THE SQUARE FROBENIUS NUMBER

JONATHAN CHAPPELON AND JORGE LUIS RAM´IREZ ALFONS´IN

ABSTRACT. Let $S = \langle s_1, \ldots, s_n \rangle$ be a numerical semigroup generated by the relatively prime positive integers s_1, \ldots, s_n . Let $k \geq 2$ be an integer. In this paper, we consider the following k -power variant of the Frobenius number of S defined as

 $k(r(S)) :=$ the largest k-power integer not belonging to S.

In this paper, we investigate the case $k = 2$. We give an upper bound for ${}^{2}r(S_A)$ for an infinite family of semigroups S_A generated by *arithmetic progressions*. The latter turns out to be the exact value of $\langle \gamma(\langle s_1, s_2 \rangle) \rangle$ under certain conditions. We present an exact formula for ${}^{2}r(\langle s_1,s_1+d\rangle)$ when $d=3,4$ and 5, study ${}^{2}r(\langle s_1,s_1+1\rangle)$ and ${}^{2}r(\langle s_1,s_1+2\rangle)$ and put forward two relevant conjectures. We finally discuss some related questions.

1. INTRODUCTION

Let s_1, \ldots, s_n be relatively prime positive integers. Let

$$
S = \langle s_1, \dots, s_n \rangle = \left\{ \sum_{i=1}^n x_i s_i \mid x_i \text{ integer}, x_i \geq 0 \right\}
$$

be the numerical semigroup generated by s_1, \ldots, s_n . The largest integer which is not an element of S, denoted by $g(S)$ or $g(\langle s_1,\ldots,s_n\rangle)$, is called the Frobenius number of S. It is well known that $g(\langle s_1, s_2 \rangle) = s_1s_2 - s_1 - s_2$. However, calculating $g(S)$ is a difficult problem in general. In [\[1\]](#page-14-0) was shown that computing $g(S)$ is NP-hard. We refer the reader to [\[2\]](#page-14-1) for an extensive literature on the Frobenius number.

Throughout this paper, the set of non-negative integers is denoted by N. The nonnegative integers not in S are called the *gaps* of S. The number of gaps of S, denoted by $N(S)$ (that is, $N(S) = \#(N \setminus S)$) is called the genus of S. We recall that the multiplicity of S is the smallest positive element belonging to S .

Given a particular (arithmetical, number theoretical, etc.) *Property P*, one might consider the following two P -type functions of a semigroup S :

 $Pr(S) :=$ the largest integer having property P not belonging to S

and

 $pr(S) :=$ the smallest integer having property P belonging to S.

Notice that the multiplicity and the Frobenius number are P -type functions where P is the property of being a positive integer^{[1](#page-0-0)}.

In this spirit, we consider the property of being *perfect k-power* integer (that is, integers of the form m^k for some integers $m, k > 1$). Let $k \geq 2$ be an integer, we define

 k -power $r(S) :=$ the largest perfect k-power integer not belonging to S.

Date: May 9, 2022.

²⁰¹⁰ Mathematics Subject Classification. Primary 11D07.

Key words and phrases. Numerical semigroups, Frobenius number, Perfect square integer.

The second author was partially supported by INSMI-CNRS.

 ${}^{1}P$ -type functions were introduced by the second author (often mentioned during his lectures) with the hope to better understand certain properties P in terms of linear forms.

This k-power variant of $g(S)$ is called the k-power Frobenius number of S, we may write $k_r(S)$ for short.

In this paper we investigate the 2-power Frobenius number, we call it the *square Frobe*nius number.

In Section [2,](#page-1-0) we study the square Frobenius number of semigroups S_A generated by *arithmetic progressions.* We give an upper bound for ${}^{2}r(S_A)$ for an infinite family (Theorem [2.7\)](#page-4-0) which turns out to be the exact value when the arithmetic progression consists of two generators (Corollary [2.9\)](#page-7-0).

