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Notation

A signed set X is a set X divided in two parts (X+,X−), where
X+ is the set of the positive elements of X and X− is the set of
the negative elements. The set X = X+ ∪ X− is called the support
of X .

The opposite of a signed set X , denoted by −X , is the signed set
defined by (−X )+ = X− and (−X )− = X+.
Given a signed set X and a set A we denote by −AX the signed set
defined by (−AX )+ = (X+ \ A) ∪ (X− ∩ A) and
(−AX )− = (X− \ A) ∪ (X+ ∩ A).
We say that the signed set −AX is obtained by a reorientation of
A.
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Circuits

A collection C of signed set of a finite set E is the set of circuits of
an oriented matroid on E if and only if the following axioms are
verified :

(C0) ∅ 6∈ C,

(C1) (symmetry) C = −C,

(C2) (incomparability) for any X ,Y ∈ C, if X ⊆ Y , then X = Y or
X = −Y ,

(C3) (weak elimination) for any X ,Y ∈ C,X 6= −Y , and
e ∈ X+ ∩ Y−, there exists Z ∈ C such that
Z+ ⊆ (X+ ∪ Y +) \ {e} and Z− ⊆ (X− ∪ Y−) \ {e}.
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• If we forget the signs then (C0),(C2),(C3) reduced to the circuits
axioms of a matroid.

• All matroid notions M are also considered as notions of oriented
matroids, in particular, the rank of M is the same rank as in M.

• Let A ⊆ E and put −AC = {−AX : X ∈ C}. It is clear that −AC
is also the set of circuits of an oriented matroid, denoted by −AM.

Notation For short, we write X = abcde the signed set X defined
by X+ = {a, d , e} and X− = {b, c}.
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Graphs

Let D be the following oriented graph.

a

c

d

f
b

e

C(D) = {(abc), (abd), (aef ), (cd), (bcef ), (bdef ),

(abc), (abd), (aef ), (cd), (bcef ), (bdef )}.
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Configuration of vectors in the space

Let E = {v1, . . . , vn} be a set of vectors generating a r -dimensional
vector space over a ordered field, says {v1, . . . , vn} ⊆ IRr .

We consider the minimal linear dependencies

n∑
i=1

λivi = 0 with λi ∈ IR

We obtain an oriented matroid from E by considering the signed
sets X = (X+,X−) where

X+ = {i : λi > 0} et X− = {i : λi < 0}

for all minimal dependencies among vi .
This oriented matroid is called vectorial (or linear).
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Configuration of points in the space

Any configuration of points {p1, . . . , pn} in the affine space
induces an oriented matroid having as circuits the signed set from
the coefficient of minimal affine dependencies, that is, linear
combinations of the form∑

i

λipi = 0 with
∑
i

λi = 0, λi ∈ IR.
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Example

Let us consider the points in IR2 given by the columns of matrix :

a b c d e f

A =

(
−1 0 0 3 1 0

0 0 1 0 2 3

)

Matrix A correspond to points

a b

c

e

f

d
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Example

a b

c

e

f

d

The set of circuits of the corresponding affine oriented matroid is
C(A) = {(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf ),

(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf )}.

For instance, (abd) correspond to the affine dependecy
3(−1, 0)t − 4(0, 0)t + 1(3, 0)t = (0, 0)t with 3− 4 + 1 = 0.
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Radon partitions

The circuits of an affine oriented matroid have a nice geometric
interpretation. They can be thought as minimal Radon partitions.

Given a circuit C , the convex hull of the positive elements of C
intersect the convex hull of the negative elements of C .
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Example

a b

c

e

f

d

From the circuit (abd) we see that the point b lies in the segment
[a, b] and from circuit (abef ) the segment [a, e] intersect the
segment [b, f ] (in the affine real espace).
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We can check that the oriented matroid obtained form K4 with the
orientation illustrated below has the same set of circuits that M(A)

e

a

f

b d
c

K4 and M(A) are isomorphic.
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Let us consider the oriented matroid −dM(A) obtained by
reorienting element d of M(A). The set of circuits of −dM(A) is :

C = {(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf ),

(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf )}.

