On the Möbius function of semigroup posets

Jorge Ramírez Alfonsín

I3M, Université Montpellier 2 Sevilla, 24 abril 2014

Joint work : J.Chappelon, I. García Marco, L.P. Montejano.

▲ロト▲聞と▲目と▲目と 目 ろくの

Jorge Ramírez Alfonsín April 24. 2014

Outline

- The Möbius function of a locally finite poset
- 2 The Möbius function of a semigroup poset
- Computing the Möbius function of a semigroup poset via Hilbert series
- 4 Explicit formulas for the Möbius function of a semigroup poset
- 6 How general are semigroup posets?

Basics on posets

Let (\mathcal{P}, \leq) be a locally finite poset, i.e,

- \bullet the set ${\mathcal P}$ is partially ordered by \leq , and
- for every $a, b \in \mathcal{P}$ the set $\{c \in \mathcal{P} \mid a \leq c \leq b\}$ is finite.

Basics on posets

Let (\mathcal{P}, \leq) be a locally finite poset, i.e,

- the set ${\mathcal P}$ is partially ordered by \leq , and
- for every $a, b \in \mathcal{P}$ the set $\{c \in \mathcal{P} \mid a \leq c \leq b\}$ is finite.

A chain of length $l \ge 0$ between $a, b \in \mathcal{P}$ is

$$\{a = a_0 < a_1 < \cdots < a_l = b\} \subset \mathcal{P}.$$

We denote by $c_l(a, b)$ the number of chains of length *l* between *a* and *b*.

Basics on posets

Let (\mathcal{P}, \leq) be a locally finite poset, i.e,

- the set ${\mathcal P}$ is partially ordered by \leq , and
- for every $a, b \in \mathcal{P}$ the set $\{c \in \mathcal{P} \mid a \leq c \leq b\}$ is finite.

A chain of length $l \ge 0$ between $a, b \in \mathcal{P}$ is

$$\{a = a_0 < a_1 < \cdots < a_l = b\} \subset \mathcal{P}.$$

We denote by $c_l(a, b)$ the number of chains of length *l* between *a* and *b*.

The **Möbius function** $\mu_{\mathcal{P}}$ is the function

$$\mu_{\mathcal{P}}: \mathcal{P} \times \mathcal{P} \longrightarrow \mathbb{Z}$$

 $\mu_{\mathcal{P}}(a, b) = \sum_{l \ge 0} (-1)^l c_l(a, b).$

Jorge Ramírez Alfonsín

Consider the poset $(\mathbb{N}, |)$ of **nonnegative integers ordered by divisibility**, i.e., $a | b \iff a$ divides b.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 めんの

Jorge Ramírez Alfonsín April 24, 2014 Consider the poset $(\mathbb{N}, |)$ of **nonnegative integers ordered by divisibility**, i.e., $a | b \iff a$ divides b. Let us compute $\mu_{\mathbb{N}}(2, 36)$.

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

Jorge Ramírez Alfonsín April 24, 2014 Consider the poset $(\mathbb{N}, |)$ of **nonnegative integers ordered by divisibility**, i.e., $a | b \iff a$ divides b. Let us compute $\mu_{\mathbb{N}}(2, 36)$. We observe that $\{c \in \mathbb{N}; 2 | c | 36\} = \{2, 4, 6, 12, 18, 36\}$. Consider the poset $(\mathbb{N}, |)$ of **nonnegative integers ordered by divisibility**, i.e., $a \mid b \iff a$ divides b. Let us compute $\mu_{\mathbb{N}}(2, 36)$. We observe that $\{c \in \mathbb{N}; 2 \mid c \mid 36\} = \{2, 4, 6, 12, 18, 36\}$. Chains of

• length 1
$$\rightarrow$$
 {2, 36}
• length 2
{ {2, 4, 36}
{2, 6, 36}
{2, 12, 36}
{2, 18, 36}
• length 3
{ {2, 4, 12, 36}
{2, 6, 12, 26}
{2, 6, 18, 36}

Jorge Ramírez Alfonsín

Consider the poset $(\mathbb{N}, |)$ of **nonnegative integers ordered by divisibility**, i.e., $a \mid b \iff a$ divides b. Let us compute $\mu_{\mathbb{N}}(2, 36)$. We observe that $\{c \in \mathbb{N}; 2 \mid c \mid 36\} = \{2, 4, 6, 12, 18, 36\}$. Chains of