In Section [3,](#page-8-0) we present exact formulas for $^{2}r(\langle a, a+3 \rangle)$ where $a \geq 3$ is an integer not divisible by 3 (Theorem [3.1\)](#page-8-1), for ${}^{2}r(\langle a, a+4 \rangle)$ where $a \geqslant 3$ is an odd integer (Theorem [3.2\)](#page-11-0) and for ${}^{2}r(\langle a,a+5\rangle)$ where $a\geqslant 2$ is an integer not divisible by 5 (Theorem [3.3\)](#page-11-1).

In Sections [4](#page-11-2) and [5,](#page-12-0) we turn our attention to the cases $\langle a, a+1 \rangle$ where $a \geq 2$ and $\langle a, a+2 \rangle$ where $a \geq 3$ is an odd integer. We present formulas for the corresponding square Frobenius number in the case when neither of the generators are square integers (Propositions [4.1](#page-11-3) and [5.1\)](#page-12-1). We also put forward two conjectures on the values of ${}^{2}r(\langle a,a+1\rangle)$ and ${}^{2}r(\langle a,a+2\rangle)$ in the case when one of the generators is a square integer (Conjectures [4.2](#page-12-2) and [5.2\)](#page-13-0). The conjectured values have an unexpected close connection (Conjectures 4.2 and 3.2). The conjectured values have an unexpected close connection with a known recursive sequence (Equation [\(14\)](#page-12-3)) and in which $\sqrt{2}$ and $\sqrt{3}$ (strangely) appear. A number of computer experiments support our conjectures.

Finally, Section [6](#page-14-2) contains some concluding remarks.

2. Arithmetic progression

Let a, d and k be positive integers such that a and d are relatively prime. Throughout this section, we denote by S_A the semigroup generated by the *arithmetic progression* whose first element is a, with common difference d and of length $k + 1$, that is,

$$
S_A = \langle a, a+d, a+2d, \ldots, a+kd \rangle.
$$

Note that the integers $a, a+d, \ldots, a+kd$ are relatively prime if and only if $gcd(a, d) = 1$.

We shall start by giving a necessary and sufficient condition for a square to belong to S_A .

For any integer x coprime to d, a multiplicative inverse modulo d of x is an integer y such that $xy \equiv 1 \mod d$.

Proposition 2.1. Let i be an integer and let λ_i be the unique integer in $\{0, 1, \ldots, d-1\}$ such that $\lambda_i a + i^2 \equiv 0 \mod d$. In other words, the integer λ_i is the remainder in the Euclidean division of $-a^{-1}i^2$ by d, where a^{-1} is a multiplicative inverse of a modulo d. Then,

$$
(a-i)^2 \in S_A \text{ if and only if } (i+kd)^2 \leqslant \left(\left(\left\lfloor \frac{i^2 + \lambda_i a}{ad} \right\rfloor + k \right) d - \lambda_i \right) (a+kd).
$$

A key step for the proof of this result is the following lemma, which can be thought as a variant of a result given in [\[3\]](#page-14-3), see [\[4,](#page-14-4) Lemma 1] for a short proof. The arguments for the proof of this variant are similar to those used in the latter.

Lemma 2.2. Let M be a non-negative integer and let x and y be the unique integers such that $M = ax + dy$, with $0 \leq y \leq a - 1$. Then,

$$
M \in S_A \text{ if and only if } y \leq kx \text{ (with } x \geq 0).
$$

Proof. First, suppose that $M \in S_A$ and let x_0, x_1, \ldots, x_k be non-negative integers such that $M = \sum_{i=0}^{k} x_i(a+id)$. Then, we have that

$$
M = \sum_{i=0}^{k} x_i a + \sum_{i=0}^{k} ix_i d = x'a + y'd,
$$

with $x' = \sum_{i=0}^{k} x_i \in \mathbb{N}$ and $y' = \sum_{i=0}^{k} ix_i \in \mathbb{N}$. It follows that

$$
y' = \sum_{i=0}^{k} ix_i \le k \sum_{i=0}^{k} x_i = kx'.
$$

Moreover, since $M = xa + yd$ with $y \in \{0, 1, ..., a-1\}$, we obtain that there exists a non-negative integer λ such that

$$
y' = y + \lambda a
$$
 and $x' = x - \lambda a$.

