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Ehrhart theory

A Lattice polytope P ⊂ Rd is a convex hull of a finite set of points
in Zd . For k ∈ Z>0 let LP(k) := #(kP ∩ Zd)

Example
Q2 = conv{(0, 0), (1, 0), (0, 1), (1, 1)} = {x , y ∈ R : 0 ≤ x , y ≤ 1}.
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Ehrhart polynomial

d-dimensional cube : LQd
(k) = (k + 1)d =

d∑
i=0

(d
i

)
k i

Theorem (Ehrhart 1962) For any lattice polytope P, LP(k) is a
polynomial in k of degree dim(P) with rational coefficients, with
leading term vol(P) and constant term 1.

Let P◦ denotes the interior of P.

LQ◦
d

(k) = (k − 1)d = (−1)d(1− k)d = (−1)dLQd
(−k)

Theorem (Macdonald 1971)
LP(−k) = (−1)dim(P)LP◦(k) (Reciprocity law).
Therefore, (−1)dim(P)LP(−k) enumerates the interior lattice points
in kP.
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Matroids Polytope and Ehrhart polynomial



Permutahedron

The d-dimensional permutahedron Pd is defined as
Pd := conv{(π(1)− 1, π(2)− 1, . . . , π(d)− 1) : π ∈ Sd}
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Permutahedron

Theorem

LPd
(k) =

d∑
i=0

fik
i

where fi is the number of forests on {1, . . . , d} with i vertices.

Remark fd is the number of spanning trees on the complete graph
Kd .

fd = dd−2= vol(Pd)
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Matroids Polytope and Ehrhart polynomial



Permutahedron

Theorem

LPd
(k) =

d∑
i=0

fik
i

where fi is the number of forests on {1, . . . , d} with i vertices.

Remark fd is the number of spanning trees on the complete graph
Kd .

fd = dd−2= vol(Pd)
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Cyclic polytope

Let m(t) = (t, t2, . . . , td) be the moment curve in Rd .

The d-dimensional Cyclic polytope Cd = Cd(t1, . . . , tn) is defined
as

Cd := conv{m(t1), . . . ,m(tn)}

Theorem

LCd
(k) =

d∑
i=0

fik
i

where fi = vol(Ci (t1, . . . , tn)).
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J.L. Raḿırez Alfonśın IMAG, Université de Montpellier

Matroids Polytope and Ehrhart polynomial



Cyclic polytope

Let m(t) = (t, t2, . . . , td) be the moment curve in Rd .

The d-dimensional Cyclic polytope Cd = Cd(t1, . . . , tn) is defined
as

Cd := conv{m(t1), . . . ,m(tn)}

Theorem

LCd
(k) =

d∑
i=0

fik
i

where fi = vol(Ci (t1, . . . , tn)).
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Ehrhart series

The standard d-simplex

∆ = {x ∈ Rd
≥0 : x1 + · · ·+ xd ≤ 1}

= conv{(0, . . . , 0), (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}

L∆(t) =

(
t + d

d

)

L∆(t) comes with the friedly generating function∑
t≥0

(
t + d

d

)
z t =

1

(1− z)d+1

This motivate to define the Ehrhart serie of the lattice polytope P
as

EhrP(z) := 1 +
∑
t≥1

LP(t)z t
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Ehrhart series

Ehrhart’s theorem (Equivalent) For any lattice polytope P of
dimension d the Ehrhart serie EhrP(z) is a rational function of the
form

h∗dz
d + h∗d−1z

d−1 + · · ·+ h∗0
(1− z)d+1

The h∗-vector are the coefficients of

h∗(z) = h∗dz
d + h∗d−1z

d−1 + · · ·+ h∗0

• LP(t) =
∑d

j=0 h
∗
j

(t+d−j
d

)
• h∗(0) = 1 and h∗(1) = dim(P)!vol(P)

• h∗d = #(P◦ ∩ Zd) and h∗1 = #(P ∩ Zd)− d − 1

• Theorem (Stanley 1980) h∗0, . . . , h
∗
d are nonnegative integers
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Independents

A matroid M is an ordered pair (E , I) where E is a finite set
(E = {1, . . . , n}) and I is a family of subsets of E verifying the
following conditions :

(I1) ∅ ∈ I,

(I2) If I ∈ I and I ′ ⊂ I then I ′ ∈ I,

(I3) If I1, I2 ∈ I and |I1| < |I2| then there exists e ∈ I2\I1 such that
I1 ∪ e ∈ I.

