Oriented Matroids : introduction

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

S˜ao Paulo, Brasil August 2017

[Oriented Matroids : introduction](#page-80-0)

J.L. Ramírez Alfonsín e a controllation de la controllation de la controllation de la controllation de Montpellier

← ロ ▶ → イ 同

 $2Q$

A signed set X is a set \underline{X} divided in two parts (X^+,X^-) , where X^+ is the set of the positive elements of X and X^- is the set of the negative elements. The set $\underline{X}=X^+\cup X^-$ is called the support of X.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Notation

A signed set X is a set \underline{X} divided in two parts (X^+,X^-) , where X^+ is the set of the positive elements of X and X^- is the set of the negative elements. The set $\underline{X}=X^+\cup X^-$ is called the support of X.

The opposite of a signed set X, denoted by $-X$, is the signed set defined by $(-X)^{+} = X^{-}$ and $(-X)^{-} = X^{+}$.

つへへ

Notation

A signed set X is a set \underline{X} divided in two parts (X^+,X^-) , where X^+ is the set of the positive elements of X and X^- is the set of the negative elements. The set $\underline{X}=X^+\cup X^-$ is called the support of X.

The opposite of a signed set X, denoted by $-X$, is the signed set defined by $(-X)^{+} = X^{-}$ and $(-X)^{-} = X^{+}$.

Given a signed set X and a set A we denote by $-AX$ the signed set defined by $(-_AX)^+ = (X^+ \setminus A) \cup (X^- \cap A)$ and $(-_AX)^{-} = (X^{-} \setminus A) \cup (X^{+} \cap A).$

Notation

A signed set X is a set \underline{X} divided in two parts (X^+,X^-) , where X^+ is the set of the positive elements of X and X^- is the set of the negative elements. The set $\underline{X}=X^+\cup X^-$ is called the support of X.

The opposite of a signed set X, denoted by $-X$, is the signed set defined by $(-X)^{+} = X^{-}$ and $(-X)^{-} = X^{+}$.

Given a signed set X and a set A we denote by $-AX$ the signed set defined by $(-_AX)^+ = (X^+ \setminus A) \cup (X^- \cap A)$ and $(-_AX)^{-} = (X^{-} \setminus A) \cup (X^{+} \cap A).$

We say that the signed set $-AX$ is obtained by a reorientation of \mathcal{A}_{\cdot}

Circuits

A collection C of signed set of a finite set E is the set of circuits of an oriented matroid on E if and only if the following axioms are verified :

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Circuits

- A collection C of signed set of a finite set E is the set of circuits of an oriented matroid on E if and only if the following axioms are verified :
- $(C0)$ $\emptyset \notin \mathcal{C}$, (C1) (symmetry) $C = -C$, (C2) (incomparability) for any X, $Y \in \mathcal{C}$, if $X \subseteq Y$, then $X = Y$ or $X = -Y$. (C3) (weak elimination) for any X, $Y \in \mathcal{C}$, $X \neq -Y$, and
- $e \in X^+ \cap Y^-$, there exists $Z \in \mathcal{C}$ such that $Z^+ \subseteq (X^+ \cup Y^+) \setminus \{e\}$ and $Z^- \subseteq (X^- \cup Y^-) \setminus \{e\}.$

• If we forget the signs then $(C0)$, $(C2)$, $(C3)$ reduced to the circuits axioms of a matroid.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

• If we forget the signs then $(C0)$, $(C2)$, $(C3)$ reduced to the circuits axioms of a matroid.

• All matroid notions M are also considered as notions of oriented matroids, in particular, the rank of M is the same rank as in M .

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

- If we forget the signs then $(C0)$, $(C2)$, $(C3)$ reduced to the circuits axioms of a matroid.
- All matroid notions M are also considered as notions of oriented matroids, in particular, the rank of M is the same rank as in M .
- Let $A \subseteq E$ and put $-\mathcal{A}C = \{-\mathcal{A}X : X \in C\}$. It is clear that $-\mathcal{A}C$ is also the set of circuits of an oriented matroid, denoted by $-\frac{A}{M}$.

• If we forget the signs then $(C0)$, $(C2)$, $(C3)$ reduced to the circuits axioms of a matroid.

• All matroid notions M are also considered as notions of oriented matroids, in particular, the rank of M is the same rank as in M .