This leads to the inequality

$$
y = y' - \lambda a \le kx' - \lambda a = kx - \lambda(k+1)a \le kx.
$$

Conversely, suppose now that $y \leq kx$. Obviously, since $y \geq 0$, we know that $x \geq 0$. Let

$$
y = qk + r
$$

be the Euclidean division of y by k, with $q \in \mathbb{N}$ and $r \in \{0, 1, \ldots, k-1\}$. If $r = 0$, then we have that $0 \leq q \leq x$ since $y = qk \leq kx$. It follows that

$$
M = xa + qkd = (x - q)a + q(a + kd) \in S_A.
$$

Finally, if $r > 0$, then we have that $0 \leqslant q \leqslant x - 1$ since $y = qk + r \leqslant kx$. It follows that

$$
M = xa + (qk + r)d = (x - q - 1)a + q(a + kd) + (a + rd) \in S_A.
$$

This completes the proof. \Box

We may now prove Proposition [2.1.](#page-1-1)

Proof of Proposition [2.1.](#page-1-1) Let i be an integer and let $\lambda_i \in \{0, 1, \ldots, d-1\}$ such that $\lambda_i a + i^2 \equiv 0 \mod d$. We have that

$$
(a - i)^2 = (a - 2i)a + i^2
$$

= $(a - 2i - \lambda_i)a + \frac{i^2 + \lambda_i a}{d}d$
= $\left(a - 2i - \lambda_i + \left\lfloor \frac{i^2 + \lambda_i a}{ad} \right\rfloor d\right)a + \left(\frac{i^2 + \lambda_i a}{d} - \left\lfloor \frac{i^2 + \lambda_i a}{ad} \right\rfloor a\right)d.$

We thus have, by Lemma [2.2,](#page-1-2) that the square $(a - i)^2$ is in S_A if and only if

$$
\frac{i^2 + \lambda_i a}{d} - \left[\frac{i^2 + \lambda_i a}{ad} \right] a \leq k \left(a - 2i - \lambda_i + \left[\frac{i^2 + \lambda_i a}{ad} \right] d \right)
$$

\n
$$
\iff \frac{i^2 + \lambda_i a}{d} \leq k (a - 2i - \lambda_i) + \left[\frac{i^2 + \lambda_i a}{ad} \right] (a + kd)
$$

\n
$$
\iff i^2 + \lambda_i a \leq kd (a - 2i - \lambda_i) + \left[\frac{i^2 + \lambda_i a}{ad} \right] d(a + kd)
$$

\n
$$
\iff i^2 + 2ikd \leq kd a - \lambda_i (a + kd) + \left[\frac{i^2 + \lambda_i a}{ad} \right] d(a + kd)
$$

\n
$$
\iff i^2 + 2ikd + k^2d^2 \leq kd(a + kd) - \lambda_i (a + kd) + \left[\frac{i^2 + \lambda_i a}{ad} \right] d(a + kd)
$$

\n
$$
\iff (i + kd)^2 \leq \left(\left(\frac{i^2 + \lambda_i a}{ad} \right) + k \right) d - \lambda_i \right) (a + kd).
$$

\nThis completes the proof.

Remark 1. We have that $\lambda_0 = 0$ and $\lambda_i > 0$ for all integers i such that $gcd(i, d) = 1$ with $d \geq 2$. Moreover, $\lambda_i = \lambda_{d-i}$ for all $i \in \{1, 2, ..., d-1\}$.

