Matroids Polytope and Ehrhart polynomial

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

S˜ao Paulo, Brasil August 2017

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

∢ ロ ▶ - ィ _印

 290

A Lattice polytope $P \subset \mathbb{R}^d$ is a convex hull of a finite set of points in \mathbb{Z}^d . For $k\in\mathbb{Z}_{>0}$ let $L_P(k):=\#(kP\cap\mathbb{Z}^d)$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

A Lattice polytope $P \subset \mathbb{R}^d$ is a convex hull of a finite set of points in \mathbb{Z}^d . For $k\in\mathbb{Z}_{>0}$ let $L_P(k):=\#(kP\cap\mathbb{Z}^d)$

Example

 $Q_2 = conv{(0, 0), (1, 0), (0, 1), (1, 1)} = {x, y \in \mathbb{R} : 0 \le x, y \le 1}.$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

A Lattice polytope $P \subset \mathbb{R}^d$ is a convex hull of a finite set of points in \mathbb{Z}^d . For $k\in\mathbb{Z}_{>0}$ let $L_P(k):=\#(kP\cap\mathbb{Z}^d)$

Example

 $Q_2 = conv{(0, 0), (1, 0), (0, 1), (1, 1)} = {x, y \in \mathbb{R} : 0 \le x, y \le 1}.$

$$
\begin{array}{c|c}\n k & 1 \\
\hline\nL_{Q_2}(k) & 4\n\end{array}
$$

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

つひひ

A Lattice polytope $P \subset \mathbb{R}^d$ is a convex hull of a finite set of points in \mathbb{Z}^d . For $k\in\mathbb{Z}_{>0}$ let $L_P(k):=\#(kP\cap\mathbb{Z}^d)$

Example

 $Q_2 = conv{(0, 0), (1, 0), (0, 1), (1, 1)} = {x, y \in \mathbb{R} : 0 \le x, y \le 1}.$

 $k \mid 1 \mid 2$ L_{Q_2} $(k) 4 9$

J.L. Ramírez Alfonsín e a controllation de la controllation de la controllation de la controllation de Montpellier

 Ω

A Lattice polytope $P \subset \mathbb{R}^d$ is a convex hull of a finite set of points in \mathbb{Z}^d . For $k\in\mathbb{Z}_{>0}$ let $L_P(k):=\#(kP\cap\mathbb{Z}^d)$

Example

 $Q_2 = conv{(0, 0), (1, 0), (0, 1), (1, 1)} = {x, y \in \mathbb{R} : 0 \le x, y \le 1}.$

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

 Ω

A Lattice polytope $P \subset \mathbb{R}^d$ is a convex hull of a finite set of points in \mathbb{Z}^d . For $k\in\mathbb{Z}_{>0}$ let $L_P(k):=\#(kP\cap\mathbb{Z}^d)$ Example $Q_2 = conv\{(0, 0), (1, 0), (0, 1), (1, 1)\} = \{x, y \in \mathbb{R} : 0 \le x, y \le 1\}.$ *Q* 2 $2Q$ ₂ *Q* 2 3 *Q* 2 4 $k \mid 1 \mid 2 \mid 3 \mid 4$ $L_{Q_2}(k)$ | 4 | 9 | 16 | 25

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

 Ω

A Lattice polytope $P \subset \mathbb{R}^d$ is a convex hull of a finite set of points in \mathbb{Z}^d . For $k\in\mathbb{Z}_{>0}$ let $L_P(k):=\#(kP\cap\mathbb{Z}^d)$ Example $Q_2 = conv\{(0, 0), (1, 0), (0, 1), (1, 1)\} = \{x, y \in \mathbb{R} : 0 \le x, y \le 1\}.$ *Q* 2 $2Q$ ₂ *Q* 2 3 *Q* 2 4 $k \mid 1 \mid 2 \mid 3 \mid 4$ L_{Q_2} $16 | 25$ ${\sf L}_{{\sf Q}_2}({\sf k})=({\sf k}+1)^2$

 Ω

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

d-dimensional cube :
$$
L_{Q_d}(k) = (k+1)^d = \sum_{i=0}^d {d \choose i} k^i
$$

K ロ ⊁ K 倒 ⊁ K 299 ×

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and The Magnus and The Montpellier and The Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

d-dimensional cube :
$$
L_{Q_d}(k) = (k+1)^d = \sum_{i=0}^d {d \choose i} k^i
$$

Theorem (Ehrhart 1962) For any lattice polytope P, $L_P(k)$ is a polynomial in k of degree $dim(P)$ with rational coefficients, with leading term $vol(P)$ and constant term 1.

つひひ

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

d-dimensional cube :
$$
L_{Q_d}(k) = (k+1)^d = \sum_{i=0}^d {d \choose i} k^i
$$

Theorem (Ehrhart 1962) For any lattice polytope P , $L_P(k)$ is a polynomial in k of degree $dim(P)$ with rational coefficients, with leading term $vol(P)$ and constant term 1.

Let P° denotes the interior of P.

つひひ

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

d-dimensional cube :
$$
L_{Q_d}(k) = (k+1)^d = \sum_{i=0}^d {d \choose i} k^i
$$

Theorem (Ehrhart 1962) For any lattice polytope P , $L_P(k)$ is a polynomial in k of degree $dim(P)$ with rational coefficients, with leading term $vol(P)$ and constant term 1.

Let P° denotes the interior of P.