The members in I are called the independents of M. A subset in E
not belonging to I is called dependent.
The rank of a set X ⊆ E is defined by

rM(X ) = max{|Y | : Y ⊆ X ,Y ∈ I}.
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Bases

A base of a matroid is a maximal independent set.
We denote by B the set of all bases of a matroid.

Lemma All the bases of a matroid have the same cardinality r .

The rank of a matroid M, denoted by r(M), is the rank of one of
its bases.

The family B verifies the following conditions :

(B1) B 6= ∅,
(B2) (exchange propety) B1,B2 ∈ B and x ∈ B1\B2 then there

exist y ∈ B2\B1 such that (B1\x) ∪ y ∈ B.
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Bases

Theorem B is the set of basis of a matroid if and only if it verifies
(B1) and (B2).

Two examples
• Let Ur ,n =

([n]
r

)
(i.e., the family of all r -sets of {1, . . . , n}).

Ur ,n is a matroid (called the uniform matroid of rank r on n
elements).

• Let G = (V ,E ) be a graph with |V | = n and |E | = m. Let B be
the set of all maximal forest in G .
Then, M(G ) = (B,E ) is a matroid with r(M(G )) = n − c where c
is the number of connected components of G .
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Bases

Example

J.L. Raḿırez Alfonśın IMAG, Université de Montpellier

Matroids Polytope and Ehrhart polynomial



Bases

Example

x
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Matroid base polytope

Let M = (B,E ) with |E | = n. For each base B ∈ B, the incident
vector eB ∈ RE is defined by

eB =
∑
i∈B

ei

where ei denotes i th standard base vector in Rn.

The base polytope of M, denoted by PM , is defined as

PM = conv {eB : B ∈ B}

Let ∆E be the simplexe in RE , i.e.,

∆E = conv(ei : i ∈ E ) = {x ∈ IRE :
∑
i∈E

xi = 1, xi ≥ 0 for all i ∈ E}
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Matroid base polytope

Theorem (Gel’fand, Goresky, MacPherson, Serganova 1987)
Let P ⊆ IRE be a convex polytope. Then, P is the base polytope
of a matroid M = (B,E ) if and only if
• PM ⊆ r∆E where r = r(M) (implying that dim(P) ≤ n − 1)
• the vertices of P belong to {0, 1}E and
• each edge of PM is a translation of conv(ei , ej) for all
i , j ∈ E , i 6= j .
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Example

PU2,3 = conv{(1, 1, 0), (1, 0, 1), (0, 1, 1)}

1

2e2

3

1

1

1

2

2

e

e
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Matroids Polytope and Ehrhart polynomial



Example

PU2,3 = conv{(1, 1, 0), (1, 0, 1), (0, 1, 1)}

1

2e2

3

1

1

1

2

2

e

e
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Example

PU2,4
= conv
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Matroid base polytope

Proposition Let M be a matroid on E . Then,
i ∼ j ⇔ i = j or there exist bases A and B such that B = (A \ i) ∪ j
is an equivalent relation on E .

The equivalent classes are the connected components of M. We
denote by c(M) the number of connected components of M and
we say that M is connected if c(M) = 1.