• −dM(A) is a graphic oriented matroid since it can be obtained
by changing the orientation of the edge d .

• −dM(A) also correspond to the affine oriented matroid
illustrated as before under the permutation
σ(a) = b, σ(b) = a, σ(c) = c , σ(d) = d , σ(e) = f , σ(f ) = e.
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Oriented Matroids : introduction



Let us consider the oriented matroid −dM(A) obtained by
reorienting element d of M(A). The set of circuits of −dM(A) is :

C = {(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf ),

(abd), (bcf ), (def ), (ace), (abef ), (bcde), (acdf )}.

• −dM(A) is a graphic oriented matroid since it can be obtained
by changing the orientation of the edge d .

• −dM(A) also correspond to the affine oriented matroid
illustrated as before under the permutation
σ(a) = b, σ(b) = a, σ(c) = c , σ(d) = d , σ(e) = f , σ(f ) = e.
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Minors

(Deletion) Let M = (E , C) be an oriented matroid and let F ⊂ E .
Then,

C′ = {X ∈ C : X ⊆ F}

the set of circuits in M contained in F , is the set of circuits of an
oriented matroid in F .

This oriented matroid is called a sub-matroid induced by F , and
denoted by M|F .
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Minors

(Contraction) Let M = (E , C) be an oriented matroid and let
F ⊂ E . Then,

Min({X |F : X ∈ C})

the set of non-empty intersections, minimal by inclusion of the
circuits of M with F , is the set of circuits of an oriented matroid in
F .

This oriented matroid is called a contraction of M over F , and it is
denoted by M/F .
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Duality

Two signed sets X et Y are said orthogonal, denoted by X ⊥ Y , if
either X ∩ Y = ∅ or if X |X∩Y and Y |X∩Y are neither opposite nor
equal, that is, there exists e, f ∈ X ∩ Y such that
X (e)Y (e) = −X (f )Y (f ).

Let M = (E , C) be an oriented matroid, then

(i) there exists a unique signature of C∗ the cocircuits of M such
that

(⊥) X ⊥ Y pour tout X ∈ C et Y ∈ C∗.

(ii) The collection C∗ is the set of circuits of an oriented matroid

over E , denoted by M∗ and called dual (or orthogonal) of M.

(iiii) We have M∗∗ = M.
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Geometric interpretation of cocircuits

Let E be a set of vectors generating IRd and let M = (E , C) be the
oriented matroid of rank r of linear dependencies of E .

Let H be a hyperplane of M, i.e., a closed set of E generating a
hyperplane in IRd . We recall that D = E \ H is a cocircuit of M.

Let h be the linear function in IRd such that kernel(h) is H
(unique up to scaling).

The signature of D in M∗ is given by

D+ = {e ∈ D : h(e) > 0} and D− = {e ∈ D : h(e) < 0}.
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Example

Let V = {a, b, c , e, f } be the vectors given in the following matrix
a c f b e

A′ =

 1 0 0 1 1
0 1 0 1 0
0 0 1 0 1



corresponding to vectors

b

f

1

e

1

a

1

c
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The set of circuits of M(A′) is given by M(D) \ d where D is the
diagraph.

a

c

d

f
b

e
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The vector configuration of the dual space V is given by the
columns of

a⊥ c⊥ f ⊥ b⊥ e⊥

A′⊥ =

(
−1 −1 0 1 0
−1 0 −1 0 1

)
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We thus have that minimal dependencies among the columns of
A′⊥ are :

C(A′⊥) = C∗(A′) = {a⊥e⊥b⊥, a⊥e⊥c⊥, a⊥f ⊥b⊥, a⊥f ⊥c⊥, b⊥c⊥, e⊥f ⊥,
a⊥e⊥b⊥, a⊥e⊥c⊥, a⊥f ⊥b⊥, a⊥

⊥
c⊥, b⊥c⊥, e⊥f ⊥}.