Thus,

$$\mu_{\mathbb{N}}(2,36) = -c_1(2,36) + c_2(2,36) - c_3(2,36) = 1 - 4 + 3 = 0.$$

Jorge Ramírez Alfonsín

Möbius classical arithmetic function

Given $n \in \mathbb{N}$ the *Möbius arithmetic function* $\mu(n)$ is defined as

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1\\ (-1)^k & \text{if } n = p_1 \cdots p_k \text{ with } p_i \text{ distinct primes}\\ 0 & \text{otherwise (i.e., } n \text{ admits at least one square}\\ & \text{factor bigger than one)} \end{cases}$$

Möbius classical arithmetic function

Given $n \in \mathbb{N}$ the *Möbius arithmetic function* $\mu(n)$ is defined as

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1\\ (-1)^k & \text{if } n = p_1 \cdots p_k \text{ with } p_i \text{ distinct primes}\\ 0 & \text{otherwise (i.e., } n \text{ admits at least one square}\\ & \text{factor bigger than one)} \end{cases}$$

Example: $\mu(2) = \mu(7) = -1, \mu(4) = \mu(8) = 0, \mu(6) = \mu(10) = 1$

Given $n \in \mathbb{N}$ the *Möbius arithmetic function* $\mu(n)$ is defined as

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1\\ (-1)^k & \text{if } n = p_1 \cdots p_k \text{ with } p_i \text{ distinct primes} \\ 0 & \text{otherwise (i.e., } n \text{ admits at least one square} \\ & \text{factor bigger than one)} \end{cases}$$

Example: $\mu(2) = \mu(7) = -1$, $\mu(4) = \mu(8) = 0$, $\mu(6) = \mu(10) = 1$ The inverse of the ζ Riemann function, $s \in \mathbb{C}$, Re(s) > 0

$$\zeta^{-1}(s) = \left(\sum_{n=1}^{+\infty} \frac{1}{n^s}\right)^{-1} = \prod_{p-primes} (1-p^{-s}) = \sum_{n=1}^{+\infty} \frac{\mu(n)}{n^s}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

$$Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 めんの

Jorge Ramírez Alfonsín April 24, 2014

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

$$\Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}$$
 consider the poset (N, |).

Jorge Ramírez Alfonsín April 24, 2014

 $\Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}$ Consider the poset (N, |). We have that if $a \mid b$ then $\mu_{\mathbb{N}}(a, b) = \mu(b/a)$ for all $a, b \in \mathbb{N}$

$$Pr(n \text{ do not contain a square factor}) = \frac{6}{\pi^2}$$

Consider the poset $(\mathbb{N}, |)$. We have that if a | b then $\mu_{\mathbb{N}}(a, b) = \mu(b/a)$ for all $a, b \in \mathbb{N}$

 $\mu_{\mathbb{N}}(a,b) = \left\{ egin{array}{cc} (-1)^r & ext{if } b/a ext{ is a product of } r ext{ distinct primes} \\ 0 & ext{ otherwise} \end{array}
ight.$

Möbius inversion formula (Rota)

Theorem

Let (\mathcal{P}, \leq) be a poset and let $f : \mathcal{P} \to \mathbb{R}$ a function. Suppose that

$$g(x) = \sum_{p \leq y \leq x} f(y)$$
 for all $x \in \mathcal{P}$.

Then,

$$f(x) = \sum_{p \leq y \leq x} g(y) \ \mu_{\mathcal{P}}(y, x) \ \text{for all } x \in \mathcal{P}.$$

Jorge Ramírez Alfonsín

Compute the *Euler function* $\phi(n)$ (the number of integers smaller or equal to *n* and coprime with *n*)

$$\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d}$$

Compute the *Euler function* $\phi(n)$ (the number of integers smaller or equal to *n* and coprime with *n*)

$$\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d}$$

Let D be a finite set and consider the **poset of multisets over** D **ordered by inclusion** \mathcal{P} . Then, for all A, B multisets over D we have that

$$\mu_{\mathcal{P}}(A,B) = \left\{ egin{array}{cc} (-1)^{|B \setminus A|} & ext{if } A \subset B ext{ and } B \setminus A ext{ is a set} \ & \ 0 & ext{otherwise} \end{array}
ight.$$

Compute the *Euler function* $\phi(n)$ (the number of integers smaller or equal to *n* and coprime with *n*)

$$\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d}$$

Let D be a finite set and consider the **poset of multisets over** D **ordered by inclusion** \mathcal{P} . Then, for all A, B multisets over D we have that

$$\mu_{\mathcal{P}}(A,B) = \left\{ \begin{array}{ll} (-1)^{|B \setminus A|} & \text{ if } A \subset B \text{ and } B \setminus A \text{ is a set} \\ \\ 0 & \text{ otherwise} \end{array} \right.$$

An immediate consequence is the classical *inclusion-exclusion* counting formula !!