• Let $A \subseteq E$ and put $-\mathcal{A}C = \{-\mathcal{A}X : X \in C\}$. It is clear that $-\mathcal{A}C$ is also the set of circuits of an oriented matroid, denoted by $-\mu M$. Notation For short, we write $X = a\overline{bc}$ de the signed set X defined by $X^+ = \{a, d, e\}$ and $X^- = \{b, c\}.$

Graphs

Let D be the following oriented graph. *e*

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

Graphs

Let D be the following oriented graph. *a c d* $\begin{array}{ccc} f & \nearrow a & \downarrow b \end{array}$ *e*

 $C(D) = \{(\overline{abc}),(\overline{abd}),(\overline{a}\overline{e}f),(\overline{c}\overline{d}),(\overline{b}\overline{c}\overline{e}f),(\overline{b}\overline{d}\overline{e}f),$ $(\overline{a}b\overline{c}),(\overline{a}b\overline{d}),(\overline{a}e\overline{f}),(\overline{c}d),(\overline{b}ce\overline{f}),(\overline{b}de\overline{f})\}.$

 \leftarrow

[Oriented Matroids : introduction](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

 Ω

Configuration of vectors in the space

Let $E = \{v_1, \ldots, v_n\}$ be a set of vectors generating a *r*-dimensional vector space over a ordered field, says $\{{\boldsymbol{\mathsf{v}}}_1,\ldots,{\boldsymbol{\mathsf{v}}}_n\}\subseteq \mathbb{R}^r.$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Configuration of vectors in the space

Let $E = \{v_1, \ldots, v_n\}$ be a set of vectors generating a *r*-dimensional vector space over a ordered field, says $\{{\boldsymbol{\mathsf{v}}}_1,\ldots,{\boldsymbol{\mathsf{v}}}_n\}\subseteq \mathbb{R}^r.$

We consider the minimal linear dependencies

$$
\sum_{i=1}^n \lambda_i \mathbf{v}_i = 0 \text{ with } \lambda_i \in \mathbb{R}
$$

We obtain an oriented matroid from E by considering the signed sets $X=(X^+,X^-)$ where

$$
X^+ = \{i : \lambda_i > 0\} \text{ et } X^- = \{i : \lambda_i < 0\}
$$

for all minimal dependencies among v_i .

[Oriented Matroids : introduction](#page-0-0)

Configuration of vectors in the space

Let $E = \{v_1, \ldots, v_n\}$ be a set of vectors generating a *r*-dimensional vector space over a ordered field, says $\{{\boldsymbol{\mathsf{v}}}_1,\ldots,{\boldsymbol{\mathsf{v}}}_n\}\subseteq \mathbb{R}^r.$

We consider the minimal linear dependencies

$$
\sum_{i=1}^n \lambda_i \mathbf{v}_i = 0 \text{ with } \lambda_i \in \mathbb{R}
$$

We obtain an oriented matroid from E by considering the signed sets $X=(X^+,X^-)$ where

$$
X^+ = \{i : \lambda_i > 0\} \text{ et } X^- = \{i : \lambda_i < 0\}
$$

for all minimal dependencies among v_i . This oriented matroid is called vectorial (or [lin](#page-14-0)e[ar](#page-16-0)[\)](#page-12-0)[.](#page-13-0)

[Oriented Matroids : introduction](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

∽≏∩

Any configuration of points $\{p_1, \ldots, p_n\}$ in the affine space induces an oriented matroid having as circuits the signed set from the coefficient of minimal affine dependencies, that is, linear combinations of the form

$$
\sum_i \lambda_i p_i = 0 \text{ with } \sum_i \lambda_i = 0, \lambda_i \in \mathbb{R}.
$$

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

つひひ

Let us consider the points in \mathbb{R}^2 given by the columns of matrix :

$$
\overline{A} = \left(\begin{array}{rrrr} a & b & c & d & e & f \\ -1 & 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 1 & 0 & 2 & 3 \end{array} \right)
$$

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

Let us consider the points in \mathbb{R}^2 given by the columns of matrix :

$$
\overline{A} = \left(\begin{array}{rrrr} a & b & c & d & e & f \\ -1 & 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 1 & 0 & 2 & 3 \end{array} \right)
$$

Matrix \overline{A} correspond to points

 \leftarrow

[Oriented Matroids : introduction](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

 Ω

The set of circuits of the corresponding affine oriented matroid is $C(\overline{A}) = \{(\overline{abd}),(\overline{b}\overline{c}f),(\overline{d}\overline{e}f),(\overline{a}\overline{c}e),(\overline{a}\overline{b}\overline{e}f),(\overline{b}cd\overline{e}),(\overline{a}\overline{c}df),$ $(\overline{a}b\overline{d}),(\overline{b}c\overline{f}),(\overline{d}e\overline{f}),(\overline{a}c\overline{e}),(\overline{a}\overline{b}e\overline{f}),(\overline{b}\overline{c}\overline{d}e),(\overline{a}c\overline{df})\}.$

[Oriented Matroids : introduction](#page-0-0)