Recall that M(A⊥) is isomorphic to M(D ′) where D ′ is the
oriented graph dual to the planar signed graph D \ {d}

b

f

e

a

c
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f
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a
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Hyperplane-Cocircuits

b

f

e

a

c

The set {e, f } of D ′ is a minimal cut and thus a circuit of D ′ (or a
cocircuit of D \ {d}). It corresponds to the hyperplane
E \ {e, f } = {a, b, c} of D \ {d}. The set {abc} is a hyperplane
since r({abc}) = 2 and cl({a, b, c}) = {a, b, c}.
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Hyperplane-Cocircuits

Geometrically, the vectors {a, b, c} generate a hyperplane but they
do not form a base.

b

f

1

e

1

a

1

c
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Geometric interpretation of cocircuits : affine case

Let E be a configuration of points in the (d − 1)-affine space. Let
D be a cocircuit of the oriented matroid of affine linear
dependecies of E . The signature of D in M∗ is

D+ = D ∩ H+ et D− = D ∩ H−

where H+ and H− are the two open spaces in IRd−1 determined
by a hyperplan affine H containing E \ D.
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Base orientations

A basis orientation of an oriented matroid M is an application from
the set of ordered bases of M to {−1,+1} verifying

(B1) χ est alternating

(P) (pivoting property) if (e, x2, . . . , xr ) and (f , x2, . . . , xr ) are two
ordered bases of M with e 6= f then,

χ(f , x2, . . . xr ) = −C (e)C (f )χ(e, x2, . . . , xr )

where C is one of the two circuits of M in (e, f , x2, . . . , xr ).
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We notice that if χ is a basis orientation of M then M is
determined only by M and χ.

Indeed, we can find the signs of the elements C ∈ C(M) from χ as
follows : Choose x1, . . . xr , xr+1 ∈ M such that C ⊂ {x1, . . . , xr+1}
and {x1, . . . , xr} is a base of M. Then,

C (xi ) = (−1)iχ(x1, . . . , xi−1, xi+1, . . . , xr+1) for any xi ∈ C .
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Dual version

We also have the dual version for the pivoting property (P) :

(P∗) (pivoting dual property) if (e, x2, . . . , xr ) and (f , x2, . . . , xr )
are two ordered bases of M with e 6= f then,

χ(f , x2, . . . , xr ) = −D(e)D(f )χ(e, x2, . . . , xr )

where D is one of the two cocircuits of M complement to the
hyperplane generated by (x2, . . . , xr ) in M.
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Chirotope

A chirotope of rank r over E is an application
χ : E r −→ {−1, 0,+1} verifying

(CH0) χ 6= 0,

(CH1) χ is alternating, i.e.,
χ(xσ(1), . . . , xσ(r)) = sign(σ)χ(x1, . . . , xr ) for any x1, . . . , xr ∈ E r

and any permutation σ.

(CH2) for any x1, . . . , xr , y1, . . . , yr ∈ E r such that

χ(yi , x2, . . . , xr )·χ(y1, . . . , yi1 , x1, yi+1, . . . , yr ) ≥ 0 for any i = 1, . . . , r

then
χ(x1, . . . , xr ) · χ(y1, . . . , yr ) ≥ 0
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Chirotope for linear matroids

If M is an oriented matroid of rank r of the linear dependencies of
a set of vectors E ⊂ IRr , then the corresponding chirotope χ is
given by

χ(x1, . . . , xr ) = sign(det(x1, . . . , xr ))

for any x1, . . . , xr ∈ E .