Let $S := \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}^m$ denote the **subsemigroup** of \mathbb{N}^m generated by $a_1, \ldots, a_n \in \mathbb{N}^m$, i.e.,

$$\mathcal{S} := \langle a_1, \ldots, a_n \rangle = \{ x_1 a_1 + \cdots + x_n a_n \, | \, x_1, \ldots, x_n \in \mathbb{N} \}.$$

Let $S := \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}^m$ denote the **subsemigroup** of \mathbb{N}^m generated by $a_1, \ldots, a_n \in \mathbb{N}^m$, i.e.,

$$\mathcal{S} := \langle a_1, \ldots, a_n \rangle = \{ x_1 a_1 + \cdots + x_n a_n \, | \, x_1, \ldots, x_n \in \mathbb{N} \}.$$

The semigroup S induces a binary relation \leq_S on \mathbb{Z}^m given by

$$x \leq_{\mathcal{S}} y \iff y - x \in \mathcal{S}.$$

Let $S := \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}^m$ denote the **subsemigroup** of \mathbb{N}^m generated by $a_1, \ldots, a_n \in \mathbb{N}^m$, i.e.,

$$\mathcal{S} := \langle a_1, \ldots, a_n \rangle = \{ x_1 a_1 + \cdots + x_n a_n \, | \, x_1, \ldots, x_n \in \mathbb{N} \}.$$

The semigroup S induces a binary relation \leq_S on \mathbb{Z}^m given by

$$x \leq_{\mathcal{S}} y \iff y - x \in \mathcal{S}.$$

It turns out that $\leq_{\mathcal{S}}$ is an **order** iff \mathcal{S} is **pointed** (i.e., $\mathcal{S} \cap -\mathcal{S} = \{0\}$). Moreover, whenever \mathcal{S} is pointed the poset $(\mathbb{Z}^m, \leq_{\mathcal{S}})$ is locally finite.

Jorge Ramírez Alfonsín

We denote by $\mu_{\mathcal{S}}$ the Möbius function associated to $(\mathbb{Z}^m, \leq_{\mathcal{S}})$.

Jorge Ramírez Alfonsín April 24, 2014 We denote by $\mu_{\mathcal{S}}$ the Möbius function associated to $(\mathbb{Z}^m, \leq_{\mathcal{S}})$.

It is easy to check that $\mu_{\mathcal{S}}(x, y) = \mu_{\mathcal{S}}(0, y - x)$, hence we shall only consider the reduced Möbius function $\mu_{\mathcal{S}} : \mathbb{Z}^m \longrightarrow \mathbb{Z}$ defined by $\mu_{\mathcal{S}}(x) := \mu_{\mathcal{S}}(0, x)$, for all $x \in \mathbb{Z}^m$. We denote by $\mu_{\mathcal{S}}$ the Möbius function associated to $(\mathbb{Z}^m, \leq_{\mathcal{S}})$.

It is easy to check that $\mu_{\mathcal{S}}(x, y) = \mu_{\mathcal{S}}(0, y - x)$, hence we shall only consider the reduced Möbius function $\mu_{\mathcal{S}} : \mathbb{Z}^m \longrightarrow \mathbb{Z}$ defined by $\mu_{\mathcal{S}}(x) := \mu_{\mathcal{S}}(0, x)$, for all $x \in \mathbb{Z}^m$.

Proposition (Key)

If S is a pointed semigroup, $x \in \mathbb{Z}^m$, then

$$\sum_{b\in\mathcal{S}}\mu_{\mathcal{S}}(x-b) = \begin{cases} 1 & \text{if } x=0, \\ 0 & \text{otherwise.} \end{cases}$$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @

Jorge Ramírez Alfonsín

Known results about μ_S

O Deddens (1979).

For $\mathcal{S} = \langle a, b \rangle \subset \mathbb{N}$ where $a, b \in \mathbb{Z}^+$ are relatively prime:

$$\mu_{\mathcal{S}}(x) = \begin{cases} 1 & \text{if } x \ge 0 \text{ and } x \equiv 0 \text{ or } a + b \pmod{ab} \\ -1 & \text{if } x \ge 0 \text{ and } x \equiv a \text{ or } b \pmod{ab} \\ 0 & \text{otherwise} \end{cases}$$

2 Chappelon and R.A. (2013).

- They provide a **recursive formula** for μ_S when $S = \langle a, a + d, \dots, a + kd \rangle \subset \mathbb{N}$ for some $a, k, d \in \mathbb{Z}^+$, and
- a semi-explicit formula for $S = \langle 2q, 2q + d, 2q + 2d \rangle \subset \mathbb{N}$ where $q, d \in \mathbb{Z}^+$ and $gcd\{2q, 2q + d, 2q + 2d\} = 1$.

In both papers the authors approach the problem by a **thorough** study of the intrinsic properties of each semigroup.