The above characterization permits us to obtain an upper-bound of ${}^{2}r(S_A)$ when a is larger enough compared to $d \geqslant 3$.

Definition 2.3. Let λ^* be the integer defined by

$$
\lambda^* = \max_{0 \le i \le d-1} \left\{ \lambda_i \in \{0, 1, \dots, d-1\} \mid \lambda_i a + i^2 \equiv 0 \mod d \right\}.
$$

Let $\{\alpha_1 < \ldots < \alpha_n\} \subseteq \{0, 1, \ldots, d-1\}$ such that $\lambda_{\alpha_j} = \lambda^*$ and take $\alpha_{n+1} = d + \alpha_1$. Let $j \in \{1, \ldots, n\}$ be the index such that

(1)
$$
(\mu d + \alpha_j)^2 \leq (kd - \lambda^*)(a + kd) < (\mu d + \alpha_{j+1})^2,
$$

for some integer $\mu \geqslant 0$.

Remark 2.

(a) The above index j exists and it is unique. Indeed, we clearly have that there is an integer μ such that

$$
\mu d \leqslant \sqrt{(kd - \lambda^*)(a + kd)} < (\mu + 1)d.
$$

Since $0 \le \alpha_1 < \cdots < \alpha_n \le d-1$, then the interval $[\mu d, (\mu+1)d]$ can be refined into intervals of the form $[\mu d + \alpha_i, \mu d + \alpha_{i+1}]$ for each $i = 1, \ldots, n-1$. Therefore, there is a unique index j verifying equation [\(1\)](#page-3-0).

(b) We have that $\mu d + \alpha_{n+1} = (\mu + 1)d + \alpha_1$.

The following two propositions give us useful information on the sequence of indices $\alpha_1, \ldots, \alpha_n$.

Proposition 2.4. We have that $\alpha_i + \alpha_{n+1-i} = d$, for all $i \in \{1, ..., n\}$.

Proof. Since $\{i \in \{1, \ldots, n\} \mid \lambda_i = \lambda^*\} = \{\alpha_1, \ldots, \alpha_n\}$, with $\alpha_1 < \alpha_2 < \cdots < \alpha_n$, and since $\lambda_{d-i} = \lambda_i$, for all $i \in \{1, ..., d-1\}$, by Remark [1.](#page-3-1) □

Proposition 2.5. If $d \geq 3$ then $n \geq 2$ and $1 \leq \alpha_1 < \frac{d}{2} < \alpha_n \leq d - 1$.

Proof. Suppose that $n = 1$ and hence $\alpha_n = \alpha_1$. Since $d = \alpha_1 + \alpha_n = 2\alpha_1$ by Proposi-tion [2.4,](#page-3-2) it follows that d is even and $\alpha_1 = \frac{d}{2}$ $\frac{d}{2}$.

If d is divisible by 4 then

$$
\left(\frac{d}{2}\right)^2 = \frac{d}{4} \cdot d \equiv 0 \pmod{d}.
$$

Therefore, $\lambda^* = \lambda_{\alpha_1} = \lambda_{\frac{d}{2}} = 0$. Moreover, since $gcd(1, d) = 1$, we know that $\lambda_1 > 0$. It follows that $\lambda_1 > \lambda^*$, in contradiction with the maximality of λ^* .

If d is even, not divisible by 4, then $\frac{d}{2}$ is odd and

$$
\left(\frac{d}{2}\right)^2 = \frac{d}{2} \cdot \frac{d}{2} = \frac{\frac{d}{2} - 1}{2}d + \frac{d}{2} \equiv \frac{d}{2} \pmod{d}.
$$

Since a is coprime to d, we know that there exists a multiplicative inverse a^{-1} modulo d such that $aa^{-1} \equiv 1 \mod d$. Since d is even, it follows that a^{-1} is odd and we obtain that

$$
\lambda_{\frac{d}{2}} \equiv -a^{-1} \left(\frac{d}{2} \right)^2 \equiv -a^{-1} \frac{d}{2} \equiv \frac{d}{2} \pmod{d}.
$$