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

The set of circuits of the corresponding affine oriented matroid is $C(\overline{A}) = \{(\overline{a}\overline{b}d),(\overline{b}\overline{c}f),(\overline{d}\overline{e}f),(\overline{a}\overline{c}e),(\overline{a}\overline{b}\overline{e}f),(\overline{b}cd\overline{e}),(\overline{a}\overline{c}df),$ $(\overline{a}b\overline{d}),(\overline{b}c\overline{f}),(\overline{d}e\overline{f}),(\overline{a}c\overline{e}),(\overline{a}\overline{b}e\overline{f}),(\overline{b}\overline{c}\overline{d}e),(\overline{a}c\overline{d}\overline{f})\}.$ For instance, $(a\overline{b}d)$ correspond to the affine dependecy $3(-1, 0)^t - 4(0, 0)^t + 1(3, 0)^t = (0, 0)^t$ with $3 - 4 + 1 = 0$.

つひひ

The circuits of an affine oriented matroid have a nice geometric interpretation. They can be thought as minimal Radon partitions.

 Ω 4 0 8

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

The circuits of an affine oriented matroid have a nice geometric interpretation. They can be thought as minimal Radon partitions. Given a circuit C, the convex hull of the positive elements of C intersect the convex hull of the negative elements of C.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

From the circuit ($a\overline{b}d$) we see that the point *b* lies in the segment [a, b] and from circuit ($\overline{a}b\overline{e}f$) the segment [a, e] intersect the segment $[b, f]$ (in the affine real espace).

We can check that the oriented matroid obtained form K_4 with the orientation illustrated below has the same set of circuits that $M(\overline{A})$

 K_4 and $M(\overline{A})$ are isomorphic.

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

 \leftarrow

 Ω

Let us consider the oriented matroid $-gM(\overline{A})$ obtained by reorienting element d of $M(\overline{A})$. The set of circuits of $-_dM(\overline{A})$ is :

$$
\mathcal{C} = \{ (a\overline{bd}), (b\overline{c}f), (\overline{def}), (a\overline{c}e), (\overline{a}b\overline{e}f), (\overline{b}c\overline{de}), (a\overline{cd}f), \\ (\overline{a}bd), (\overline{b}c\overline{f}), (d\overline{e}\overline{f}), (\overline{a}c\overline{e}), (a\overline{b}e\overline{f}), (b\overline{c}de), (\overline{a}c\overline{d}\overline{f}) \}.
$$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Let us consider the oriented matroid $-\frac{d}{d}M(\overline{A})$ obtained by reorienting element d of $M(\overline{A})$. The set of circuits of $-AM(\overline{A})$ is :

$$
\mathcal{C} = \{ (a\overline{bd}), (b\overline{c}f), (\overline{def}), (a\overline{c}e), (\overline{a}b\overline{e}f), (\overline{b}c\overline{de}), (a\overline{cd}f), (a\overline{b}df), (\overline{b}c\overline{f}), (d\overline{e}\overline{f}), (\overline{a}c\overline{e}), (a\overline{b}ef), (b\overline{c}de), (\overline{a}cd\overline{f}) \}.
$$

 $\bullet -_d M(\overline{A})$ is a graphic oriented matroid since it can be obtained by changing the orientation of the edge d.

つひひ

Let us consider the oriented matroid $-\frac{d}{d}M(\overline{A})$ obtained by reorienting element d of $M(\overline{A})$. The set of circuits of $-\frac{dM(\overline{A})}{A}$ is :

$$
\mathcal{C} = \{ (a\overline{bd}), (b\overline{c}f), (\overline{def}), (a\overline{c}e), (\overline{a}b\overline{e}f), (\overline{b}c\overline{de}), (a\overline{cd}f), (a\overline{b}df), (\overline{b}c\overline{f}), (d\overline{e}\overline{f}), (\overline{a}c\overline{e}), (a\overline{b}ef), (b\overline{c}de), (\overline{a}cd\overline{f}) \}.
$$

 $\bullet -d\mathcal{M}(\overline{A})$ is a graphic oriented matroid since it can be obtained by changing the orientation of the edge d.

 $\bullet -d\mathcal{M}(\overline{A})$ also correspond to the affine oriented matroid illustrated as before under the permutation $\sigma(a) = b, \sigma(b) = a, \sigma(c) = c, \sigma(d) = d, \sigma(e) = f, \sigma(f) = e.$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

つひひ

(Deletion) Let $M = (E, C)$ be an oriented matroid and let $F \subset E$. Then,

$$
\mathcal{C}' = \{X \in \mathcal{C} : \underline{X} \subseteq F\}
$$

the set of circuits in M contained in F , is the set of circuits of an oriented matroid in F.

 Ω

← ロ ▶ → イ 同

(Deletion) Let $M = (E, C)$ be an oriented matroid and let $F \subset E$. Then,

$$
\mathcal{C}' = \{X \in \mathcal{C} : \underline{X} \subseteq F\}
$$

the set of circuits in M contained in F, is the set of circuits of an oriented matroid in F.