 $L_{Q_d^{\circ}}(k) = (k-1)^d$

つひひ

d-dimensional cube :
$$
L_{Q_d}(k) = (k+1)^d = \sum_{i=0}^d {d \choose i} k^i
$$

Theorem (Ehrhart 1962) For any lattice polytope P , $L_P(k)$ is a polynomial in k of degree $dim(P)$ with rational coefficients, with leading term $vol(P)$ and constant term 1.

Let P° denotes the interior of P.

$$
L_{Q_d^{\circ}}(k) = (k-1)^d = (-1)^d (1-k)^d
$$

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

つひひ

d-dimensional cube :
$$
L_{Q_d}(k) = (k+1)^d = \sum_{i=0}^d {d \choose i} k^i
$$

Theorem (Ehrhart 1962) For any lattice polytope P , $L_P(k)$ is a polynomial in k of degree $dim(P)$ with rational coefficients, with leading term $vol(P)$ and constant term 1.

Let P° denotes the interior of P.

$$
L_{Q_d^{\circ}}(k) = (k-1)^d = (-1)^d (1-k)^d = (-1)^d L_{Q_d}(-k)
$$

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

つひひ

d-dimensional cube : $L_{Q_d}(k) = (k+1)^d = \sum^d$ $i=0$ $\binom{d}{i}$ $\binom{d}{i}k^i$

Theorem (Ehrhart 1962) For any lattice polytope P, $L_P(k)$ is a polynomial in k of degree $dim(P)$ with rational coefficients, with leading term $vol(P)$ and constant term 1.

Let P° denotes the interior of P.

$$
L_{Q_d^{\circ}}(k) = (k-1)^d = (-1)^d (1-k)^d = (-1)^d L_{Q_d}(-k)
$$

つひひ

Theorem (Macdonald 1971) $L_P(-k) = (-1)^{dim(P)} L_{P^{\circ}}(k)$ (Reciprocity law).

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

d-dimensional cube : $L_{Q_d}(k) = (k+1)^d = \sum^d$ $i=0$ $\binom{d}{i}$ $\binom{d}{i}k^i$

Theorem (Ehrhart 1962) For any lattice polytope P, $L_P(k)$ is a polynomial in k of degree $dim(P)$ with rational coefficients, with leading term $vol(P)$ and constant term 1.

Let P° denotes the interior of P.

$$
L_{Q_d^{\circ}}(k) = (k-1)^d = (-1)^d (1-k)^d = (-1)^d L_{Q_d}(-k)
$$

Theorem (Macdonald 1971) $L_P(-k) = (-1)^{dim(P)} L_{P^{\circ}}(k)$ (Reciprocity law). Therefore, $(-1)^{dim(P)}L_P(-k)$ enumerates the interior lattice points in kP

つひひ

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

The d-dimensional permutahedron P_d is defined as $P_d := conv\{(\pi(1) - 1, \pi(2) - 1, \dots, \pi(d) - 1) : \pi \in S_d\}$

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

The d-dimensional permutahedron P_d is defined as $P_d := conv\{(\pi(1) - 1, \pi(2) - 1, \ldots, \pi(d) - 1) : \pi \in S_d\}$

Theorem

$$
L_{P_d}(k) = \sum_{i=0}^d f_i k^i
$$

where f_i is the number of forests on $\{1,\ldots,d\}$ with i vertices.

◆ロ → ◆ → 伊 $2Q$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

Theorem

$$
L_{P_d}(k) = \sum_{i=0}^d f_i k^i
$$

where f_i is the number of forests on $\{1,\ldots,d\}$ with i vertices. Remark f_d is the number of spanning trees on the complete graph K_d .

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

Theorem

$$
L_{P_d}(k) = \sum_{i=0}^d f_i k^i
$$

where f_i is the number of forests on $\{1,\ldots,d\}$ with i vertices. Remark f_d is the number of spanning trees on the complete graph K_d .

$$
f_d=d^{d-2}
$$

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

 Ω

← ロ ▶ → イ 同

Theorem

$$
L_{P_d}(k) = \sum_{i=0}^d f_i k^i
$$

where f_i is the number of forests on $\{1,\ldots,d\}$ with i vertices. Remark f_d is the number of spanning trees on the complete graph K_d .

$$
f_d = d^{d-2} = vol(P_d)
$$

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

 Ω

← ロ ▶ → イ 同

Cyclic polytope

Let $m(t) = (t, t^2, \dots, t^d)$ be the moment curve in \mathbb{R}^d .

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Cyclic polytope

Let $m(t) = (t, t^2, \dots, t^d)$ be the moment curve in \mathbb{R}^d . The d-dimensional Cyclic polytope $C_d = C_d(t_1, \ldots, t_n)$ is defined as

$$
C_d := conv\{m(t_1), \ldots, m(t_n)\}\
$$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

Cyclic polytope

Let $m(t) = (t, t^2, \dots, t^d)$ be the moment curve in \mathbb{R}^d . The d-dimensional Cyclic polytope $C_d = C_d(t_1, \ldots, t_n)$ is defined as

$$
C_d := conv\{m(t_1), \ldots, m(t_n)\}
$$

Theorem

$$
L_{C_d}(k) = \sum_{i=0}^d f_i k^i
$$

where $f_i = vol(C_i(t_1, \ldots, t_n)).$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

∢ ロ ▶ ィ 何

 Ω

The standard d-simplex

$$
\Delta = \{ \mathbf{x} \in \mathbb{R}_{\geq 0}^d : x_1 + \dots + x_d \leq 1 \}
$$