Therefore, $\lambda_{\frac{d}{2}} = \frac{d}{2}$ $\frac{d}{2}$. Moreover, for any $i \in \{0, \ldots, \frac{d}{2} - 1\}$, since

$$
\left(i + \frac{d}{2}\right)^2 = i^2 + id + \left(\frac{d}{2}\right)^2 \equiv i^2 + \frac{d}{2} \pmod{d}
$$

and since a^{-1} is odd, it follows that

$$
\lambda_{i+\frac{d}{2}} \equiv -a^{-1} \left(i + \frac{d}{2} \right)^2 \equiv -a^{-1}i^2 - a^{-1} \frac{d}{2} \equiv \lambda_i + \frac{d}{2} \pmod{d},
$$

for all $i \in \{0, \ldots, \frac{d}{2} - 1\}$. Since $d \geq 3$, we have that $1 < \frac{d}{2} < 1 + \frac{d}{2} < d$. Finally, since $\lambda_1 > 0$, we deduce that

$$
\max\left\{\lambda_1, \lambda_{1+\frac{d}{2}}\right\} > \frac{d}{2} = \lambda_{\frac{d}{2}},
$$

in contradiction with the maximality of $\lambda_{\underline{d}}$.

We thus have that if $d \geq 3$ then $n \geq 2^2$ and $\alpha_1 < \alpha_n$. Since $\alpha_1 + \alpha_n = d$, by Proposi-tion [2.4,](#page-3-2) we deduced that $\alpha_1 < \frac{d}{2} < \alpha_n$. This completes the proof. □

Definition 2.6. Let us now consider the integer function $h(a, d, k)$ defined as

$$
h(a, d, k) := (a - ((\mu - k)d + \alpha_{j+1}))^{2}.
$$

Remark 3. We notice that the function $h(a, d, k)$ can always be computed for any relatively prime integers a and d and any positive integer k. It is enough to calculate λ_i for each $i = 0, \ldots, d - 1$, from which λ^* and the set of α_i 's can be obtained and thus the desired μ and α_{i+1} can be computed.

Theorem 2.7. Let $d \geq 3$ and $a + kd \geq 4kd^3$. Then,

$$
{}^{2}r(S_{A}) \leqslant h(a,d,k).
$$

We need the following lemma before proving Theorem [2.7.](#page-4-0)

Lemma 2.8. If $d \geq 3$ then

$$
\alpha_{i+1} - \alpha_i \leq d - 1 \quad and \quad \alpha_i + \alpha_{i+1} \leq 2d
$$

for all $i \in \{1, \ldots, n\}$.

Proof. First, let $i \in \{1, \ldots, n-1\}$. Since $1 \leq \alpha_j \leq d-1$, for all $j \in \{1, \ldots, n\}$, from Remark [1,](#page-3-1) it follows that

$$
\alpha_{i+1} - \alpha_i < \alpha_{i+1} \leq d - 1 \quad \text{and} \quad \alpha_i + \alpha_{i+1} < 2d.
$$

Finally, for $i = n$, since $n \geq 2$ and $\alpha_n > \alpha_1$ by Proposition [2.5,](#page-3-3) it follows that

$$
\alpha_{n+1} - \alpha_n = d + \alpha_1 - \alpha_n < d.
$$

Moreover, since $\alpha_n = d - \alpha_1$ by Proposition [2.4,](#page-3-2) we obtain that

$$
\alpha_n + \alpha_{n+1} = (d - \alpha_1) + (d + \alpha_1) = 2d.
$$

This completes the proof. \Box

We now have all the ingredients to prove Theorem [2.7.](#page-4-0)

Proof of Theorem [2.7.](#page-4-0) It is known [\[3\]](#page-14-3) that

$$
g(S_A) = \left(\left\lfloor \frac{a-2}{k} \right\rfloor + 1\right) a + (d-1)(a-1) - 1.
$$

Since $a^2 > (\lfloor \frac{a-2}{k} \rfloor + 1) a$, $2akd > (d-1)(a-1)$ and $(kd)^2 > 0$ then

$$
g(S_A) < a^2 + 2kda + (kd)^2 = (a - (-kd))^2.
$$

Therefore, it is enough to show that $(a - i)^2 \in S$ for all $-kd \leq i < (\mu - k)d + \alpha_{j+1}$. We have two cases.

