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Oriented matroids facts

• Let M be the affine oriented matroid associated to a set of
points in IRd . If the points are in general position then M is
uniform of rank r = d + 1.

• An oriented matroid M is called acyclic if it does not contain
positive circuits.

• Let M be an oriented matroid. We say that an element e of M is
interior if there is a circuit C = (C +,C−) of M with C + = {e}.
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Projective transformations

A projective transformation T is defined as
T : IRd −→ IRd

x 7→ Ax+b
〈c,x〉+δ

with b, c ∈ IRd , δ ∈ IR, A a linear transformation from IRd to itself.
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Projective transformations

Theorem (Cordovil and da Silvia, 1985) Let E be a finite set of
points in IRd and let Aff (E ) be the affine oriented matroid
associated to E . Then, there is an acyclic reorientation of Aff (E ),
say −AAff (E ) for some A ⊆ E if and only if there exists a
permissible projective transformation T for E , T : IRd −→ IRd

such that −AAff (E ) is isomorphic to Aff (T (E )) (the
correspondance is given by the map x 7→ T (x)).
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McMullen’s problem

McMullen’s problem Determine the largest integer n = f (d) such
that for any given n points in general position in affine d-space IRd

there is a projective transformation mapping these points onto the
vertices of a convex polytope.

Oriented matroid version Determine the largest integer m = g(r)
such that for any uniform rank r oriented matroid M on m
elements there is an acyclic reorientation of M without interior
elements.

Topological version Determine the largest integer n = g(d) such
that for any d-dimensional simple arrangement of n hyperplanes
there is a complete cell (that is, a region bounded by all the
hyperplanes)
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Known results

(Larman, 1972) 2d + 1 ≤ f (d) ≤ (d + 1)2, d ≥ 2.

(Larman’s conjecture, 1972) f (d) = 2d + 1 and showed the
validity when d = 2, 3.

(Las Vergnas, 1986) f (d) ≤ (d + 1)(d + 2)/2.

(Forge, Las Vergnas, Schuchert, 2001) Validity of conjecture when
d = 4.

(R.A., 2001) f (d) ≤ 2d + bd+1
2 c, d ≥ 4.

Strategy We construct a representable oriented matroid M of rank
r ≥ 3 with 2(r − 1) + b r2c elements such that any acyclic
reorientation of M has at least one interior element.
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Lawrence oriented matroids

A Lawrence oriented matroid M of rank r on E is any uniform
oriented matroid obtained as the union of r uniform oriented
matroids M1, . . . ,Mr of rank 1 on E .

A chirotope χ correspond to a Lawrence oriented matroids MA iff
there exists a matrix A = (ai ,j) with entries from {+1,−1} where
the i-th row correspond to the chirotope of Mi such that

χ(B) =
r∏

i=1

ai ,ji

where B = {j1 ≤ · · · ≤ jr} is an ordered base.
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Properties

• The coefficients ai ,j with i ≥ j or j − n ≥ i − r do not play any
role in the definition of MA.

• The opposite chirotope −χ is obtained by inverting the sign of
all the coefficients of a line of A.

• The oriented matroid −c M is obtained by inverting the sign of
all the coefficients of column c of A.
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Chess board

Let A = (ai ,j), 1 ≤ i ≤ r , 1 ≤ j ≤ n be a matrix with entries from
{+1,−1}. The chess board B[A] is a chess board of size
(r − 1)× (n − 1) and a square is white if the product of its
corresponding corners is +1, black otherwise.

Observation The chess board is invariant under reversing the signs
of the coefficient of a given column.
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Oriented Matroids : some applications



Chess board

Let A = (ai ,j), 1 ≤ i ≤ r , 1 ≤ j ≤ n be a matrix with entries from
{+1,−1}. The chess board B[A] is a chess board of size
(r − 1)× (n − 1) and a square is white if the product of its
corresponding corners is +1, black otherwise.

Observation The chess board is invariant under reversing the signs
of the coefficient of a given column.
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Top and Bottom Travels

(1) TT (BT ) starts at a1,1 (at ar ,n)

(2) Suppose that TT (BT ) arrives at ai ,j . Let s (s ′) be the
minimum (maximal) integer j < s ≤ n (1 < s ′ ≤ j) such that
ai ,j = −ai ,s ( ai ,j = −ai ,s′).

(3) If s (s ′) does not exists then TT goes horizontally to ai ,n and
stops (BT goes horizontally to ai ,1 and stops)

(4) else
(a) if 1 ≤ i ≤ r − 1 (2 ≤ i ≤ r) then

TT goes horizontally to ai,s and then goes vertically to ai+1,s

(BT goes horizontally to ai,s′ and then goes vertically to
ai−1,s′)

(a) else TT goes horizontally to ar ,s and stops
(BT goes horizontally to a1,s′ and stops)
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Example of a Top Travel

+ + −

+
−

− −
+

−
+

+ + +
−

− −
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Four key lemmas

Lemma 1 Lawrence oriented matroids are always affine oriented
matroids.