Jorge Ramírez Alfonsín

Objectives of this work

• Provide general tools to study $\mu_{\mathcal{S}}$ for every semigroup $\mathcal{S} \subset \mathbb{N}^m$.

Objectives of this work

- Provide general tools to study µ_S for every semigroup S ⊂ N^m.
- ② Apply the general tools to provide explicit formulas for certain families of semigroups S ⊂ N^m.

Then the *S*-degree of the monomial $m := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is $\deg_S(m) = \sum \alpha_i a_i$.

Then the *S*-degree of the monomial $m := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is $\deg_{\mathcal{S}}(m) = \sum \alpha_i a_i$.

A polynomial is \mathcal{S} -homogeneous if all its monomials have the same \mathcal{S} -degree.

Then the *S*-degree of the monomial $m := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is $\deg_{\mathcal{S}}(m) = \sum \alpha_i a_i$.

A polynomial is \mathcal{S} -homogeneous if all its monomials have the same \mathcal{S} -degree.

For all $b \in \mathbb{N}^m$, we denote by $k[x_1, \ldots, x_n]_b$ the *k*-vector space formed by all polynomials *S*-homogeneous of *S*-degree *b*.

Then the *S*-degree of the monomial $m := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is $\deg_{\mathcal{S}}(m) = \sum \alpha_i a_i$.

A polynomial is \mathcal{S} -homogeneous if all its monomials have the same \mathcal{S} -degree.

For all $b \in \mathbb{N}^m$, we denote by $k[x_1, \ldots, x_n]_b$ the *k*-vector space formed by all polynomials *S*-homogeneous of *S*-degree *b*.

Consider $I \subset k[\mathbf{x}]$ an ideal generated by S-homogeneous polynomials. For all $b \in \mathbb{N}^m$ we denote by I_b the k-vector space formed by the S-homogeneous polynomials of I of S-degree b. The (multigraded) Hilbert function of $M := k[x_1, ..., x_n]/I$ is

$$HF_M: \mathbb{N}^m \longrightarrow \mathbb{N},$$

where $HF_M(b) := \dim_k(k[x_1, \ldots, x_n]_b) - \dim_k(I_b)$ for all $b \in \mathbb{N}^m$.

Jorge Ramírez Alfonsín April 24, 2014 The (multigraded) Hilbert function of $M := k[x_1, ..., x_n]/I$ is

$$HF_M : \mathbb{N}^m \longrightarrow \mathbb{N},$$

where $HF_M(b) := \dim_k(k[x_1, \ldots, x_n]_b) - \dim_k(I_b)$ for all $b \in \mathbb{N}^m$. For every $b = (b_1, \ldots, b_m) \in \mathbb{N}^m$, we denote by \mathbf{t}^b the monomial $t_1^{b_1} \cdots t_m^{b_m} \in \mathbb{Z}[t_1, \ldots, t_m]$.

We define the (multivariate) Hilbert series of M as the formal power series in $\mathbb{Z}[[t_1, \ldots, t_m]]$: $\mathcal{H}_M(\mathbf{t}) := \sum_{b \in \mathbb{N}^m} HF_M(b) \mathbf{t}^b$ The (multigraded) Hilbert function of $M := k[x_1, ..., x_n]/I$ is

$$HF_M : \mathbb{N}^m \longrightarrow \mathbb{N},$$

where $HF_M(b) := \dim_k(k[x_1, \ldots, x_n]_b) - \dim_k(I_b)$ for all $b \in \mathbb{N}^m$. For every $b = (b_1, \ldots, b_m) \in \mathbb{N}^m$, we denote by \mathbf{t}^b the monomial $t_1^{b_1} \cdots t_m^{b_m} \in \mathbb{Z}[t_1, \ldots, t_m]$.

We define the **(multivariate) Hilbert series** of *M* as the formal power series in $\mathbb{Z}[[t_1, \ldots, t_m]]$: $\mathcal{H}_M(\mathbf{t}) := \sum_{b \in \mathbb{N}^m} HF_M(b) \mathbf{t}^b$

Theorem

$$\mathcal{H}_M(\mathbf{t}) = rac{\mathbf{t}^{lpha} h(\mathbf{t})}{(1-\mathbf{t}^{a_1})\cdots(1-\mathbf{t}^{a_n})},$$

where $\alpha \in \mathbb{Z}^m$ and $h(\mathbf{t}) \in \mathbb{Z}[t_1, \ldots, t_m]$.