Case 1. $-kd \leqslant i \leqslant (\mu - k)d + \alpha_j$.

We have that

$$
(i + kd)^2 \le (\mu d + \alpha_j)^2
$$

\n
$$
\le (kd - \lambda^*)(a + kd)
$$

\n
$$
\le ((\frac{i^2 + \lambda_i a}{ad}) + k) d - \lambda_i) (a + kd)
$$

\n(since $i \le (\mu - k)d + \alpha_j$)
\n(since $i \le (\mu - k)d + \alpha_j$)
\n(since $\lambda^* \ge \lambda_i$ and $\left\lfloor \frac{i^2 + \lambda_i a}{ad} \right\rfloor \ge 0$)

Therefore, by Proposition [2.1,](#page-1-1) we obtain that $(a - i)^2 \in S_A$.

Case 2. $(\mu - k)d + \alpha_i < i < (\mu - k)d + \alpha_{i+1}$.

In this case we have that $\alpha_j < i \mod d < \alpha_{j+1}$ implying that $\lambda_i \leq \lambda^* - 1$ and thus

(2)
$$
(kd - \lambda_i)(a + kd) \geq (kd - \lambda^*)(a + kd) + (a + kd).
$$

Moreover,

(3)
$$
(i + kd)^2 < (\mu d + \alpha_{j+1})^2
$$

=
$$
((\mu d + \alpha_j) + (\alpha_{j+1} - \alpha_j))^2
$$

=
$$
(\mu d + \alpha_j)^2 + (\alpha_{j+1} - \alpha_j) (2 (\mu d + \alpha_j) + (\alpha_{j+1} - \alpha_j))
$$

=
$$
(\mu d + \alpha_j)^2 + (\alpha_{j+1} - \alpha_j) (2\mu d + \alpha_j + \alpha_{j+1}).
$$

Now, from Lemma [2.8,](#page-4-1) we have that

(4)
$$
\alpha_{\ell+1} - \alpha_{\ell} < d \quad \text{and} \quad \alpha_{\ell} + \alpha_{\ell+1} \leqslant 2d
$$

for all $\ell \in \{1, \ldots, n\}$. Therefore, combining [\(3\)](#page-5-0) and [\(4\)](#page-5-1), we obtain

(5)
$$
(i + kd)^2 < (\mu d + \alpha_j)^2 + d(2\mu d + 2d) = (\mu d + \alpha_j)^2 + 2d^2(\mu + 1)
$$

for a $j \in \{1, ..., n\}$.

Since

$$
(\mu d + \alpha_j)^2 \stackrel{(by\ definition)}{\leq} (kd - \lambda^*) (a + kd) \stackrel{(2)}{\leq} (kd - \lambda_i) (a + kd) - (a + kd)
$$

then

(6)
$$
(i + kd)^2 < (kd - \lambda_i)(a + kd) + 2d^2(\mu + 1) - (a + kd).
$$

We claim that

 (7) 2d

$$
2d^2(\mu+1) \leqslant a + kd.
$$

We have two subcases

Subcase i) For $j \in \{1, ..., n-1\}$. Since $(\mu d + \alpha_j)^2 \leq (kd - \lambda^*)(a + kd) < (\mu d + \alpha_{j+1})^2$, $\alpha_i \geq 1$ and $\alpha_{i+1} \leq \alpha_n < d$ then

$$
\mu = \left\lfloor \frac{\sqrt{(kd - \lambda^*)(a + kd)}}{d} \right\rfloor
$$

.

