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Oriented matroids facts

e Let M be the affine oriented matroid associated to a set of
points in IR?. If the points are in general position then M is
uniform of rank r = d + 1.
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Oriented matroids facts

e Let M be the affine oriented matroid associated to a set of
points in IR?. If the points are in general position then M is
uniform of rank r = d + 1.

e An oriented matroid M is called acyclic if it does not contain
positive circuits.

e Let M be an oriented matroid. We say that an element e of M is
interior if there is a circuit C = (C*, C~) of M with C™ = {e}.
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Projective transformations

A projective transformation T is defined as

T:RY— R
Ax+b
x = <c,x;_+6

with b,c € IR?,§ € IR, A a linear transformation from IR? to itself.
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Projective transformations

Theorem (Cordovil and da Silvia, 1985) Let E be a finite set of
points in IRY and let Aff(E) be the affine oriented matroid
associated to E. Then, there is an acyclic reorientation of Aff(E),
say _AAfF(E) for some A C E if and only if there exists a
permissible projective transformation T for £, T : RY — IR?
such that _aAff(E) is isomorphic to Aff(T(E)) (the
correspondance is given by the map x — T(x)).
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McMullen's problem

McMullen's problem Determine the largest integer n = f(d) such
that for any given n points in general position in affine d-space IRY
there is a projective transformation mapping these points onto the

vertices of a convex polytope.
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McMullen's problem

McMullen's problem Determine the largest integer n = f(d) such
that for any given n points in general position in affine d-space IRY
there is a projective transformation mapping these points onto the
vertices of a convex polytope.

Oriented matroid version Determine the largest integer m = g(r)
such that for any uniform rank r oriented matroid M on m
elements there is an acyclic reorientation of M without interior
elements.
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McMullen's problem

McMullen's problem Determine the largest integer n = f(d) such
that for any given n points in general position in affine d-space IRY
there is a projective transformation mapping these points onto the
vertices of a convex polytope.

Oriented matroid version Determine the largest integer m = g(r)
such that for any uniform rank r oriented matroid M on m
elements there is an acyclic reorientation of M without interior
elements.

Topological version Determine the largest integer n = g(d) such
that for any d-dimensional simple arrangement of n hyperplanes
there is a complete cell (that is, a region bounded by all the
hyperplanes)
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Known results

(Larman, 1972) 2d +1 < f(d) < (d +1)?, d > 2.
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(Larman’s conjecture, 1972) f(d) = 2d + 1 and showed the
validity when d = 2, 3.
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Known results

(Larman, 1972) 2d +1 < f(d) < (d +1)?, d > 2.
(Larman’s conjecture, 1972) f(d) = 2d + 1 and showed the
validity when d = 2, 3.

(Las Vergnas, 1986) f(d) < (d +1)(d +2)/2.

(Forge, Las Vergnas, Schuchert, 2001) Validity of conjecture when
d=4.

(R.A., 2001) f(d) <2d + |95, d > 4.

Strategy We construct a representable oriented matroid M of rank
r > 3 with 2(r — 1) + [ 5] elements such that any acyclic
reorientation of M has at least one interior element.
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Lawrence oriented matroids

A Lawrence oriented matroid M of rank r on E is any uniform
oriented matroid obtained as the union of r uniform oriented
matroids My, ..., M, of rank 1 on E.
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Lawrence oriented matroids

A Lawrence oriented matroid M of rank r on E is any uniform
oriented matroid obtained as the union of r uniform oriented
matroids My, ..., M, of rank 1 on E.

A chirotope Y correspond to a Lawrence oriented matroids My iff
there exists a matrix A = (a; ) with entries from {41, —1} where
the i-th row correspond to the chirotope of M; such that

x(B) =] i
i=1

where B = {j; <--- <.} is an ordered base.
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Properties

e The coefficients a; ; with i > j or j —n > i — r do not play any
role in the definition of My.
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e The coefficients a; ; with i > j or j —n > i — r do not play any
role in the definition of My.

e The opposite chirotope —Y is obtained by inverting the sign of
all the coefficients of a line of A.
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Properties

e The coefficients a; ; with i > j or j —n > i — r do not play any
role in the definition of My.

e The opposite chirotope —Y is obtained by inverting the sign of
all the coefficients of a line of A.

e The oriented matroid —. M is obtained by inverting the sign of
all the coefficients of column ¢ of A.