In this case the axiom (CH2) is an abstraction of the
Grassmann-Plücker relation for the determinant claiming that if
x1, . . . , xr , y1, . . . , yr ∈ IRr then

det(x1, . . . , xr )·det(y1, . . . , yr ) =
r∑

i=1

det(yi , x2, . . . , xr )·det(y1, . . . , yi1 , x1, yi+1, . . . , yr )
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Theorem Let r ≥ 1 be an integer and let E be a finite set. An
application

χ : E r −→ {−1, 0,+1}

is a basis orientation of an oriented matroid of rank r over E if
and only if χ is a chirotope.
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Contraction Let A ⊂ E . Recall that C/A = Min{C \ A : C ∈ C}.
Let a1, . . . , ar−s be a base of A in M. Then,

χ/A : (E \ A)s −→ {−1, 0,+1}
(x1, . . . , xs) 7−→ χ(x1, . . . , xs , a1, . . . , ar−s)

Deletion Let A ⊂ E and suppose that M \ A is of rank s < r .
Recall that C \ A = {C ∈ C : C ∩ A = ∅}. Let a1, . . . , ar−s ∈ A
such that E \ A ∪ {a1, . . . , ar−s} generate M. Then,

χ \ A : (E \ A)s −→ {−1, 0,+1}
(x1, . . . , xs) 7−→ χ(x1, . . . , xs , a1, . . . , ar−s)
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Reorientation Let A ⊂ E then the set of circuits of −AM is given
by −AC = {−AC : C ∈ C} where the signature of −AC is defined
by (−AC )(x) = (−1)|A∩{x}| · C (x). Then

−Aχ : E r −→ {−1, 0,+1}
(x1, . . . , xr ) 7−→ χ(x1, . . . , xr )(−1)|A∩{x1,...,xr}|

Duality Let E = {1, . . . , n}. Given a (n − r)-set (x1, . . . , xn−r ), we
write (x ′1, . . . , x

′
r ) for one permutation of E \ {x1, . . . , xn−r}. In

particular, {x1, . . . , xn−r , x
′
1, . . . , x

′
r} is a permutation of {1, . . . , n}

where its sign, denoted by sign{x1, . . . , xn−r , x
′
1, . . . , x

′
r}, is given

by the parity of the number of inversions of this set. Then,

χ∗ : En−r −→ {−1, 0,+1}
(x1, . . . , xn−r ) 7−→ χ(x ′1, . . . , x

′
r )sign{x1, . . . , xn−r , x

′
1, . . . , x

′
r}
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Vectors and covectors

Let A = (A+,A−), B = (B+,B−). We define the composition
A ◦ B = (A+ ∪ (B+ \ A), A− ∪ (B− \ A)).

• This operation is associative but not necessarily commutative

• The vector (resp. covector) of an oriented matroid is any
composition of circuits (resp. cocircuits).

• If M is an affine oriented matroid then :

− X = (X+,X−) is a vector of M if and only if X forms a Radon’s
partition, i.e., conv(X−) ∩ conv(X+) 6= ∅.
− Y = (Y +,Y−) is a covector of M if and only if there is an
affine hyperplane H (not necessarily generated by points of M)
such that Y− = E ∩H− and Y + = E ∩H+ where H− and H+ are
the open half-spaces induced by H.
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Vectors and covectors

Theorem A collection V of signed subsets of a set E is the set of
vectors of an oriented matroid if and only if the following
properties are verified :

(V 0) ∅ ∈ V ,

(V 1) (symmetry) V = −V ,

(V 2) (composition) for all X ,Y ∈ V we have X ◦ Y ∈ V ,

(V 3) (vector strong elimination) for all X ,Y ∈ V , e ∈ X+ ∩ Y−

and f ∈ (X \Y )∪ (Y \X )∪ (X+ ∩Y +)∪ (X− ∩Y−), there exists
Z ∈ V such that Z+ ⊆ (X+ ∩ Y +) \ e, Z− ⊆ (X− ∩ Y−) \ e and
f ∈ Z .
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Topological representation

A sphere S of Sd−1 is a pseudo-sphere if S is homeomorphic to
Sd−2 in a homeomorphism of Sd−1.