Moreover, since $a + kd \geq 4kd^3 > 4(kd - \lambda^*)d^2$, it follows that

(8) $\mu \geqslant 2(kd - \lambda^*)$ with $\lambda^* > 0$.

If $\mu = 2(kd - \lambda^*)$, then we have

$$
2d^{2}(\mu + 1) = 4kd^{3} + 2(1 - 2\lambda^{*})d^{2} \le 4kd^{3} \le a + kd,
$$

as announced. Otherwise, if $\mu > 2(kd - \lambda^*)$, it follows that

 $(kd - \lambda^*)(a + kd) \geqslant (\mu d + \alpha_j)^2 \stackrel{(\alpha_j \geqslant 1)}{>} \mu^2 d^2 > (\mu^2 - 1) d^2 = (\mu - 1)(\mu + 1) d^2 \geqslant 2(kd - \lambda^*)(\mu + 1)d^2$ obtaining the claimed inequality [\(7\)](#page-6-0) for $j \in \{1, 2, \ldots, n-1\}$.

Subcase ii) For $j = n$. Since $(\mu d + \alpha_n)^2 \leq (kd - \lambda^*)(a + kd) < (\mu d + \alpha_{n+1})^2$, where $\alpha_n = d - \alpha_1$ and $\alpha_{n+1} = d + \alpha_1$, we obtain

$$
((\mu+1)d - \alpha_1)^2 \le (kd - \lambda^*)(a + kd) < ((\mu+1)d + \alpha_1)^2.
$$

Since $\alpha_1 < d$, we have

$$
\left\lfloor \frac{\sqrt{(kd-\lambda^*)(a+kd)}}{d} \right\rfloor \in \{\mu, \mu+1\}.
$$

Moreover, since $a + kd \geq 4kd^3 > 4(kd - \lambda^*)d^2$, it follows that

(9)
$$
\mu + 1 \geqslant 2(kd - \lambda^*).
$$

If $\mu + 1 = 2(kd - \lambda^*)$, then we have

$$
2d^{2}(\mu + 1) = 4(kd - \lambda^{*})d^{2} < 4kd^{3} \leq a + kd,
$$

obtaining the claimed inequality [\(7\)](#page-6-0). Otherwise, if $\mu + 1 > 2(kd - \lambda^*)$, since $\alpha_1 < \frac{d}{2}$ $rac{d}{2}$ from Proposition [2.5,](#page-3-3) we obtain

$$
(kd - \lambda^*)(a + kd) \ge ((\mu + 1)d - \alpha_1)^2 > ((\mu + 1)d - \frac{d}{2})^2 = (\mu^2 + \mu + \frac{1}{4})d^2
$$

$$
> \mu (\mu + 1) d^{2} \stackrel{\mu \geqslant 2(kd - \lambda^{*})}{\geqslant} 2(kd - \lambda^{*})(\mu + 1)d^{2},
$$

obtaining the claimed inequality [\(7\)](#page-6-0) when $j = n$.

Finally, since inequality [\(7\)](#page-6-0) is true for any $j \in \{1, \ldots, n\}$ then, from equation [\(6\)](#page-6-1) we have

$$
(i+kd)^2 < (kd-\lambda_i)(a+kd) + 2d^2(\mu+1) - (a+kd) \leq (kd-\lambda_i)(a+kd).
$$

We deduce, by Proposition [2.1,](#page-1-1) that $(a - i)^2 \in S_A$.

This completes the proof. □

Remark 4. The above proof can be adapted if we consider the weaker condition $a + kd$ $4(kd - \lambda^*)d^2 + d^2$ instead of $a + kd \geq 4kd^3$.