J.L. Ramirez Alfonsin IMAG, Université de Montpellier

Oriented Matroids : some applications



Chess board

Let A=(a;jj), 1 <i<r,1<j<nbea matrix with entries from
{#+1, —1}. The chess board B[A] is a chess board of size

(r—1) x (n—1) and a square is white if the product of its
corresponding corners is +1, black otherwise.
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Chess board

Let A=(a;jj), 1 <i<r,1<j<nbea matrix with entries from
{#+1, —1}. The chess board B[A] is a chess board of size

(r—1) x (n—1) and a square is white if the product of its
corresponding corners is +1, black otherwise.

Observation The chess board is invariant under reversing the signs
of the coefficient of a given column.
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Top and Bottom Travels

(1) TT (BT) starts at a1 (at arp)

(2) Suppose that TT (BT) arrives at a; ;. Let s (s') be the
minimum (maximal) integer j < s < n (1 < s’ <) such that
ajj=—ais (aij = —ais)

(3) If s (s’) does not exists then TT goes horizontally to a; , and
stops (BT goes horizontally to a; ; and stops)

(4) else

(a) if1<i<r—1(2<i<r)then
TT goes horizontally to a; s and then goes vertically to aj;1 s
(BT goes horizontally to a; s+ and then goes vertically to
aifl,s’)

(a) else TT goes horizontally to a, s and stops
(BT goes horizontally to a; ¢ and stops)

IMAG, Université de Montpellier
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Example of a Top Travel

|V
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Four key lemmas

Lemma 1 Lawrence oriented matroids are always affine oriented
matroids.
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Four key lemmas

Lemma 1 Lawrence oriented matroids are always affine oriented
matroids.

Lemma 2 Let M4 be a Lawrence oriented matroid and A the
matrix associated A = (a;j) with 1 </ <r, 1 <j < n and entries
from {41, —1}. Then, the following conditions are equivalent.

(a) My is cyclic,
(b) TT ends at a, s for some 1 <s < n,
(c) BT ends at a; & for some 1 < s < n.
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Four Key Lemmas

We say that TT and BT are parallel at column k with
2<k<n—-1in Aif TT = (a1,1,.--,ai k-1, 3i k> i k+1,---) and
either BT = (a,y,,, o5 i kt15 i ks i k—15 - - ) or

BT = (arns -+ @i41,k4+15 Ait1,k it h—1,---), L <P <r.
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Four Key Lemmas

We say that TT and BT are parallel at column k with

2<k<n—-1in Aif TT = (a1,1,.--,ai k-1, 3i k> i k+1,---) and
either BT = (a,y,,, o5 i kt15 i ks i k—15 - - ) or
BT = (ar,ns -+ @it1,k415 Aig1,ks Aigl,h—1,---), L <P <r.

Lemma 3 Let M4 be a Lawrence oriented matroid and A the
matrix associated A = (a;j) with 1 </ <r, 1 <j < n and entries
from {+1, —1}. Then k is an interior element of M4 if and only if
(a) BT =(arp,...,a12,a11) for k=1,

(b) TT = (a1,1,.-.,arn-1,arn) for k =n,

(c) TT and BT are parallel at k for 2 < k < n—1.
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Example

Let M4 be the Lawrence oriented matroid associated to the matrix
A given below

1 2 3 4 5 6 7
e + |+ ]+ |+
2| + oo+ + ]+ |+
3+ + - - > >
+ |+ |+ [ [

4 - - - - - -
| F [ T T F]+

My is acyclic and 4, 5 and 6 are interior elements
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Four Key Lemmas

A plain travel T on the entries of A is formed by horizontal and
vertical mouvements such that T starts with a;1,a12 and T
cannot make two consecutive vertical mouvements.
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Four Key Lemmas

A plain travel T on the entries of A is formed by horizontal and
vertical mouvements such that T starts with a;1,a12 and T
cannot make two consecutive vertical mouvements.