S

S

2

1
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Topological representation

There are then two connected components in Sd−1 \ S , each
homeomorphic to a ball of dimension d − 1 (called sides of S).

S

S

2

1

B1
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Topological representation

A finite collection {S1, . . . ,Sn} of pseudo-spheres in Sd−1 is an
arrangement of pseudo-spheres if

(PS1) For all A ⊆ E = {1, . . . , n} the set SA = ∩e∈ASe is a
topological sphere

(PS2) If SA 6⊆ Se for A ⊆ E , e ∈ E and S+
e , S

−
e denote the two

sides of Se then SA ∩ Se is a pseudo-sphere of SA having as sides
SA ∩ S+

e and SA ∩ S−e .

• The condition (PS1) allows SA = ∅ (we suppose that ∅ is a
(−1)-sphere).

• The arrangement is said essential if SE = ∅.
We say that the arrangement is signed if for each pseudo-sphere
Se , e ∈ E it is chosen a positive and a negative side.
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Oriented Matroids : introduction



Topological representation

A finite collection {S1, . . . ,Sn} of pseudo-spheres in Sd−1 is an
arrangement of pseudo-spheres if

(PS1) For all A ⊆ E = {1, . . . , n} the set SA = ∩e∈ASe is a
topological sphere

(PS2) If SA 6⊆ Se for A ⊆ E , e ∈ E and S+
e , S

−
e denote the two

sides of Se then SA ∩ Se is a pseudo-sphere of SA having as sides
SA ∩ S+

e and SA ∩ S−e .

• The condition (PS1) allows SA = ∅ (we suppose that ∅ is a
(−1)-sphere).

• The arrangement is said essential if SE = ∅.
We say that the arrangement is signed if for each pseudo-sphere
Se , e ∈ E it is chosen a positive and a negative side.
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Topological representation

• Every essential arrangement of signed pseudo-sphere S partition
the topological (d − 1)-sphere in a complexe cellular Γ(S). Each
cell of Γ(S) is uniquely determined by a sign vector in {−, 0,+}E
which is the codification of its relative position relative according
to each pseudo-sphere Si . Conversely Γ(S) characterize S
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Topological representation

Two arrangements (resp. signed arrangement) are equivalent if
they are the same up to a homomorphism of Sd−1 (resp. also the
homeorphism preserve the signs). S is called realizable if there
exists arrangement of sphere S ′ such that Γ(S) is isomorphic to
Γ(S ′).

Theorem (Topological Representation) A loop-free oriented
matroids of rank d + 1 (up to isomorphism) are in one-to-one
correspondence with arrangements of pseudospheres in Sd (up to
topological equivalence) or equivalently to affine arrangements of
pseudo-hyperplans in Rd−1 (up to topological equivalence).

J.L. Raḿırez Alfonśın IMAG, Université de Montpellier
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Topological representation
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Acyclic reorientations

Let M be an oriented matroid on E .

• There exists a bijection between the subsets A of E such that
−A M is acyclic and the regions in the corresponding topological
representation of M.

• The number of subsets A of E such that −A M are acyclic is
equals to t(M; 2, 0).

• The number of subsets A of E such that −A M are totally cyclic
is equals to t(M; 0, 2).
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J.L. Raḿırez Alfonśın IMAG, Université de Montpellier

Oriented Matroids : introduction



Acyclic reorientations

Let M be an oriented matroid on E .

• There exists a bijection between the subsets A of E such that
−A M is acyclic and the regions in the corresponding topological
representation of M.

• The number of subsets A of E such that −A M are acyclic is
equals to t(M; 2, 0).

• The number of subsets A of E such that −A M are totally cyclic
is equals to t(M; 0, 2).
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Acyclic reorientations
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