= $conv \{ (0, \dots, 0), (1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1) \}$

$$
L_{\Delta}(t) = {t + d \choose d}
$$

K ロ ⊁ K 倒 ⊁ K 299 B \mathbf{p} B \sim ∍

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

The standard d -simplex

$$
\Delta = \{ \mathbf{x} \in \mathbb{R}_{\geq 0}^d : x_1 + \dots + x_d \leq 1 \} = \text{conv}\{ (0, \dots, 0), (1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1) \} \nL_{\Delta}(t) = \begin{pmatrix} t + d \\ d \end{pmatrix}
$$

 $L_{\Delta}(t)$ comes with the friedly generating function

$$
\sum_{t\geq 0} \binom{t+d}{d} z^t
$$

K ロ ▶ K 伊 290

J.L. Ramírez Alfonsín **IMAG, Université de Montpellier** Contract de Montpellier de Montpellier

The standard d -simplex

$$
\Delta = \{ \mathbf{x} \in \mathbb{R}_{\geq 0}^d : x_1 + \dots + x_d \leq 1 \} = \text{conv}\{ (0, \dots, 0), (1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1) \} \nL_{\Delta}(t) = \begin{pmatrix} t + d \\ d \end{pmatrix}
$$

 $L_{\Delta}(t)$ comes with the friedly generating function

$$
\sum_{t\geq 0} {t+d \choose d} z^t = \frac{1}{(1-z)^{d+1}}
$$

K ロ ▶ K 伊 290

J.L. Ramírez Alfonsín **IMAG, Université de Montpellier** Contract de Montpellier de Montpellier

The standard d-simplex

$$
\Delta = \{ \mathbf{x} \in \mathbb{R}_{\geq 0}^d : x_1 + \dots + x_d \leq 1 \} = \text{conv}\{ (0, \dots, 0), (1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1) \} \nL_{\Delta}(t) = \begin{pmatrix} t + d \\ d \end{pmatrix}
$$

 $L_{\Delta}(t)$ comes with the friedly generating function

$$
\sum_{t\geq 0} {t+d \choose d} z^t = \frac{1}{(1-z)^{d+1}}
$$

This motivate to define the Ehrhart serie of the lattice polytope P as

$$
\mathit{Ehr}_P(z) := 1 + \sum_{t \geq 1} L_P(t) z^t
$$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

 Ω

Ehrhart's theorem (Equivalent) For any lattice polytope P of dimension d the Ehrhart serie $Ehr_P(z)$ is a rational function of the form

$$
\frac{h_d^* z^d + h_{d-1}^* z^{d-1} + \dots + h_0^*}{(1-z)^{d+1}}
$$

 Ω **∢ ロ ▶ ィ 何**

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

Ehrhart's theorem (Equivalent) For any lattice polytope P of dimension d the Ehrhart serie $Ehr_P(z)$ is a rational function of the form

$$
\frac{h_d^* z^d + h_{d-1}^* z^{d-1} + \dots + h_0^*}{(1-z)^{d+1}}
$$

The h^* -vector are the coefficients of

$$
h^*(z) = h_d^* z^d + h_{d-1}^* z^{d-1} + \cdots + h_0^*
$$

 Ω

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Ehrhart's theorem (Equivalent) For any lattice polytope P of dimension d the Ehrhart serie $Ehr_P(z)$ is a rational function of the form

$$
\frac{h_d^* z^d + h_{d-1}^* z^{d-1} + \dots + h_0^*}{(1-z)^{d+1}}
$$

The h^* -vector are the coefficients of

$$
h^*(z) = h_d^* z^d + h_{d-1}^* z^{d-1} + \cdots + h_0^*
$$

 Ω

$$
\bullet \ L_P(t) = \sum_{j=0}^d h_j^* {t+d-j \choose d}
$$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Ehrhart's theorem (Equivalent) For any lattice polytope P of dimension d the Ehrhart serie $Ehr_P(z)$ is a rational function of the form

$$
\frac{h_d^* z^d + h_{d-1}^* z^{d-1} + \dots + h_0^*}{(1-z)^{d+1}}
$$

The h^* -vector are the coefficients of

$$
h^*(z) = h_d^* z^d + h_{d-1}^* z^{d-1} + \cdots + h_0^*
$$

•
$$
L_P(t) = \sum_{j=0}^d h_j^* \binom{t+d-j}{d}
$$

\n• $h^*(0) = 1$ and $h^*(1) = dim(P)!vol(P)$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

 Ω

Ehrhart's theorem (Equivalent) For any lattice polytope P of dimension d the Ehrhart serie $Ehr_P(z)$ is a rational function of the form

$$
\frac{h_d^* z^d + h_{d-1}^* z^{d-1} + \dots + h_0^*}{(1-z)^{d+1}}
$$

The h^* -vector are the coefficients of

$$
h^*(z) = h_d^* z^d + h_{d-1}^* z^{d-1} + \cdots + h_0^*
$$

\n- \n
$$
L_P(t) = \sum_{j=0}^d h_j^* \binom{t+d-j}{d}
$$
\n
\n- \n
$$
h^*(0) = 1 \text{ and } h^*(1) = \dim(P)! \text{vol}(P)
$$
\n
\n- \n
$$
h_d^* = \#(P^\circ \cap \mathbb{Z}^d) \text{ and } h_1^* = \#(P \cap \mathbb{Z}^d) - d - 1
$$
\n
\n