Jorge Ramírez Alfonsín

We denote by $I_{\mathcal{S}}$ the **toric ideal** of \mathcal{S} , i.e., the kernel of the homomorphism of *k*-algebras

 $\varphi: k[x_1,\ldots,x_n] \longrightarrow k[t_1,\ldots,t_m]$

induced by $\varphi(\mathbf{x}_i) = \mathbf{t}^{\mathbf{a}_i}$ for all $i \in \{1, \ldots, n\}$.

It is well known that I_S is generated by *S*-homogeneous polynomials.

We denote by $I_{\mathcal{S}}$ the **toric ideal** of \mathcal{S} , i.e., the kernel of the homomorphism of *k*-algebras

$$\varphi: k[x_1,\ldots,x_n] \longrightarrow k[t_1,\ldots,t_m]$$

induced by $\varphi(\mathbf{x}_i) = \mathbf{t}^{\mathbf{a}_i}$ for all $i \in \{1, \ldots, n\}$.

It is well known that I_S is generated by *S*-homogeneous polynomials.

Proposition :

$$\mathcal{H}_{k[x_1,\ldots,x_n]/I_S}(\mathbf{t}) = \sum_{b\in\mathcal{S}} \mathbf{t}^b.$$

From now on, we denote $\mathcal{H}_{\mathcal{S}}(\mathbf{t}) := \mathcal{H}_{k[x_1,...,x_n]/I_{\mathcal{S}}}(\mathbf{t})$ and we call it the **Hilbert series of** \mathcal{S} .

Jorge Ramírez Alfonsín <u>April 24, 2014</u>

Möbius function via Hilbert series

Theorem (1 (Chappelon, García-Marco, Montejano, R.A. 2014))

Let c_1, \ldots, c_k nonzero vectors of \mathbb{Z} and denote

$$(1-\mathbf{t}^{a_1})\cdots(1-\mathbf{t}^{a_n})\mathcal{H}_{\mathcal{S}}(\mathbf{t})=\sum_{b\in\mathbb{Z}^m}f_b\mathbf{t}^b.$$

Then,

$$\sum_{b\in\mathbb{Z}^m} f_b\,\mu(x-b) = 0 \text{ for all } x\notin \{\sum_{i\in A} c_i\,|\,A\subset\{1,\ldots,n\}\}.$$

Jorge Ramírez Alfonsín

Example: $S = \mathbb{N}^m$

$$\mu_{\mathbb{N}^m}(x) = \begin{cases} (-1)^{|A|} & \text{if } x = \sum_{i \in A} e_i \text{ for some } A \subset \{1, \dots, m\} \\ 0 & \text{otherwise} \end{cases}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖/ のへで

Jorge Ramírez Alfonsín

Example: $\mathcal{S} = \mathbb{N}^m$

$$\mu_{\mathbb{N}^m}(x) = \begin{cases} (-1)^{|A|} & \text{if } x = \sum_{i \in A} e_i \text{ for some } A \subset \{1, \dots, m\} \\ \\ 0 & \text{otherwise} \end{cases}$$

Proof #1.

We observe that $\mathbb{N}^m = \langle e_1, \dots, e_m \rangle$ and that

$$\mathcal{H}_{\mathcal{S}}(\mathbf{t}) = \sum_{(b_1,\ldots,b_m)\in\mathbb{N}^m} t_1^{b_1}\cdots t_m^{b_m} = rac{1}{(1-t_1)\cdots(1-t_m)}$$

By Theorem (1) we have that $\mu_{\mathbb{N}^m}(x) = 0$ for all $x \notin \{\sum_{i \in A} e_i \mid A \subset \{1, \dots, m\}\}.$

A direct computation yields $\mu_{\mathbb{N}^m}(\sum_{i\in A} e_i) = (-1)^{|A|}$ for every $A \subset \{1, \ldots, m\}$.

Jorge Ramírez Alfonsín

We consider $\mathcal{G}_{\mathcal{S}}$ the generating function of the Möbius function, which is

$$\mathcal{G}_{\mathcal{S}}(\mathbf{t}) := \sum_{b \in \mathbb{N}^m} \mu_{\mathcal{S}}(b) \, \mathbf{t}^b.$$

Theorem (2 (Chappelon, García-Marco, Montejano, R.A. 2014))

 $\mathcal{H}_{\mathcal{S}}(\mathbf{t}) \ \mathcal{G}_{\mathcal{S}}(\mathbf{t}) = 1.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 めんの

Jorge Ramírez Alfonsín

Example: $S = \mathbb{N}^m$

$$\mu_{\mathbb{N}^m}(x) = \begin{cases} (-1)^{|A|} & \text{if } x = \sum_{i \in A} e_i \text{ for some } A \subset \{1, \dots, m\} \\ \\ 0 & \text{otherwise} \end{cases}$$

Proof #2.

$$\mathcal{H}_{\mathcal{S}}(\mathbf{t}) = \sum_{(b_1,\ldots,b_m)\in\mathbb{N}^m} t_1^{b_1}\cdots t_m^{b_m} = rac{1}{(1-t_1)\cdots(1-t_m)}.$$

By Theorem (2) we have that

$$\mathcal{G}_{\mathcal{S}}(\mathbf{t}) = (1-t_1)\cdots(1-t_m) = \sum_{A\subset\{1,\ldots,m\}} (-1)^{|A|} \mathbf{t}^{\sum_{i\in A} e_i}.$$

Jorge Ramírez Alfonsín

Explicit formulas for $\mu_{\mathcal{S}}$.

