called sides of S).

IMAG, Université de Montpellier

A finite collection $\{S_1, \ldots, S_n\}$ of pseudo-spheres in S^{d-1} is an arrangement of pseudo-spheres if (*PS*1) For all $A \subseteq E = \{1, \ldots, n\}$ the set $S_A = \bigcap_{e \in A} S_e$ is a topological sphere (*PS*2) If $S_A \not\subseteq S_e$ for $A \subseteq E, e \in E$ and S_e^+, S_e^- denote the two sides of S_e then $S_A \cap S_e$ is a pseudo-sphere of S_A having as sides $S_A \cap S_e^+$ and $S_A \cap S_e^-$.

A finite collection $\{S_1, \ldots, S_n\}$ of pseudo-spheres in S^{d-1} is an arrangement of pseudo-spheres if

(*PS*1) For all $A \subseteq E = \{1, ..., n\}$ the set $S_A = \bigcap_{e \in A} S_e$ is a topological sphere

(*PS2*) If $S_A \not\subseteq S_e$ for $A \subseteq E, e \in E$ and S_e^+, S_e^- denote the two sides of S_e then $S_A \cap S_e$ is a pseudo-sphere of S_A having as sides $S_A \cap S_e^+$ and $S_A \cap S_e^-$.

• The condition (*PS*1) allows $S_A = \emptyset$ (we suppose that \emptyset is a (-1)-sphere).

J.L. Ramírez Alfonsín

A finite collection $\{S_1, \ldots, S_n\}$ of pseudo-spheres in S^{d-1} is an arrangement of pseudo-spheres if

(*PS*1) For all $A \subseteq E = \{1, ..., n\}$ the set $S_A = \bigcap_{e \in A} S_e$ is a topological sphere

(PS2) If $S_A \not\subseteq S_e$ for $A \subseteq E, e \in E$ and S_e^+, S_e^- denote the two sides of S_e then $S_A \cap S_e$ is a pseudo-sphere of S_A having as sides $S_A \cap S_e^+$ and $S_A \cap S_e^-$.

• The condition (*PS*1) allows $S_A = \emptyset$ (we suppose that \emptyset is a (-1)-sphere).

• The arrangement is said essential if $S_E = \emptyset$.

(D) < **(P)** < **(P)** < **(P)** < **(P)**

A finite collection $\{S_1, \ldots, S_n\}$ of pseudo-spheres in S^{d-1} is an arrangement of pseudo-spheres if

(*PS*1) For all $A \subseteq E = \{1, ..., n\}$ the set $S_A = \bigcap_{e \in A} S_e$ is a topological sphere

(*PS2*) If $S_A \not\subseteq S_e$ for $A \subseteq E, e \in E$ and S_e^+, S_e^- denote the two sides of S_e then $S_A \cap S_e$ is a pseudo-sphere of S_A having as sides $S_A \cap S_e^+$ and $S_A \cap S_e^-$.

• The condition (*PS*1) allows $S_A = \emptyset$ (we suppose that \emptyset is a (-1)-sphere).

• The arrangement is said essential if $S_E = \emptyset$. We say that the arrangement is signed if for each pseudo-sphere S_e , $e \in E$ it is chosen a positive and a negative side.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

J.L. Ramírez Alfonsín
Topological representation

• Every essential arrangement of signed pseudo-sphere S partition the topological (d-1)-sphere in a complexe cellular $\Gamma(S)$. Each cell of $\Gamma(S)$ is uniquely determined by a sign vector in $\{-, 0, +\}^E$ which is the codification of its relative position relative according to each pseudo-sphere S_i . Conversely $\Gamma(S)$ characterize S

J.L. Ramírez Alfonsín Oriented Matroids : introduction IMAG, Université de Montpellier

Two arrangements (resp. signed arrangement) are equivalent if they are the same up to a homomorphism of S^{d-1} (resp. also the homeorphism preserve the signs). S is called realizable if there exists arrangement of sphere S' such that $\Gamma(S)$ is isomorphic to $\Gamma(S')$.

J.L. Ramírez Alfonsín Oriented Matroids : introduction Two arrangements (resp. signed arrangement) are equivalent if they are the same up to a homomorphism of S^{d-1} (resp. also the homeorphism preserve the signs). S is called realizable if there exists arrangement of sphere S' such that $\Gamma(S)$ is isomorphic to $\Gamma(S')$.

Theorem (Topological Representation) A loop-free oriented matroids of rank d + 1 (up to isomorphism) are in one-to-one correspondence with arrangements of pseudospheres in S^d (up to topological equivalence) or equivalently to affine arrangements of pseudo-hyperplans in \mathbb{R}^{d-1} (up to topological equivalence).

Topological representation

・ロト・四ト・ヨト・ヨー シック

J.L. Ramírez Alfonsín Oriented Matroids : introduction IMAG, Université de Montpellier

Acyclic reorientations

Let M be an oriented matroid on E.

IMAG, Université de Montpellier

J.L. Ramírez Alfonsín Oriented Matroids : introduction

Let M be an oriented matroid on E.

• There exists a bijection between the subsets A of E such that $-_A M$ is acyclic and the regions in the corresponding topological representation of M.

J.L. Ramírez Alfonsín Oriented Matroids : introduction

Let M be an oriented matroid on E.

• There exists a bijection between the subsets A of E such that $-_A M$ is acyclic and the regions in the corresponding topological representation of M.

• The number of subsets A of E such that $-_A M$ are acyclic is equals to t(M; 2, 0).

Let M be an oriented matroid on E.

• There exists a bijection between the subsets A of E such that $-_A M$ is acyclic and the regions in the corresponding topological representation of M.

• The number of subsets A of E such that $-_A M$ are acyclic is equals to t(M; 2, 0).

• The number of subsets A of E such that $-_A M$ are totally cyclic is equals to t(M; 0, 2).

Acyclic reorientations

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Oriented Matroids : introduction