This oriented matroid is called a sub-matroid induced by F, and denoted by $M|_F$.

(Contraction) Let $M = (E, C)$ be an oriented matroid and let $F \subset E$. Then,

 $Min({X|_{F} : X \in C})$

the set of non-empty intersections, minimal by inclusion of the circuits of M with F, is the set of circuits of an oriented matroid in F.

(Contraction) Let $M = (E, C)$ be an oriented matroid and let $F \subset E$. Then,

 $Min({X|_{F} : X \in C})$

the set of non-empty intersections, minimal by inclusion of the circuits of M with F, is the set of circuits of an oriented matroid in F.

This oriented matroid is called a contraction of M over F, and it is denoted by M/F .

[Oriented Matroids : introduction](#page-0-0)

Duality

Two signed sets X et Y are said orthogonal, denoted by $X \perp Y$, if either $X \cap Y = \emptyset$ or if $X|_{X \cap Y}$ and $Y|_{X \cap Y}$ are neither opposite nor equal, that is, there exists $e, f \in X \cap Y$ such that $X(e)Y(e) = -X(f)Y(f)$.

Duality

Two signed sets X et Y are said orthogonal, denoted by $X \perp Y$, if either $X \cap Y = \emptyset$ or if $X|_{X \cap Y}$ and $Y|_{X \cap Y}$ are neither opposite nor equal, that is, there exists $e, f \in X \cap Y$ such that $X(e)Y(e) = -X(f)Y(f)$.

Let $M = (E, C)$ be an oriented matroid, then

(i) there exists a unique signature of C^* the cocircuits of M such that

 (\bot) $X \perp Y$ pour tout $X \in \mathcal{C}$ et $Y \in \mathcal{C}^*$.

(ii) The collection C^* is the set of circuits of an oriented matroid over E , denoted by M^* and called dual (or orthogonal) of M . (iiii) We have $M^{**} = M$.

つひひ

K ロ ト K 何 ト K ヨ ト K

Let E be a set of vectors generating ${\rm I\!R}^d$ and let M $=(E, {\cal C})$ be the oriented matroid of rank r of linear dependencies of E.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Let E be a set of vectors generating ${\rm I\!R}^d$ and let M $=(E, {\cal C})$ be the oriented matroid of rank r of linear dependencies of E. Let H be a hyperplane of M, i.e., a closed set of E generating a hyperplane in $\mathbb{R}^d.$ We recall that $D = E \setminus H$ is a cocircuit of <u>M</u>. Let h be the linear function in \mathbb{R}^d such that kernel(h) is H (unique up to scaling).

[Oriented Matroids : introduction](#page-0-0)

∽≏∩
Let E be a set of vectors generating ${\rm I\!R}^d$ and let M $=(E, {\cal C})$ be the oriented matroid of rank r of linear dependencies of E.

Let H be a hyperplane of M, i.e., a closed set of E generating a hyperplane in $\mathbb{R}^d.$ We recall that $D = E \setminus H$ is a cocircuit of <u>M</u>. Let h be the linear function in \mathbb{R}^d such that kernel(h) is H (unique up to scaling).

The signature of D in M^* is given by

 $D^+ = \{e \in D : h(e) > 0\}$ and $D^- = \{e \in D : h(e) < 0\}.$

つひひ

Example

Let $V = \{a, b, c, e, f\}$ be the vectors given in the following matrix a c f b e $A' =$ $\sqrt{ }$ \mathcal{L} 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 \setminus $\overline{1}$

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

Example

[Oriented Matroids : introduction](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

The set of circuits of $M(A')$ is given by $M(D) \setminus d$ where D is the diagraph.

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

The vector configuration of the dual space V is given by the columns of

$$
A'^{\perp} = \begin{pmatrix} a^{\perp} & c^{\perp} & f^{\perp} & b^{\perp} & e^{\perp} \\ -1 & -1 & 0 & 1 & 0 \\ -1 & 0 & -1 & 0 & 1 \end{pmatrix}
$$

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

K ロ ▶ K 伊

 299

We thus have that minimal dependencies among the columns of A'^{\perp} are :

$$
\mathcal{C}(A'^{\perp}) = \mathcal{C}^*(A') = \{a^{\perp}e^{\perp}b^{\perp}, a^{\perp}e^{\perp}\overline{c^{\perp}}, a^{\perp}\overline{f^{\perp}}b^{\perp}, a^{\perp}\overline{f^{\perp}c^{\perp}}, b^{\perp}c^{\perp}, e^{\perp}f^{\perp}, a^{\perp}\overline{f^{\perp}c^{\perp}}, b^{\perp}c^{\perp}, e^{\perp}f^{\perp}, a^{\perp}e^{\perp}b^{\perp}, a^{\perp}e^{\perp}b^{\perp}, a^{\perp}e^{\perp}b^{\perp}, a^{\perp}e^{\perp}f^{\perp}\}.
$$