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

つひひ

Ehrhart's theorem (Equivalent) For any lattice polytope P of dimension d the Ehrhart serie $Ehr_P(z)$ is a rational function of the form

$$
\frac{h_d^* z^d + h_{d-1}^* z^{d-1} + \dots + h_0^*}{(1-z)^{d+1}}
$$

The h^* -vector are the coefficients of

$$
h^*(z) = h_d^* z^d + h_{d-1}^* z^{d-1} + \cdots + h_0^*
$$

$$
\bullet \ L_P(t) = \sum_{j=0}^d h_j^* \binom{t+d-j}{d}
$$

•
$$
h^*(0) = 1
$$
 and $h^*(1) = dim(P)!vol(P)$

- \bullet $h_d^* = \#(P^\circ \cap \mathbb{Z}^d)$ and $h_1^* = \#(P \cap \mathbb{Z}^d) d 1$
- Theorem (St[a](#page-28-0)nl[e](#page-35-0)y 1980) h_0^*, \ldots, h_d^* h_0^*, \ldots, h_d^* h_0^*, \ldots, h_d^* are no[nn](#page-33-0)[eg](#page-35-0)a[ti](#page-29-0)[v](#page-34-0)e [in](#page-0-0)[te](#page-115-0)[ger](#page-0-0)s

∽≏∩

Independents

A matroid M is an ordered pair (E, \mathcal{I}) where E is a finite set $(E = \{1, \ldots, n\})$ and $\mathcal I$ is a family of subsets of E verifying the following conditions :

 (11) $\emptyset \in \mathcal{I}$,

(12) If $I \in \mathcal{I}$ and $I' \subset I$ then $I' \in \mathcal{I}$,

(13) If $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$ then there exists $e \in I_2 \setminus I_1$ such that $I_1 \cup e \in \mathcal{I}$.
Independents

A matroid M is an ordered pair (E, \mathcal{I}) where E is a finite set $(E = \{1, \ldots, n\})$ and $\mathcal I$ is a family of subsets of E verifying the following conditions :

 (11) $\emptyset \in \mathcal{I}$,

(12) If $I \in \mathcal{I}$ and $I' \subset I$ then $I' \in \mathcal{I}$,

(13) If $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$ then there exists $e \in I_2 \setminus I_1$ such that $I_1 \cup \rho \in \mathcal{T}$

The members in $\mathcal I$ are called the independents of M . A subset in E not belonging to I is called dependent.

つひひ

Independents

A matroid M is an ordered pair (E, \mathcal{I}) where E is a finite set $(E = \{1, \ldots, n\})$ and $\mathcal I$ is a family of subsets of E verifying the following conditions :

 (11) $\emptyset \in \mathcal{I}$,

(12) If $I \in \mathcal{I}$ and $I' \subset I$ then $I' \in \mathcal{I}$,

(13) If $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$ then there exists $e \in I_2 \setminus I_1$ such that $I_1 \cup \rho \in \mathcal{T}$

The members in $\mathcal I$ are called the independents of M. A subset in E not belonging to I is called dependent. The rank of a set $X \subseteq E$ is defined by

$$
r_M(X) = \max\{|Y| : Y \subseteq X, Y \in \mathcal{I}\}.
$$

つひひ

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

A base of a matroid is a maximal independent set. We denote by β the set of all bases of a matroid.

A base of a matroid is a maximal independent set. We denote by β the set of all bases of a matroid. Lemma All the bases of a matroid have the same cardinality r.

A base of a matroid is a maximal independent set. We denote by β the set of all bases of a matroid. Lemma All the bases of a matroid have the same cardinality r. The rank of a matroid M, denoted by $r(M)$, is the rank of one of its bases.

- A base of a matroid is a maximal independent set. We denote by β the set of all bases of a matroid.
- Lemma All the bases of a matroid have the same cardinality r.
- The rank of a matroid M, denoted by $r(M)$, is the rank of one of its bases.

The family β verifies the following conditions :

- $(B1)$ $\mathcal{B} \neq \emptyset$,
- (B2) (exchange propety) $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \backslash B_2$ then there exist $y \in B_2 \backslash B_1$ such that $(B_1 \backslash x) \cup y \in B$.

つひひ

Theorem β is the set of basis of a matroid if and only if it verifies (B1) and (B2).

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

Theorem β is the set of basis of a matroid if and only if it verifies (B1) and (B2).

Two examples

 \bullet Let $U_{r,n} = \binom{[n]}{r}$ $\binom{n}{r}$ (i.e., the family of all *r*-sets of $\{1,\ldots,n\}$).

Bases

Theorem β is the set of basis of a matroid if and only if it verifies (B1) and (B2).

Two examples

 \bullet Let $U_{r,n} = \binom{[n]}{r}$ $\binom{n}{r}$ (i.e., the family of all *r*-sets of $\{1,\ldots,n\}$). $U_{r,n}$ is a matroid (called the uniform matroid of rank r on n elements).

つひひ

Theorem β is the set of basis of a matroid if and only if it verifies (B1) and (B2).

Two examples

- \bullet Let $U_{r,n} = \binom{[n]}{r}$ $\binom{n}{r}$ (i.e., the family of all *r*-sets of $\{1,\ldots,n\}$). $U_{r,n}$ is a matroid (called the uniform matroid of rank r on n elements).
- Let $G = (V, E)$ be a graph with $|V| = n$ and $|E| = m$. Let β be the set of all maximal forest in G.