Lemma 4 Let A= (a;;), 1 <i<r, 1<) <nbea matrix with
entries from {+1, —1}. Then, there exists a natural bijection
between the set of all plain travels of A and the set of all acyclic
reorientations of Mjy.
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Solution

It is sufficient to contruct a matrix A of size r x 2(r — 1) + | 5],

r > 3 such that for any given plain travel T of A the corresponding
Top Travel in the matrix A’ (obtained from A such that T is
transformed in TT of A’) has at least one interior elements.
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Solution

It is sufficient to contruct a matrix A of size r x 2(r — 1) + | 5],

r > 3 such that for any given plain travel T of A the corresponding
Top Travel in the matrix A’ (obtained from A such that T is
transformed in TT of A’) has at least one interior elements.

any matrix arising the following chess board
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Spatial representations

A spatial representation of a graph G is a representation of G in
IR3 where the vertices of G are points and edges are represented
by simple Jordan curves.
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Spatial representations

A spatial representation of a graph G is a representation of G in
IR3 where the vertices of G are points and edges are represented
by simple Jordan curves.

Example : Spatial representation of Ks
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Spatial linear representations

An linear spatial representation is linear if the curves are segments.
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Spatial linear representations

An linear spatial representation is linear if the curves are segments.
Example : Spatial representation of Kg
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Spatial linear representations

Let m(L) (resp. m(L)) be the smallest integer such that any
spatial representation (resp. linear ) of K, with n > m(L) (resp.
n > m(L)) contains cycles isotopic to L.
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Spatial linear representations

Let m(L) (resp. m(L)) be the smallest integer such that any
spatial representation (resp. linear ) of K, with n > m(L) (resp.
n > m(L)) contains cycles isotopic to L.

Let s(L) be the number of segments needed to represent link L.
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Spatial linear representations

Let m(L) (resp. m(L)) be the smallest integer such that any
spatial representation (resp. linear ) of K, with n > m(L) (resp.
n > m(L)) contains cycles isotopic to L.

Let s(L) be the number of segments needed to represent link L.

m(L) > s(L)
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Spatial linear representations

Flgure eight @ ﬁ/&
1(52) /\

K &>
S A
2 Q@O DA\Q
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. Is it true that m(23) =67
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. Is it true that m(23) =67
Theorem (Sachs, Conway and Gordon 1983) m(22) = 6
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. Is it true that m(23) =67
Theorem (Sachs, Conway and Gordon 1983) m(22) = 6

Theorem (Robertson, Seymour, Thomas 1995) Any spatial
representation of a graph G contains a non-trivial link if and only if
G do not contain as a minor one of the 7 graphs obtained from Kj

by a Y — A or A — Y change (these graphs are known as
Petersen’s family).
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Some results

Theorem (Negami 1991) m(L) is finite

(
Theorem (R.A. 1998) m(T ou T*) =7
Theorem (R.A. 2000) m(42) > 7

(

Theorem (R.A. 2007) m(Fg), m(T(5,2)) > 8
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Applying oriented matroids

Theorem (R.A. 1998) m(T ou T*) =7
Proof (sketch) Consider the circuits (1,2,3,5,6) and (1,2,4,5,6)
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Applying oriented matroids

Theorem (R.A. 1998) m(T ou T*) =7
Proof (sketch) Consider the circuits (1,2,3,5,6) and (1,2,4,5,6)

NS
N
3 E

Set a proper condition of circuits and verify that they hold for any
realisable rank 4 oriented matroid on 7 elements
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Cyclic polytope

Let t1,...,t, € IR. The cyclic, of dimension d on n vertices is
defined as

Co(ts, ..., ty) := conv(x(t1),...,x(tn))

where x(t;) = (t;, t?,...,t?) are points in the moment curve
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Cyclic polytope

Let t1,...,t, € IR. The cyclic, of dimension d on n vertices is
defined as

Co(ts, ..., ty) := conv(x(t1),...,x(tn))

where x(t;) = (t;, t?,...,t?) are points in the moment curve

Cd(tla R tn) - Cd(n)
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Cyclic polytope
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Alternating oriented matroid

We use the circuits of the corresponding oriented matroid to get :
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Knots in the cyclic polytope

Theorem (R.A., 2008) Let D(K) be the diagram of knot K with n
crossings. Then, there is cycle in C3(m) isotopic to K with m < 7n.
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Knots in the cyclic polytope

Theorem (R.A., 2008) Let D(L) be a diagram of a link L with n
crossings. Then, m(L) < 2% where ¢ = 41477,
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