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

We thus have that minimal dependencies among the columns of A'^{\perp} are :

$$
C(A'^{\perp}) = C^*(A') = \{a^{\perp}e^{\perp}b^{\perp}, a^{\perp}e^{\perp}c^{\perp}, a^{\perp}f^{\perp}b^{\perp}, a^{\perp}f^{\perp}c^{\perp}, b^{\perp}c^{\perp}, e^{\perp}f^{\perp}, a^{\perp}f^{\perp}c^{\perp}, a^{\perp}f^{\perp}b^{\perp}, a^{\perp}f^{\perp}b^{\perp}, a^{\perp}f^{\perp}b^{\perp}, a^{\perp}f^{\perp}c^{\perp}, a^{\perp}f^{\perp}c^{\perp
$$

Recall that $M(A^{\perp})$ is isomorphic to $M(D')$ where D' is the oriented graph dual to the planar signed graph $D \setminus \{d\}$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

 Ω

Hyperplane-Cocircuits

 299 \leftarrow \Box ×

J.L. Ram´ırez Alfons´ın IMAG, Universit´e de Montpellier [Oriented Matroids : introduction](#page-0-0)

Hyperplane-Cocircuits

The set $\{e, f\}$ of D' is a minimal cut and thus a circuit of D' (or a cocircuit of $D \setminus \{d\}$. It corresponds to the hyperplane $E \setminus \{e, f\} = \{a, b, c\}$ of $D \setminus \{d\}$. The set $\{abc\}$ is a hyperplane since $r({abc}) = 2$ and $cl({a, b, c}) = {a, b, c}.$

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

つひへ

Hyperplane-Cocircuits

Geometrically, the vectors $\{a, b, c\}$ generate a hyperplane but they do not form a base.

[Oriented Matroids : introduction](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Geometric interpretation of cocircuits : affine case

Let E be a configuration of points in the $(d-1)$ -affine space. Let D be a cocircuit of the oriented matroid of affine linear dependecies of E . The signature of D in M^* is

$$
D^+ = D \cap H^+ \text{ et } D^- = D \cap H^-
$$

where H^+ and H^- are the two open spaces in ${\rm I\!R}^{d-1}$ determined by a hyperplan affine H containing $E \setminus D$.

A basis orientation of an oriented matroid M is an application from the set of ordered bases of M to $\{-1, +1\}$ verifying $(B1)$ χ est alternating (P) (pivoting property) if (e, x_2, \ldots, x_r) and (f, x_2, \ldots, x_r) are two ordered bases of M with $e \neq f$ then,

$$
\chi(f,x_2,\ldots,x_r)=-C(e)C(f)\chi(e,x_2,\ldots,x_r)
$$

where C is one of the two circuits of M in (e, f, x_2, \ldots, x_r) .

[Oriented Matroids : introduction](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

We notice that if χ is a basis orientation of M then M is determined only by M and χ .

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

We notice that if χ is a basis orientation of M then M is determined only by M and χ .

Indeed, we can find the signs of the elements $C \in C(M)$ from χ as follows : Choose $x_1, \ldots x_r, x_{r+1} \in M$ such that $C \subset \{x_1, \ldots, x_{r+1}\}$ and $\{x_1, \ldots, x_r\}$ is a base of M. Then,

 $C(x_i) = (-1)^i \chi(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{r+1})$ for any $x_i \in C$.

つひひ

Dual version

We also have the dual version for the pivoting property (P) : (P^*) (pivoting dual property) if (e, x_2, \ldots, x_r) and (f, x_2, \ldots, x_r) are two ordered bases of M with $e \neq f$ then,

$$
\chi(f,x_2,\ldots,x_r)=-D(e)D(f)\chi(e,x_2,\ldots,x_r)
$$

where D is one of the two cocircuits of M complement to the hyperplane generated by (x_2, \ldots, x_r) in M.