つひひ

Theorem β is the set of basis of a matroid if and only if it verifies (B1) and (B2).

Two examples

- \bullet Let $U_{r,n} = \binom{[n]}{r}$ $\binom{n}{r}$ (i.e., the family of all *r*-sets of $\{1,\ldots,n\}$). $U_{r,n}$ is a matroid (called the uniform matroid of rank r on n elements).
- Let $G = (V, E)$ be a graph with $|V| = n$ and $|E| = m$. Let β be the set of all maximal forest in G. Then, $M(G) = (B, E)$ is a matroid with $r(M(G)) = n - c$ where c
- is the number of connected components of G.

つひひ

K ロ ▶ | K 伺 ▶ | K ヨ ▶

 290 **Kロトメ部トメミ** × Þ Ξ IMAG, Université de Montpellier

J.L. Ramírez Alfonsín

 290 **Kロトメ部トメミ** × B Ξ

IMAG, Université de Montpellier

J.L. Ramírez Alfonsín

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

J.L. Ramírez Alfonsín II. II. Announce a component a component and a state of the Montpellier in the Montpellier

Ξ

Þ

 \rightarrow ×

Kロト K包ト

 290

Matroid base polytope

Let $M = (\mathcal{B}, E)$ with $|E| = n$. For each base $B \in \mathcal{B}$, the incident vector $e_B \in \mathbb{R}^E$ is defined by

$$
e_B = \sum_{i \in B} e_i
$$

where e_i denotes i^{th} standard base vector in \mathbb{R}^n .

Matroid base polytope

Let $M = (\mathcal{B}, E)$ with $|E| = n$. For each base $B \in \mathcal{B}$, the incident vector $e_B \in \mathbb{R}^E$ is defined by

$$
e_B = \sum_{i \in B} e_i
$$

where e_i denotes i^{th} standard base vector in \mathbb{R}^n . The base polytope of M, denoted by P_M , is defined as

 $P_M = \text{conv} \{e_B : B \in \mathcal{B}\}\$

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

つひひ

Matroid base polytope

Let $M = (\mathcal{B}, E)$ with $|E| = n$. For each base $B \in \mathcal{B}$, the incident vector $e_B \in \mathbb{R}^E$ is defined by

$$
e_B = \sum_{i \in B} e_i
$$

where e_i denotes i^{th} standard base vector in \mathbb{R}^n . The base polytope of M, denoted by P_M , is defined as

$$
P_M = conv\{e_B : B \in \mathcal{B}\}\
$$

Let Δ_E be the simplexe in \mathbb{R}^E , i.e.,

$$
\Delta_E = conv(e_i : i \in E) = \{x \in \mathbb{R}^E : \sum_{i \in E} x_i = 1, x_i \ge 0 \text{ for all } i \in E\}
$$

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

つひひ

Theorem (Gel'fand, Goresky, MacPherson, Serganova 1987) Let $P \subseteq \mathbb{R}^E$ be a convex polytope. Then, P is the base polytope of a matroid $M = (\mathcal{B}, E)$ if and only if

- $P_M \subseteq r\Delta_E$ where $r = r(M)$ (implying that $dim(P) \leq n-1$)
- the vertices of P belong to $\{0,1\}^E$ and
- \bullet each edge of P_M is a translation of $conv(e_i,e_j)$ for all $i, i \in E, i \neq i$.

つひひ

Theorem (Gel'fand, Goresky, MacPherson, Serganova 1987) Let $P \subseteq \mathbb{R}^E$ be a convex polytope. Then, P is the base polytope of a matroid $M = (\mathcal{B}, E)$ if and only if

- $P_M \subseteq r\Delta_E$ where $r = r(M)$ (implying that $dim(P) \leq n-1$)
- the vertices of P belong to $\{0,1\}^E$ and
- \bullet each edge of P_M is a translation of $conv(e_i,e_j)$ for all $i, i \in E, i \neq i$.

つひひ

$$
P_{U_{2,3}} = \text{conv}\{(1,1,0),(1,0,1),(0,1,1)\}
$$

J.L. Ramírez Alfonsín Matroids Polytope and Ehrhart polynomial IMAG, Université de Montpellier

$$
P_{U_{2,3}}=conv\{(1,1,0),(1,0,1),(0,1,1)\}
$$

 290 **◆ロ → ◆伊** Ξ ×

IMAG, Université de Montpellier

J.L. Ramírez Alfonsín

$$
P_{U_{2,4}} = \text{conv}\left\{\left(\begin{array}{c}1\\1\\0\\0\end{array}\right), \left(\begin{array}{c}1\\0\\1\\0\end{array}\right), \left(\begin{array}{c}1\\0\\0\\1\end{array}\right), \left(\begin{array}{c}0\\1\\1\\0\end{array}\right), \left(\begin{array}{c}0\\1\\1\\0\end{array}\right), \left(\begin{array}{c}0\\0\\1\\1\end{array}\right), \left(\begin{array}{c}0\\0\\1\\1\end{array}\right)\right\} \subset \mathbb{R}^4
$$

 299 メロトメ 伊 トメ ミトメ 毛 ŧ ×

J.L. Ramírez Alfonsín Matroids Polytope and Ehrhart polynomial IMAG, Université de Montpellier

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Proposition Let M be a matroid on E . Then, $i \sim j \Leftrightarrow i = j$ or there exist bases A and B such that $B = (A \setminus i) \cup j$ is an equivalent relation on E.