Theorem dim(PM) = n − c(M) where n = |E |.
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Lattice path matroid

(0,0)

(8,5)
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Lattice path matroid

(0,0)

(8,5)

U

L

U=NEENNEEENENEE

L=EEEENEENENENN
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Lattice path matroid

(0,0)

(8,5)

U

L

U={1,4,5,9,11}
U=NEENNEEENENEE

L={5,8,10,12,13}
L=EEEENEENENENN
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Lattice path matroid

(0,0)

(8,5)

U

L

B

U={1,4,5,9,11}
U=NEENNEEENENEE

B={4,5,9,10,13}
B=EEENNEEENNEEN

L={5,8,10,12,13}
L=EEEENEENENENN

M[U, L] lattice path matroid (LPM) of rank r (# rows) on r + m
(# rows + # columns) elements.
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LPM base exchange base

(0,0)

(8,5)
U={1,4,5,9,11}
U=NEENNEEENENEE

B={4,5,9,10,13}
B=EEENNEEENNEEN
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LPM base exchange base

(0,0)

(8,5)
U={1,4,5,9,11}
U=NEENNEEENENEE

B={4,5,9,10,13}
B=EEENNEEENNEEN

4
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LPM base exchange base

(0,0)

(8,5)
U={1,4,5,9,11}
U=NEENNEEENENEE

B={4,5,9,10,13}
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LPM base exchange base

(0,0)

(8,5)
U={1,4,5,9,11}
U=NEENNEEENENEE

B={4,5,9,10,13}
B=EEENNEEENNEEN

C={1,5,9,10,11}
C=NEEENEEENNEEN
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Generalized lattice path
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Matroids Polytope and Ehrhart polynomial



Generalized lattice path

A generalized path P starts at (0, 0) and ends at (r , r + m) and it
is monotonously increasing xi ≤ xi+1 and yi ≤ yi+1.

x y11 ,( ) x y22 ,( ) x y33 ,( )

Let st(P) = (p1, . . . , pr+m) where pi+1 = yi+1 − yi for each i .

We call st(P) step vector of P.
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Characterizing step vectors

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)
Let M[U, L] be a LPM of rank r on r + m elements.
Let st(L) = (l1, . . . , lr+m) and st(U) = (u1, . . . , ur+m).

Let CM be the family of step vectors of all generalized lattice path
in M[U, L]. Then,

CM =

p ∈ Rr+m | 0 ≤ pi ≤ 1,
i∑

j=1

lj ≤
i∑

j=1

pj ≤
i∑

j=1

uj ∀i


• 0 ≤ yi+1 − yi ≤ 1

• Any generalized path stay between U and L.
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Matroids Polytope and Ehrhart polynomial



Characterizing step vectors

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)
Let M[U, L] be a LPM of rank r on r + m elements.
Let st(L) = (l1, . . . , lr+m) and st(U) = (u1, . . . , ur+m).
Let CM be the family of step vectors of all generalized lattice path
in M[U, L]. Then,

CM =

p ∈ Rr+m | 0 ≤ pi ≤ 1,
i∑

j=1

lj ≤
i∑

j=1

pj ≤
i∑

j=1

uj ∀i


• 0 ≤ yi+1 − yi ≤ 1

• Any generalized path stay between U and L.
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Points in LPM polytope

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)
Let M = M[U, L] be a LPM of rank r on r + m elements and let
PM be the matroid polytope.Then, PM = CM .

Proof (idea).
PM = conv{ characteristic vectors of B(M)}⊆ conv{CM} = CM .

PM ⊇ CM by induction on the number of elements.

Corollary (Knauer, Martinez-Sandoval, R.A., 2017)
Let CkM be the family of step vectors of all generalized paths P in
M = [U, L] such that each (xi , yi ) in P satisfy kxi , kyi ∈ Z.Then,

kPM ∩ Zr+m = CkM
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PM = conv{ characteristic vectors of B(M)}⊆ conv{CM} = CM .

PM ⊇ CM by induction on the number of elements.