[Oriented Matroids : introduction](#page-0-0)

Chirotope

A chirotope of rank r over E is an application $\chi: E^r \longrightarrow \{-1,0,+1\}$ verifying

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Chirotope

A chirotope of rank r over E is an application $\chi: E^r \longrightarrow \{-1,0,+1\}$ verifying $(CH0)$ $\chi \neq 0$, $(CH1)$ χ is alternating, i.e., $\chi(x_{\sigma(1)}, \ldots, x_{\sigma(r)}) = \mathsf{sign}(\sigma) \chi(x_1, \ldots, x_r)$ for any $x_1, \ldots, x_r \in E^r$ and any permutation σ . (CH2) for any $x_1, \ldots, x_r, y_1, \ldots, y_r \in E^r$ such that $\chi(y_i, x_2, \ldots, x_r) \cdot \chi(y_1, \ldots, y_{i_1}, x_1, y_{i+1}, \ldots, y_r) \geq 0$ for any $i = 1, \ldots, r$ then

$$
\chi(x_1,\ldots,x_r)\cdot \chi(y_1,\ldots,y_r)\geq 0
$$

つひひ

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier [Oriented Matroids : introduction](#page-0-0)

If M is an oriented matroid of rank r of the linear dependencies of a set of vectors $\bar{E}\subset\mathrm{I\!R}^r$, then the corresponding chirotope χ is given by

$$
\chi(x_1,\ldots,x_r)=sign(det(x_1,\ldots,x_r))
$$

for any $x_1, \ldots, x_r \in E$.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

If M is an oriented matroid of rank r of the linear dependencies of a set of vectors $\bar{E}\subset\mathrm{I\!R}^r$, then the corresponding chirotope χ is given by

$$
\chi(x_1,\ldots,x_r)=sign(det(x_1,\ldots,x_r))
$$

for any $x_1, \ldots, x_r \in E$.

In this case the axiom $(CH2)$ is an abstraction of the Grassmann-Plücker relation for the determinant claiming that if $x_1, \ldots, x_r, y_1, \ldots, y_r \in \mathbb{R}^r$ then

$$
\det(x_1,\ldots,x_r)\cdot \det(y_1,\ldots,y_r)=\sum_{i=1}^r \det(y_i,x_2,\ldots,x_r)\cdot \det(y_1,\ldots,y_{i_1},x_1,y_{i+1},\ldots,y_r)
$$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

つひひ

Theorem Let $r \geq 1$ be an integer and let E be a finite set. An application

$$
\chi: E^r \longrightarrow \{-1,0,+1\}
$$

is a basis orientation of an oriented matroid of rank r over E if and only if χ is a chirotope.

∢ ロ ▶ - ィ _印

 QQ

Contraction Let $A \subset E$. Recall that $C/A = Min\{C \setminus A : C \in C\}$. Let a_1, \ldots, a_{r-s} be a base of A in M. Then,

$$
\begin{array}{rcl}\n\chi/A: & (E \setminus A)^s \longrightarrow & \{-1,0,+1\} \\
(x_1,\ldots,x_s) & \longmapsto & \chi(x_1,\ldots,x_s,a_1,\ldots,a_{r-s})\n\end{array}
$$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Contraction Let $A \subset E$. Recall that $C/A = Min\{C \setminus A : C \in C\}$. Let a_1, \ldots, a_{r-s} be a base of A in M. Then,

$$
\begin{array}{rcl}\n\chi/A: & (E \setminus A)^s \longrightarrow & \{-1,0,+1\} \\
(x_1,\ldots,x_s) & \longmapsto & \chi(x_1,\ldots,x_s,a_1,\ldots,a_{r-s})\n\end{array}
$$

Deletion Let $A \subset E$ and suppose that $M \setminus A$ is of rank $s < r$. Recall that $C \setminus A = \{C \in C : C \cap A = \emptyset\}$. Let $a_1, \ldots, a_{r-s} \in A$ such that $E \setminus A \cup \{a_1, \ldots, a_{r-s}\}\$ generate M. Then,

$$
\begin{array}{rcl}\n\chi \setminus A: & (E \setminus A)^s \longrightarrow & \{-1, 0, +1\} \\
(x_1, \ldots, x_s) & \longmapsto & \chi(x_1, \ldots, x_s, a_1, \ldots, a_{r-s})\n\end{array}
$$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

つひひ

Reorientation Let $A \subset E$ then the set of circuits of $-A$ M is given by $-A\mathcal{C} = \{-A\mathcal{C}: \mathcal{C} \in \mathcal{C}\}\$ where the signature of $-A\mathcal{C}$ is defined by $(-_AC)(x) = (-1)^{|A \cap \{x\}|} \cdot C(x)$. Then

$$
\begin{array}{cccc}\n-\lambda \chi : & E^r & \longrightarrow & \{-1,0,+1\} \\
(x_1,\ldots,x_r) & \longmapsto & \chi(x_1,\ldots,x_r)(-1)^{|A \cap \{x_1,\ldots,x_r\}|}\n\end{array}
$$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Reorientation Let $A \subset E$ then the set of circuits of $-A$ M is given by $-A\mathcal{C} = \{-_A C : C \in \mathcal{C}\}\$ where the signature of $-A\mathcal{C}$ is defined by $(-_AC)(x) = (-1)^{|A \cap \{x\}|} \cdot C(x)$. Then

$$
\begin{array}{cccc}\n-\lambda \chi : & E^r & \longrightarrow & \{-1,0,+1\} \\
(x_1,\ldots,x_r) & \longmapsto & \chi(x_1,\ldots,x_r)(-1)^{|A \cap \{x_1,\ldots,x_r\}|}\n\end{array}
$$