A semigroup $S \subset \mathbb{N}^m$ is said to be a **semigroup with a unique Betti element** $b \in \mathbb{N}^m$ if I_S is generated by polynomials of *S*-degree *b*.

Explicit formulas for $\mu_{\mathcal{S}}$.

A semigroup $S \subset \mathbb{N}^m$ is said to be a **semigroup with a unique Betti element** $b \in \mathbb{N}^m$ if I_S is generated by polynomials of *S*-degree *b*.

We denote $d := \dim(\mathbb{Q}\{a_1, \ldots, a_n\})$. In this setting we have the following result.

Theorem (Chappelon, García-Marco, Montejano, R.A. 2014)

$$\mu_{\mathcal{S}}(x) = \sum_{j=1}^{t} (-1)^{|A_j|} \binom{k_j + n - d - 1}{k_j},$$

$$f x = \sum_{i \in A_1} a_i + k_1 b = \dots = \sum_{i \in A_t} a_i + k_t b.$$

When $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}$ is a semigroup with a unique Betti element and $gcd\{a_1, \ldots, a_n\} = 1$, García-Sánchez, Ojeda and Rosales (2013) proved that there exist pairwise relatively prime different integers $b_1, \ldots, b_n \geq 2$ such that $a_i := \prod_{j \neq i} b_j$ for all $i \in \{1, \ldots, n\}$.

When $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}$ is a semigroup with a unique Betti element and $gcd\{a_1, \ldots, a_n\} = 1$, García-Sánchez, Ojeda and Rosales (2013) proved that there exist pairwise relatively prime different integers $b_1, \ldots, b_n \geq 2$ such that $a_i := \prod_{j \neq i} b_j$ for all $i \in \{1, \ldots, n\}$.

In this setting we can refine the previous Theorem to obtain the following result.

When $S = \langle a_1, \ldots, a_n \rangle \subset \mathbb{N}$ is a semigroup with a unique Betti element and $gcd\{a_1, \ldots, a_n\} = 1$, García-Sánchez, Ojeda and Rosales (2013) proved that there exist pairwise relatively prime different integers $b_1, \ldots, b_n \geq 2$ such that $a_i := \prod_{j \neq i} b_j$ for all $i \in \{1, \ldots, n\}$.

In this setting we can refine the previous Theorem to obtain the following result.

Corollary (Chappelon, García-Marco, Montejano, R.A. 2014)

Set
$$b := \prod_{i=1}^{n} b_i$$
, then

$$\mu_{\mathcal{S}}(x) = \begin{cases} (-1)^{|\mathcal{A}|} \binom{k+n-2}{k} & \text{if } x = \sum_{i \in \mathcal{A}} a_i + k \ b & \text{for some } \mathcal{A} \subset \{1, \dots, n\} \\ 0 & \text{otherwise} \end{cases}$$

Jorge Ramírez Alfonsín

Corollary (Deddens (1979))

For $S = \langle a, b \rangle \subset \mathbb{N}$ where $a, b \in \mathbb{Z}^+$ are relatively prime:

$$\mu_{\mathcal{S}}(x) = \begin{cases} 1 & \text{if } x \ge 0 \text{ and } x \equiv 0 \text{ or } a + b \pmod{ab} \\ -1 & \text{if } x \ge 0 \text{ and } x \equiv a \text{ or } b \pmod{ab} \\ 0 & \text{otherwise} \end{cases}$$

Whenever $S := \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ with $gcd\{a_1, a_2, a_3\} = 1$, we say that S is a **complete intersection** if there exists two *S*-homogeneous polynomials f_1, f_2 such that $I_S = (f_1, f_2)$.

Whenever $S := \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ with $gcd\{a_1, a_2, a_3\} = 1$, we say that S is a **complete intersection** if there exists two *S*-homogeneous polynomials f_1, f_2 such that $I_S = (f_1, f_2)$.

Theorem (Herzog (1970))

S is a complete intersection $\iff \frac{\gcd\{a_i, a_j\}a_k \in \langle a_i, a_j \rangle}{\{i, j, k\} = \{1, 2, 3\}}$.