Corollary (Knauer, Martinez-Sandoval, R.A., 2017)
Let CkM be the family of step vectors of all generalized paths P in
M = [U, L] such that each (xi , yi ) in P satisfy kxi , kyi ∈ Z.Then,

kPM ∩ Zr+m = CkM
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Integer points in LPM polytopes

Example : Consider PU2,3

1

1

1

a=(1,1,0)
b=(1,0,1)
c=(0,1,1)

a

c
b
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Integer points in LPM polytopes

Example : Construct paths in C2
U2,3

1

1

1

a=(1,1,0)
b=(1,0,1)
c=(0,1,1)

a

c
b

d=(1,1/2,1/2)
e=(1/2,1,1/2)
f=(1/2,1/2,1)

(1/2,1/2)

(1/2,3/2)

d e
f
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Integer points in LPM polytopes

Example : 2PU2,3

1

1

1

2a=(2,2,0)
2b=(2,0,2)
2c=(0,2,2)

2a

2c

2b

2d=(2,1,1)
2e=(1,2,1)
2f=(1,1,2)

2d
2e

2f
2

2

2
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Integer points in LPM polytopes

Let us consider kPU2,3

k-1

k-1

CkU2,3
= 1

2 (k + 1)(k + 2)= 1
2k

2 + 3
2k + 1= kPU2,3 ∩ Z3= LPU2,3

(k)
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Integer points in LPM polytopes

Let S(a, b) be the matroid associated to

a

b

LS(a,b)(k) =
k∑

i=0

(
a + k − 1− i

a− 1

)(
b + k − 1− i

b − 1

)
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Distributive polytopes

A polytope P ⊆ Rn is called distributive if for all x , y ∈ P also
their componentwise maximum and minimum max(x , y) and
min(x , y) are in P.

Example : A distributive polytope in R2.

x

y

max(x,y)

min(x,y)
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Distributive polytopes

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)
Let M = M[U, L] be a connected rank r LPM on r + m
elements.

Then, there exists a bijective affine transformation taking
PM ⊂ Rr+m into a full-dimensional distributive integer polytope
QM ⊂ Rr+m−1 such that LPM

(t) = LQM
(t).

Proof (idea). Recall that st(L) = (l1, . . . , lr+m). Check that

π : PM ⊂ Rr+m −→ Rr+m−1

p = (p1, . . . , pr+m) 7→ (p1 − l1, . . . ,
∑r+m−1

j=1 (pj − lj))

is a suitable transformation.
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Example

PU2,3

b=sl(B)

a

c

1

1

1

PU

l=sl(L)

u=sl(U)

2,3

x

y

1

1

1/2

1/4

3/41/4

Q

(u)

(b)

(a)

(c)

(l)

U2,3

We have π(a) = ( 3
4 ,

1
2 ), π(b) = (1, 0) and π(c) = ( 1

4 ,
1
4 ).
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Order polytopes

Let X be a poset on {1, . . . , n} such that this labeling is natural,
i.e., if i <X j then i < j .

The order polytope O(X ) of X is defined as the set of those
x ∈ Rn such that

0 ≤ xi ≤ 1, for all i ∈ X and

xi ≥ xj , if i ≤X j

Remark. O(X ) is a bounded convex polytope
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Snake polytopes

Snake S(a1, a2, a3, a4)

a1

a2

a3

a4

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)
Let a1, . . . , ak ≥ 2 be integers. Then, a connected LPM M is the
snake S(a1, . . . ak) if and only if QM is the order polytope of the
zig-zag chain poset on a1, . . . , ak .
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Snake polytopes

Recall that

EhrP(z) = 1 +
∑
t≥1

LP(t)z t =
h∗dz

d + h∗d−1z
d−1 + · · ·+ h∗0

(1− z)d+1

Conjecture (De Loera, Haws, Köppe, 2009) The h∗-vector of base
matroid polytopes are unimodal, i.e.,

h∗d ≤ h∗d1
≤ · · · ≤ h∗j ≥ h∗j+1 ≥ · · · ≥ h∗0 for some j

Theorem (Knauer, Martinez-Sandoval, R.A., 2017)
Let a, b ≥ 2 be integers. The h∗-vectors of the snake polytopes
PS(a,...,a) and PS(a,b) are unimodal.
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