Proposition Let M be a matroid on E . Then,

 $i \sim j \Leftrightarrow i = j$ or there exist bases A and B such that $B = (A \setminus i) \cup j$ is an equivalent relation on E.

The equivalent classes are the connected components of M. We denote by $c(M)$ the number of connected components of M and we say that M is connected if $c(M) = 1$.

つひひ

Proposition Let M be a matroid on E . Then,

 $i \sim j \Leftrightarrow i = j$ or there exist bases A and B such that $B = (A \setminus i) \cup j$ is an equivalent relation on E.

つひひ

The equivalent classes are the connected components of M. We denote by $c(M)$ the number of connected components of M and we say that M is connected if $c(M) = 1$.

Theorem $dim(P_M) = n - c(M)$ where $n = |E|$.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

J.L. Ramírez Alfonsín

Matroids Polytope and Ehrhart polynomial

II

 298

ŧ

Kロト K個 K K B

J.L. Ramírez Alfonsín

Matroids Polytope and Ehrhart polynomial

э IMAG, Université de Montpellier

Þ

 \rightarrow

K ロ ▶ K 御 ▶ K 活

IMAG, Université de Montpellier

重

重

メロトメ 倒下 メミトメ

 298

J.L. Ramírez Alfonsín

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

J. J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

活

 298

メロメ メタメメ きょくき

 $M[U, L]$ lattice path matroid (LPM) of rank r (# rows) on $r + m$ ($#$ rows $+$ $#$ columns) elements.

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

メロトメ 倒下 メミトメ

 QQ

U={1,4,5,9,11} *U*=NEENNEEENENEE

B={4,5,9,10,13} *B*=EEENNEEENNEEN

 \rightarrow

K ロ ▶ K 御 ▶ K 后

 298

Þ

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

 $U = \{1, 4, 5, 9, 11\}$ $U =$ NEENNEEENENEE

 $B = \{4,5,9,10,13\}$ $B=$ **EEENNEEENNEEN**

J.L. Ramírez Alfonsín

Matroids Polytope and Ehrhart polynomial

IMAG, Université de Montpellier

 \rightarrow

Þ

K ロ ▶ K 御 ▶ K 后

 $U = \{1, 4, 5, 9, 11\}$ $U =$ NEENNEEENENEE

 $B = \{4,5,9,10,13\}$ **B=EEENNEEENNEEN**

J.L. Ramírez Alfonsín

Matroids Polytope and Ehrhart polynomial

IMAG, Université de Montpellier

 \rightarrow

Þ

K ロ ▶ K 御 ▶ K 后

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

重 J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

活

メロメ メ母メ メミメメ

 299 **K ロ ▶ K 伊**

J.L. Ramírez Alfonsín

Matroids Polytope and Ehrhart polynomial

IMAG, Université de Montpellier

IMAG, Université de Montpellier

 \leftarrow \Box

 299

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

 \leftarrow \Box

 299

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

 \leftarrow \Box

 299

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

 \leftarrow \Box

 299

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

 \leftarrow \Box

 299

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

 \leftarrow \Box

 299

J.L. Ramírez Alfonsín

A generalized path P starts at $(0,0)$ and ends at $(r, r + m)$ and it is monotonously increasing $x_i \le x_{i+1}$ and $y_i \le y_{i+1}$.

 Ω

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

A generalized path P starts at $(0,0)$ and ends at $(r, r + m)$ and it is monotonously increasing $x_i \leq x_{i+1}$ and $y_i \leq y_{i+1}$.

Let $st(P)=(p_1,\ldots,p_{r+m})$ where $p_{i+1}=y_{i+1}-y_i$ for each i. We call $st(P)$ step vector of P.

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

つひひ

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $M[U, L]$ be a LPM of rank r on $r + m$ elements. Let $st(L) = (l_1, \ldots, l_{r+m})$ and $st(U) = (u_1, \ldots, u_{r+m})$.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $M[U, L]$ be a LPM of rank r on $r + m$ elements. Let $st(L) = (l_1, \ldots, l_{r+m})$ and $st(U) = (u_1, \ldots, u_{r+m})$. Let C_M be the family of step vectors of all generalized lattice path in $M[U,L]$.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

Characterizing step vectors

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $M[U, L]$ be a LPM of rank r on $r + m$ elements. Let $st(L) = (l_1, \ldots, l_{r+m})$ and $st(U) = (u_1, \ldots, u_{r+m})$. Let C_M be the family of step vectors of all generalized lattice path in $M[U, L]$. Then,

$$
C_M = \left\{ p \in \mathbb{R}^{r+m} \mid 0 \leq p_i \leq 1, \sum_{j=1}^i l_j \leq \sum_{j=1}^i p_j \leq \sum_{j=1}^i u_j \ \forall i \right\}
$$

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

つひひ

Characterizing step vectors

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $M[U, L]$ be a LPM of rank r on $r + m$ elements. Let $st(L) = (l_1, \ldots, l_{r+m})$ and $st(U) = (u_1, \ldots, u_{r+m})$. Let C_M be the family of step vectors of all generalized lattice path in $M[U, L]$. Then,

$$
C_M = \left\{ p \in \mathbb{R}^{r+m} \mid 0 \leq p_i \leq 1, \sum_{j=1}^i l_j \leq \sum_{j=1}^i p_j \leq \sum_{j=1}^i u_j \ \forall i \right\}
$$