Duality Let $E = \{1, \ldots, n\}$. Given a $(n - r)$ -set (x_1, \ldots, x_{n-r}) , we write (x'_1, \ldots, x'_r) for one permutation of $E \setminus \{x_1, \ldots, x_{n-r}\}$. In particular, $\{x_1, \ldots, x_{n-r}, x'_1, \ldots, x'_r\}$ is a permutation of $\{1, \ldots, n\}$ where its sign, denoted by $sign\{x_1, \ldots, x_{n-r}, x'_1, \ldots, x'_r\}$, is given by the parity of the number of inversions of this set. Then,

$$
\chi^* : E^{n-r} \longrightarrow \{-1,0,+1\}
$$

$$
(x_1,\ldots,x_{n-r}) \longmapsto \chi(x'_1,\ldots,x'_r) \text{sign}\{x_1,\ldots,x_{n-r},x'_1,\ldots,x'_r\}
$$

つひひ

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

• This operation is associative but not necessarily commutative

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

- This operation is associative but not necessarily commutative
- The vector (resp. covector) of an oriented matroid is any composition of circuits (resp. cocircuits).

- This operation is associative but not necessarily commutative
- The vector (resp. covector) of an oriented matroid is any composition of circuits (resp. cocircuits).
- \bullet If M is an affine oriented matroid then :

 $- X = (X^+, X^-)$ is a vector of M if and only if X forms a Radon's partition, i.e., $conv(X^-) \cap conv(X^+) \neq \emptyset$.

- This operation is associative but not necessarily commutative
- The vector (resp. covector) of an oriented matroid is any composition of circuits (resp. cocircuits).
- \bullet If M is an affine oriented matroid then :

 $- X = (X^+, X^-)$ is a vector of M if and only if X forms a Radon's partition, i.e., $conv(X^-) \cap conv(X^+) \neq \emptyset$.

 $- Y = (Y^+, Y^-)$ is a covector of M if and only if there is an affine hyperplane H (not necessarily generated by points of M) such that $Y^+ = E \cap H^+$ and $Y^+ = E \cap H^+$ where H^+ and H^+ are the open half-spaces induced by H.

つひひ

イロト イ部ト イミトン

Theorem A collection V of signed subsets of a set E is the set of vectors of an oriented matroid if and only if the following properties are verified :

 $(V0)$ $\emptyset \in V$,

 $(V1)$ (symmetry) $V = -V$,

(V2) (composition) for all $X, Y \in V$ we have $X \circ Y \in V$,

(V3) (vector strong elimination) for all $X, Y \in V, e \in X^+ \cap Y^$ and $f\in (\underline{X}\setminus \underline{Y})\cup (\underline{Y}\setminus \underline{X})\cup (X^+\cap Y^+)\cup (X^-\cap Y^-),$ there exists $Z \in V$ such that $Z^+ \subseteq (X^+ \cap Y^+) \setminus e$, $Z^- \subseteq (X^- \cap Y^-) \setminus e$ and $f \in Z$.

A sphere S of S^{d-1} is a pseudo-sphere if S is homeomorphic to S^{d-2} in a homeomorphism of S^{d-1} .

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

There are then two connected components in $S^{d-1}\setminus S$, each homeomorphic to a ball of dimension $d - 1$ (called sides of S).

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

A finite collection $\{S_1,\ldots,S_n\}$ of pseudo-spheres in S^{d-1} is an arrangement of pseudo-spheres if

(PS1) For all $A \subseteq E = \{1, \ldots, n\}$ the set $S_A = \bigcap_{e \in A} S_e$ is a topological sphere

(PS2) If $S_A \not\subseteq S_e$ for $A \subseteq E, e \in E$ and S_e^+, S_e^- denote the two sides of S_e then $S_A \cap S_e$ is a pseudo-sphere of S_A having as sides $S_A \cap S_e^+$ and $S_A \cap S_e^-$.

A finite collection $\{S_1,\ldots,S_n\}$ of pseudo-spheres in S^{d-1} is an arrangement of pseudo-spheres if

(PS1) For all $A \subseteq E = \{1, \ldots, n\}$ the set $S_A = \bigcap_{e \in A} S_e$ is a topological sphere

(PS2) If $S_A \not\subseteq S_e$ for $A \subseteq E, e \in E$ and S_e^+, S_e^- denote the two sides of S_e then $S_A \cap S_e$ is a pseudo-sphere of S_A having as sides $S_A \cap S_e^+$ and $S_A \cap S_e^-$.