Whenever $S := \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ with $gcd\{a_1, a_2, a_3\} = 1$, we say that S is a **complete intersection** if there exists two *S*-homogeneous polynomials f_1, f_2 such that $I_S = (f_1, f_2)$.

Theorem (Herzog (1970))

S is a complete intersection $\iff \frac{\gcd\{a_i, a_j\}a_k \in \langle a_i, a_j \rangle}{\{i, j, k\} = \{1, 2, 3\}}$.

We aim at presenting a formula for $S = \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ complete intersection and $gcd\{a_1, a_2, a_3\} = 1$, so we assume that $da_1 \in \langle a_2, a_3 \rangle$, where $d := gcd\{a_2, a_3\}$.

For every $x \in \mathbb{Z}$ and every $B = (b_1, \ldots, b_k) \subset (\mathbb{Z}^+)^k$, the **Sylvester denumerant** $d_B(x)$ is the number of non-negative integer solutions $(x_1, \ldots, x_k) \in \mathbb{N}^k$ to the equation $x = \sum_{i=1}^k x_i b_i$.

For every $x \in \mathbb{Z}$ and every $B = (b_1, \ldots, b_k) \subset (\mathbb{Z}^+)^k$, the **Sylvester denumerant** $d_B(x)$ is the number of non-negative integer solutions $(x_1, \ldots, x_k) \in \mathbb{N}^k$ to the equation $x = \sum_{i=1}^k x_i b_i$.

For every $x \in \mathbb{Z}$ we denote by $\alpha(x)$ the only integer such that $0 \le \alpha(x) \le d - 1$ and $\alpha(x) a_1 \equiv x \pmod{d}$.

For every $x \in \mathbb{Z}$ and every $B = (b_1, \ldots, b_k) \subset (\mathbb{Z}^+)^k$, the **Sylvester denumerant** $d_B(x)$ is the number of non-negative integer solutions $(x_1, \ldots, x_k) \in \mathbb{N}^k$ to the equation $x = \sum_{i=1}^k x_i b_i$.

For every $x \in \mathbb{Z}$ we denote by $\alpha(x)$ the only integer such that $0 \le \alpha(x) \le d - 1$ and $\alpha(x) a_1 \equiv x \pmod{d}$.

For $S = \langle a_1, a_2, a_3 \rangle$ complete intersection and $gcd\{a_1, a_2, a_3\} = 1$, we have the following result.

Theorem (Chappelon, García-Marco, Montejano, R.A. 2014)

 $\mu_{\mathcal{S}}(x) = 0$ if $\alpha(x) \ge 2$, or

$$\mu_{\mathcal{S}}(x) = (-1)^{\alpha} \left(d_B(x') - d_B(x' - a_2) - d_B(x' - a_3) + d_B(x' - a_2 - a_3) \right)$$

otherwise, where $x' := x - \alpha(x) a_1$ and $B := (da_1, a_2 a_3/d)$.

Let $S = \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ be the semigroup generated by $a_1 = 2q + e$, $a_2 = 2q$, $a_3 = 2q + 2e$, where $q, e \in \mathbb{Z}^+$ and $gcd\{2q, e\} = 1$.

Let $S = \langle a_1, a_2, a_3 \rangle \subset \mathbb{N}$ be the semigroup generated by $a_1 = 2q + e, a_2 = 2q, a_3 = 2q + 2e$, where $q, e \in \mathbb{Z}^+$ and $gcd\{2q, e\} = 1$.

It suffices to observe that $gcd\{a_2, a_3\}a_1 = 2a_1 = a_2 + a_3 \in \langle a_2, a_3 \rangle$ to conclude that S is a **complete intersection**. Thus one can derive the following result.

Corollary (Chappelon and R.A. (2013))

$$\mu_{\mathcal{S}}(x) = (-1)^{x} \left(d_{B}(x') - d_{B}(x'-q) - d_{B}(x'-q-e) + d_{B}(x'-2q-e) \right)$$

where x' := x/2 if x is even or x' := (x - 2q - e)/2 if x is odd, and B := (2q + e, q(q + e)).

Let $D = \{d_1, \ldots, d_m\}$ be a finite set and let us consider (\mathcal{P}, \subset) , the poset of all multisets of D ordered by inclusion.

Let $D = \{d_1, \ldots, d_m\}$ be a finite set and let us consider (\mathcal{P}, \subset) , the poset of all multisets of D ordered by inclusion.

For the semigroup $\mathcal{S} := \mathbb{N}^m$, we consider the map

$$\psi: (\mathcal{P}, \subset) \rightarrow (\mathbb{N}^m, \leq_{\mathbb{N}^m}) \\ A \mapsto (m_A(d_1), \dots, m_A(d_m)),$$

where $m_A(d_i)$ denotes the number of times that d_i belongs to A.