• 0 $\lt v_{i+1} - v_i \lt 1$

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

つひひ

Characterizing step vectors

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $M[U, L]$ be a LPM of rank r on $r + m$ elements. Let $st(L) = (l_1, \ldots, l_{r+m})$ and $st(U) = (u_1, \ldots, u_{r+m})$. Let C_M be the family of step vectors of all generalized lattice path in $M[U, L]$. Then,

$$
C_M = \left\{ p \in \mathbb{R}^{r+m} \mid 0 \leq p_i \leq 1, \sum_{j=1}^i l_j \leq \sum_{j=1}^i p_j \leq \sum_{j=1}^i u_j \ \forall i \right\}
$$

つひひ

• 0 $\lt v_{i+1} - v_i \lt 1$

• Any generalized path stay between U and L .

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $M = M[U, L]$ be a LPM of rank r on $r + m$ elements and let P_M be the matroid polytope. Then, $P_M = C_M$.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $M = M[U, L]$ be a LPM of rank r on $r + m$ elements and let P_M be the matroid polytope. Then, $P_M = C_M$. Proof (idea). $P_M = conv\{$ characteristic vectors of $\mathcal{B}(M)\subseteq conv\{\mathcal{C}_M\} = \mathcal{C}_M$.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $M = M[U, L]$ be a LPM of rank r on $r + m$ elements and let P_M be the matroid polytope. Then, $P_M = C_M$. Proof (idea). $P_M = conv\{ characteristic vectors of B(M)\} \subseteq conv\{C_M\} = C_M$. $P_M \supseteq C_M$ by induction on the number of elements.

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $M = M[U, L]$ be a LPM of rank r on $r + m$ elements and let P_M be the matroid polytope. Then, $P_M = C_M$. Proof (idea). $P_M = conv\{ characteristic vectors of B(M)\} \subseteq conv\{C_M\} = C_M$. $P_M \supseteq C_M$ by induction on the number of elements. Corollary (Knauer, Martinez-Sandoval, R.A., 2017) Let \mathcal{C}_M^k be the family of step vectors of all generalized paths P in $M = [U, L]$ such that each (x_i, y_i) in P satisfy $kx_i, ky_i \in \mathbb{Z}$.

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

つひひ

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $M = M[U, L]$ be a LPM of rank r on $r + m$ elements and let P_M be the matroid polytope. Then, $P_M = C_M$. Proof (idea). $P_M = conv\{ characteristic vectors of B(M)\} \subseteq conv\{C_M\} = C_M$. $P_M \supseteq C_M$ by induction on the number of elements. Corollary (Knauer, Martinez-Sandoval, R.A., 2017) Let \mathcal{C}_M^k be the family of step vectors of all generalized paths P in $M = [U, L]$ such that each (x_i, y_i) in P satisfy $kx_i, ky_i \in \mathbb{Z}$. Then,

$$
kP_M \cap \mathbb{Z}^{r+m} = \mathcal{C}_M^k
$$

つひひ

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Example : Consider $P_{U_{2,3}}$

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

 299

Example : Construct paths in $C_{U_{2,3}}^2$

 $2Q$

Example : $2P_{U_{2,3}}$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Let us consider $kP_{U_2,3}$

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

Let us consider $kP_{U_2,3}$

$$
{\cal C}^k_{U_{2,3}}
$$

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

Let us consider $kP_{U_2,3}$

$$
\mathcal{C}_{U_{2,3}}^k = \frac{1}{2}(k+1)(k+2)
$$

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

4 0 8

Let us consider $kP_{U_2,3}$

$$
\mathcal{C}_{U_{2,3}}^k = \frac{1}{2}(k+1)(k+2) = \frac{1}{2}k^2 + \frac{3}{2}k + 1
$$

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

 \leftarrow \Box

Let us consider $kP_{U_2,3}$

$$
\mathcal{C}_{U_{2,3}}^k = \frac{1}{2}(k+1)(k+2) = \frac{1}{2}k^2 + \frac{3}{2}k + 1 = kP_{U_{2,3}} \cap \mathbb{Z}^3
$$

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

4 0 8

Let us consider $kP_{U_2,3}$

 $\mathcal{C}_{\mathcal{U}_{2,3}}^k = \frac{1}{2}$ $\frac{1}{2}(k+1)(k+2) = \frac{1}{2}$ $\frac{1}{2}k^2 + \frac{3}{2}$ $\frac{3}{2}k + 1 = kP_{U_{2,3}} \cap \mathbb{Z}^3 = L_{P_{U_{2,3}}}(k)$

4 0 8

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

 Ω

Let $S(a, b)$ be the matroid associated to

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

J.L. Ramírez Alfonsín **IMAG, Université de Montpellier** Contract de Montpellier de Montpellier

Let $S(a, b)$ be the matroid associated to

J.L. Ramírez Alfonsín **IMAG, Université de Montpellier** Contract de Montpellier de Montpellier

Distributive polytopes

A polytope $P \subseteq \mathbb{R}^n$ is called distributive if for all $x, y \in P$ also their componentwise maximum and minimum max (x, y) and $min(x, y)$ are in P.

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

Distributive polytopes

A polytope $P \subseteq \mathbb{R}^n$ is called distributive if for all $x, y \in P$ also their componentwise maximum and minimum max (x, y) and $min(x, y)$ are in P.