Lemma 2 Let MA be a Lawrence oriented matroid and A the
matrix associated A = (ai ,j) with 1 ≤ i ≤ r , 1 ≤ j ≤ n and entries
from {+1,−1}. Then, the following conditions are equivalent.

(a) MA is cyclic,

(b) TT ends at ar ,s for some 1 ≤ s < n,

(c) BT ends at a1,s′ for some 1 < s ≤ n.
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Four Key Lemmas

We say that TT and BT are parallel at column k with
2 ≤ k ≤ n − 1 in A if TT = (a1,1, . . . , ai ,k−1, ai ,k , ai ,k+1, . . .) and
either BT = (ar ,n, . . . , ai ,k+1, ai ,k , ai ,k−1, . . .) or
BT = (ar ,n, . . . , ai+1,k+1, ai+1,k , ai+1,k−1, . . .), 1 ≤ i ≤ r .

Lemma 3 Let MA be a Lawrence oriented matroid and A the
matrix associated A = (ai ,j) with 1 ≤ i ≤ r , 1 ≤ j ≤ n and entries
from {+1,−1}. Then k is an interior element of MA if and only if

(a) BT = (ar ,n, . . . , a1,2, a1,1) for k = 1,

(b) TT = (a1,1, . . . , ar ,n−1, ar ,n) for k = n,

(c) TT and BT are parallel at k for 2 ≤ k ≤ n − 1.
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Example

Let MA be the Lawrence oriented matroid associated to the matrix
A given below

+

+ + + + + + +

+ +
+ + + +

+

+ + + + +

+ + + ++
−

− −

1 2 3 5 6 74

1

2

3

4

MA is acyclic and 4, 5 and 6 are interior elements
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Four Key Lemmas

A plain travel T on the entries of A is formed by horizontal and
vertical mouvements such that T starts with a1,1, a1,2 and T
cannot make two consecutive vertical mouvements.

Lemma 4 Let A = (ai ,j), 1 ≤ i ≤ r , 1 ≤ j ≤ n be a matrix with
entries from {+1,−1}. Then, there exists a natural bijection
between the set of all plain travels of A and the set of all acyclic
reorientations of MA.
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Solution

It is sufficient to contruct a matrix A of size r × 2(r − 1) + b r2c,
r ≥ 3 such that for any given plain travel T of A the corresponding
Top Travel in the matrix A′ (obtained from A such that T is
transformed in TT of A′) has at least one interior elements.

Solution : any matrix arising the following chess board
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Spatial representations

A spatial representation of a graph G is a representation of G in
IR3 where the vertices of G are points and edges are represented
by simple Jordan curves.

Example : Spatial representation of K5
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Spatial linear representations

An linear spatial representation is linear if the curves are segments.

Example : Spatial representation of K6
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Spatial linear representations

Let m(L) (resp. m̄(L)) be the smallest integer such that any
spatial representation (resp. linear ) of Kn with n ≥ m(L) (resp.
n ≥ m̄(L)) contains cycles isotopic to L.

Let s(L) be the number of segments needed to represent link L.

m̄(L) ≥ s(L)
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Spatial linear representations

Figure−eight

Hopf link

4

F
8

2
1

1

2

2

( T )

T(5,2)

Trefoil 
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Question (Bothe 1973) : Is it true that m(22
1) = 6 ?

Theorem (Sachs, Conway and Gordon 1983) m(22
1) = 6

Theorem (Robertson, Seymour, Thomas 1995) Any spatial
representation of a graph G contains a non-trivial link if and only if
G do not contain as a minor one of the 7 graphs obtained from K6

by a Y −∆ or ∆− Y change (these graphs are known as
Petersen’s family).
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Some results

Theorem (Negami 1991) m̄(L) is finite

Theorem (R.A. 1998) m̄(T ou T ∗) = 7

Theorem (R.A. 2000) m̄(42
1) > 7

Theorem (R.A. 2007) m̄(F8), m̄(T (5, 2)) > 8
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Applying oriented matroids

Theorem (R.A. 1998) m̄(T ou T ∗) = 7

Proof (sketch) Consider the circuits (1, 2, 3, 5̄, 6̄) and (1, 2, 4, 5̄, 6̄)
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Set a proper condition of circuits and verify that they hold for any
realisable rank 4 oriented matroid on 7 elements
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Cyclic polytope

Let t1, . . . , tn ∈ IR. The cyclic, of dimension d on n vertices is
defined as

Cd(t1, . . . , tn) := conv(x(t1), . . . , x(tn))

where x(ti ) = (ti , t
2
i , . . . , t

d
i ) are points in the moment curve

Cd(t1, . . . , tn)→ Cd(n)
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Alternating oriented matroid

We use the circuits of the corresponding oriented matroid to get :
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Knots in the cyclic polytope

Theorem (R.A., 2008) Let D(K ) be the diagram of knot K with n
crossings. Then, there is cycle in C3(m) isotopic to K with m ≤ 7n.
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Knots in the cyclic polytope

Theorem (R.A., 2008) Let D(L) be a diagram of a link L with n
crossings. Then, m̄(L) ≤ 28c where c = 414n−7.
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