Let $D = \{d_1, \ldots, d_m\}$ be a finite set and let us consider (\mathcal{P}, \subset) , the poset of all multisets of D ordered by inclusion.

For the semigroup $\mathcal{S} := \mathbb{N}^m$, we consider the map

$$\psi: (\mathcal{P}, \subset) \rightarrow (\mathbb{N}^m, \leq_{\mathbb{N}^m}) \ A \mapsto (m_A(d_1), \dots, m_A(d_m)),$$

where $m_A(d_i)$ denotes the number of times that d_i belongs to A.

It is easy to check that ψ is an order isomorphism (an order preserving and order reflecting bijection).

How general are semigroup posets?

Hence,

$$\mu_{\mathcal{P}}(A,B) = \mu_{\mathbb{N}^m}(\psi(A),\psi(B)),$$

and we can recover the formula for $\mu_{\mathcal{P}}$ by means of $\mu_{\mathbb{N}^m}$.

 $\mu_{\mathcal{P}}(A,B) = \begin{cases} (-1)^{|B \setminus A|} & \text{if } A \subset B \text{ and } B \setminus A \text{ is a set} \\ \\ 0 & \text{otherwise} \end{cases}$

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

Jorge Ramírez Alfonsín

Take p_1, \ldots, p_m the *m* first prime numbers, and consider $\mathbb{N}_m := \{p_1^{\alpha_1} \cdots p_m^{\alpha_m} | \alpha_1, \ldots, \alpha_m \in \mathbb{N}\} \subset \mathbb{N}.$ Let us consider the **poset** $(\mathbb{N}_m, |)$, i.e., \mathbb{N}_m **partially ordered by divisibility**.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 めんの

Jorge Ramírez Alfonsín April 24. 2014 Take p_1, \ldots, p_m the *m* first prime numbers, and consider $\mathbb{N}_m := \{p_1^{\alpha_1} \cdots p_m^{\alpha_m} | \alpha_1, \ldots, \alpha_m \in \mathbb{N}\} \subset \mathbb{N}.$ Let us consider the **poset** $(\mathbb{N}_m, |)$, i.e., \mathbb{N}_m **partially ordered by divisibility**.

For the semigroup $\mathcal{S} := \mathbb{N}^m$, we consider the **order isomorphism**

$$\psi: \quad (\mathbb{N}_m, |) \quad \to \quad (\mathbb{N}^m, \leq_{\mathbb{N}^m}) \\ p_1^{\alpha_1} \cdots p_m^{\alpha_m} \quad \mapsto \quad (\alpha_1, \dots, \alpha_m).$$

Take p_1, \ldots, p_m the *m* first prime numbers, and consider $\mathbb{N}_m := \{p_1^{\alpha_1} \cdots p_m^{\alpha_m} | \alpha_1, \ldots, \alpha_m \in \mathbb{N}\} \subset \mathbb{N}.$ Let us consider the **poset** $(\mathbb{N}_m, |)$, i.e., \mathbb{N}_m **partially ordered by divisibility**.

For the semigroup $\mathcal{S} := \mathbb{N}^m$, we consider the **order isomorphism**

$$\psi: \quad (\mathbb{N}_m, |) \quad \to \quad (\mathbb{N}^m, \leq_{\mathbb{N}^m}) \\ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} \quad \mapsto \quad (\alpha_1, \dots, \alpha_m).$$

Hence,

$$\mu_{\mathbb{N}_m}(a,b) = \mu_{\mathbb{N}^m}(\psi(a),\psi(b)),$$

and we can recover the formula for $\mu_{\mathbb{N}_m}$ by means of $\mu_{\mathbb{N}^m}$.

 $\mu_{\mathbb{N}_m}(a,b) = \begin{cases} (-1)^r & \text{if } b/a \text{ is a product of } r \text{ distinct primes} \\ \\ 0 & \text{otherwise} \end{cases}$

Jorge Ramírez Alfonsín April 24, 2014

Main references

- J. Chappelon and J. L. Ramírez Alfonsín, On the Möbius function of the locally finite poset associated with a numerical semigroup, Semigroup Forum 87, 313–330 (2013),
- 2 J. A. Deddens, A combinatorial identity involving relatively prime integers, J. Comb. Theory, Ser. A 26, 189–192 (1979).
- P. A. García-Sánchez, I. Ojeda and J. C. Rosales, Affine semigroups having a unique Betti element, J. Algebra Appl. 12 (2013), no. 3, 1250177, 11 pp.
- J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175–193.
- G. C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheor. 2, 340–368 (1964).