• The condition (PS1) allows $S_A = \emptyset$ (we suppose that \emptyset is a (-1) -sphere).

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

A finite collection $\{S_1,\ldots,S_n\}$ of pseudo-spheres in S^{d-1} is an arrangement of pseudo-spheres if

(PS1) For all $A \subseteq E = \{1, \ldots, n\}$ the set $S_A = \bigcap_{e \in A} S_e$ is a topological sphere

(PS2) If $S_A \not\subseteq S_e$ for $A \subseteq E, e \in E$ and S_e^+, S_e^- denote the two sides of S_e then $S_A \cap S_e$ is a pseudo-sphere of S_A having as sides $S_A \cap S_e^+$ and $S_A \cap S_e^-$.

- The condition (PS1) allows $S_A = \emptyset$ (we suppose that \emptyset is a (-1) -sphere).
- The arrangement is said essential if $S_F = \emptyset$.

A finite collection $\{S_1,\ldots,S_n\}$ of pseudo-spheres in S^{d-1} is an arrangement of pseudo-spheres if

(PS1) For all $A \subseteq E = \{1, \ldots, n\}$ the set $S_A = \bigcap_{e \in A} S_e$ is a topological sphere

(PS2) If $S_A \not\subseteq S_e$ for $A \subseteq E, e \in E$ and S_e^+, S_e^- denote the two sides of S_e then $S_A \cap S_e$ is a pseudo-sphere of S_A having as sides $S_A \cap S_e^+$ and $S_A \cap S_e^-$.

• The condition (PS1) allows $S_A = \emptyset$ (we suppose that \emptyset is a (-1) -sphere).

• The arrangement is said essential if $S_F = \emptyset$. We say that the arrangement is signed if for each pseudo-sphere S_{ϵ} , $e \in E$ it is chosen a positive and a negative side.

つひひ

≮ロト ⊀何ト ⊀∃ト ←
Topological representation

• Every essential arrangement of signed pseudo-sphere S partition the topological $(d-1)$ -sphere in a complexe cellular $\Gamma(S)$. Each cell of $\mathsf{\Gamma}(\mathcal{S})$ is uniquely determined by a sign vector in $\{-,0,+\}^E$ which is the codification of its relative position relative according to each pseudo-sphere $S_i.$ Conversely Γ (\mathcal{S}) characterize $\mathcal S$

[Oriented Matroids : introduction](#page-0-0)

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

Two arrangements (resp. signed arrangement) are equivalent if they are the same up to a homomorphism of \mathcal{S}^{d-1} (resp. also the homeorphism preserve the signs). S is called realizable if there exists arrangement of sphere \mathcal{S}' such that $\Gamma(\mathcal{S})$ is isomorphic to $Γ(S')$.

Two arrangements (resp. signed arrangement) are equivalent if they are the same up to a homomorphism of \mathcal{S}^{d-1} (resp. also the homeorphism preserve the signs). S is called realizable if there exists arrangement of sphere \mathcal{S}' such that $\Gamma(\mathcal{S})$ is isomorphic to $Γ(S')$.

Theorem (Topological Representation) A loop-free oriented matroids of rank $d + 1$ (up to isomorphism) are in one-to-one correspondence with arrangements of pseudospheres in S^d (up to topological equivalence) or equivalently to affine arrangements of pseudo-hyperplans in \mathbb{R}^{d-1} (up to topological equivalence).

Topological representation

 299 \leftarrow \Box

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and The Magnus and The Montpellier and The Montpellier

[Oriented Matroids : introduction](#page-0-0)

Acyclic reorientations

Let M be an oriented matroid on E.

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

[Oriented Matroids : introduction](#page-0-0)

Let M be an oriented matroid on F .

• There exists a bijection between the subsets A of E such that $-\mathsf{A}$ M is acyclic and the regions in the corresponding topological representation of M.

Let M be an oriented matroid on F .

• There exists a bijection between the subsets A of E such that $-\mathsf{A}$ M is acyclic and the regions in the corresponding topological representation of M.

• The number of subsets A of E such that $-_A M$ are acyclic is equals to $t(M; 2, 0)$.

つひひ

Let M be an oriented matroid on F .

• There exists a bijection between the subsets A of E such that $-\mathsf{A}$ M is acyclic and the regions in the corresponding topological representation of M.

• The number of subsets A of E such that $-_A M$ are acyclic is equals to $t(M; 2, 0)$.

• The number of subsets A of E such that $-A$ M are totally cyclic is equals to $t(M; 0, 2)$.

つひひ

Acyclic reorientations

[Oriented Matroids : introduction](#page-0-0)

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and The Magnus and The Montpellier and The Montpellier

 299