Example : A distributive polytope in \mathbb{R}^2 .

 Ω

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $M = M[U, L]$ be a connected rank r LPM on $r + m$ elements.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $M = M[U, L]$ be a connected rank r LPM on $r + m$ elements.Then, there exists a bijective affine transformation taking $P_M \subset \mathbb{R}^{r+m}$ into a full-dimensional distributive integer polytope $Q_M \subset \mathbb{R}^{r+m-1}$ such that $L_{P_M}(t) = L_{Q_M}(t)$.

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $M = M[U, L]$ be a connected rank r LPM on $r + m$ elements.Then, there exists a bijective affine transformation taking $P_M \subset \mathbb{R}^{r+m}$ into a full-dimensional distributive integer polytope $Q_M \subset \mathbb{R}^{r+m-1}$ such that $L_{P_M}(t) = L_{Q_M}(t)$.

Proof (idea). Recall that $st(L) = (l_1, \ldots, l_{r+m})$. Check that

 $\pi: P_M \subset \mathbb{R}^{r+m} \longrightarrow \mathbb{R}^{r+m-1}$ $p = \left(p_1, \ldots, p_{r+m}\right) \;\; \mapsto \;\; \;\; \left(p_1 - l_1, \ldots, \sum_{j=1}^{r+m-1} (p_j - l_j)\right)$

is a suitable transformation.

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

つひひ

イロト イ押 トイヨト イヨ

Example

 $P_{U_{2,3}}$

We have $\pi(a) = (\frac{3}{4}, \frac{1}{2})$ $(\frac{1}{2}),\pi(b)=(1,0)$ and $\pi(c)=(\frac{1}{4},\frac{1}{4})$ $\pi(c)=(\frac{1}{4},\frac{1}{4})$ $\pi(c)=(\frac{1}{4},\frac{1}{4})$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$.

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier
Let X be a poset on $\{1, \ldots, n\}$ such that this labeling is natural, i.e., if $i < x$ i then $i < j$.

J.L. Ramírez Alfonsín **IMAG, Université de Montpellier** Contract de Montpellier de Montpellier [Matroids Polytope and Ehrhart polynomial](#page-0-0)

Let X be a poset on $\{1, \ldots, n\}$ such that this labeling is natural, i.e., if $i < x$ i then $i < j$. The order polytope $O(X)$ of X is defined as the set of those $x \in \mathbb{R}^n$ such that

> $0 \leq x_i \leq 1$, for all $i \in X$ and $x_i \geq x_j$, if $i \leq_X j$

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

∢ ロ ▶ - ィ _ロ ▶ - ィ

 Ω

Let X be a poset on $\{1,\ldots,n\}$ such that this labeling is natural, i.e., if $i < x$ i then $i < j$. The order polytope $O(X)$ of X is defined as the set of those $x \in \mathbb{R}^n$ such that

 $0 \leq x_i \leq 1$, for all $i \in X$ and $x_i \geq x_j$, if $i \leq_X j$

つひひ

Remark. $\mathcal{O}(X)$ is a bounded convex polytope

J.L. Ramírez Alfonsín a composition de la composition de la composition de la composition de Montpellier de Montpellier

 299 \leftarrow \Box \sim

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $a_1, \ldots, a_k \geq 2$ be integers. Then, a connected LPM M is the snake $S(a_1, \ldots, a_k)$ if and only if Q_M is the order polytope of the zig-zag chain poset on a_1, \ldots, a_k .

[Matroids Polytope and Ehrhart polynomial](#page-0-0)

 Ω

Recall that

$$
Ehr_P(z) = 1 + \sum_{t \ge 1} L_P(t) z^t = \frac{h_d^* z^d + h_{d-1}^* z^{d-1} + \dots + h_0^*}{(1-z)^{d+1}}
$$

J.L. Ramírez Alfonsín a composition a composition of the Montpellier and TMAG, Université de Montpellier

Recall that

$$
Ehr_P(z) = 1 + \sum_{t \ge 1} L_P(t) z^t = \frac{h_d^* z^d + h_{d-1}^* z^{d-1} + \dots + h_0^*}{(1-z)^{d+1}}
$$

Conjecture (De Loera, Haws, Köppe, 2009) The h^{*}-vector of base matroid polytopes are unimodal, i.e.,

 $h_d^* \leq h_{d_1}^* \leq \cdots \leq h_j^* \geq h_{j+1}^* \geq \cdots \geq h_0^*$ for some j

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier

 Ω

Recall that

$$
Ehr_P(z) = 1 + \sum_{t \ge 1} L_P(t) z^t = \frac{h_d^* z^d + h_{d-1}^* z^{d-1} + \dots + h_0^*}{(1-z)^{d+1}}
$$

Conjecture (De Loera, Haws, Köppe, 2009) The h^{*}-vector of base matroid polytopes are unimodal, i.e.,

$$
h_d^* \leq h_{d_1}^* \leq \cdots \leq h_j^* \geq h_{j+1}^* \geq \cdots \geq h_0^*
$$
 for some j

つひひ

Theorem (Knauer, Martinez-Sandoval, R.A., 2017) Let $a, b \ge 2$ be integers. The h^* -vectors of the snake polytopes $P_{S(a,...,a)}$ and $P_{S(a,b)}$ are unimodal.

J.L. Ramírez Alfonsín a compositor de la compositor de la compositor de la compositor de Montpellier