We believe that the upper bound $h(a, d, k)$ of ${}^{2}r(S_A)$ given in Theorem [2.7](#page-4-0) is actually an equality. We are able to establish the latter in the case when $k = 1$ for any $d \ge 3$.

Corollary 2.9. Let $d \geqslant 3$ and $a + d \geqslant 4d^3$. Then,

$$
{}^{2}r(\langle a,a+d\rangle)=h(a,d,1).
$$

Proof. By Theorem [2.7,](#page-4-0) we have ${}^{2}r(\langle a, a+d \rangle) \leq (a - ((\mu - 1)d + \alpha_{j+1}))^{2}$. It is thus enough to show that $(a - ((\mu - 1)d + \alpha_{j+1}))^2 \notin \langle a, a+d \rangle$.

Let $i = (\mu - 1)d + \alpha_{i+1}$. We have

$$
i^{2} = ((\mu - 1)d + \alpha_{j+1})^{2}
$$

= $((\mu d + \alpha_{j}) - (d + \alpha_{j} - \alpha_{j+1}))^{2}$
= $(\mu d + \alpha_{j})^{2} - (d + \alpha_{j} - \alpha_{j+1}) (2 (\mu d + \alpha_{j}) - (d + \alpha_{j} - \alpha_{j+1}))$
= $(\mu d + \alpha_{j})^{2} - (d + \alpha_{j} - \alpha_{j+1}) ((2\mu - 1)d + \alpha_{j} + \alpha_{j+1}).$

Since $d + \alpha_j - \alpha_{j+1} \geq 1$, by Lemma [2.8,](#page-4-1) and $(2\mu - 1)d + \alpha_j + \alpha_{j+1} > (2\mu - 1)d$, it follows that

(10)
$$
i^2 < (\mu d + \alpha_j)^2 - (2\mu - 1)d \leq (d - \lambda^*)(a + d) - (2\mu - 1)d.
$$

Since $a + d \geq 4d^3$, we already know that $\mu + 1 \geq 2(d - \lambda^*)$ (see equations [\(8\)](#page-6-2) and [\(9\)](#page-6-3) with $k = 1$). It follows that $\mu \geq 2(d - \lambda^*) - 1 \geq 1$ and then

(11)
$$
d - \lambda^* \leqslant \frac{\mu + 1}{2} \leqslant 2\mu - 1.
$$

By combining equations [\(10\)](#page-7-1) and [\(11\)](#page-7-2) we obtain

$$
i^{2} < (d - \lambda^{*})(a + d) - (d - \lambda^{*})d = (d - \lambda^{*})a
$$

and

$$
\frac{i^2 + \lambda_i a}{ad} = \frac{i^2 + \lambda^* a}{ad} < \frac{(d - \lambda^*) a + \lambda^* a}{ad} = 1.
$$

We may thus deduce that

$$
\left\lfloor \frac{i^2 + \lambda_i a}{ad} \right\rfloor = 0.
$$

Finally, since

$$
(i+d)^2 = (\mu d + \alpha_{j+1})^2 > (d - \lambda^*)(a + d) = \left(\left(\left\lfloor \frac{i^2 + \lambda_i a}{ad} \right\rfloor + 1 \right) d - \lambda_i \right) (a + d),
$$

we deduce, from Proposition [2.1,](#page-1-1) that $(a - i)^2 \notin \langle a, a + d \rangle$, as desired.

Unfortunately, the value of ${}^{2}r(\langle a, a + d \rangle)$ given in the above corollary does not hold in general (if the condition $a + d \geq 4d^3$ is not satisfied). However, as we will see below, the number of values of a not holding the equality ${}^{2}r(\langle a, a+d \rangle) = h(a, d, 1)$ is finite for each fixed d.

3. FORMULAS FOR $\langle a, a+d \rangle$ with small $d \geq 3$

In this section, we investigate the value of $^{2}r(\langle a, a+d \rangle)$ when d is small.

For any positive integer $d \geq 3$, we may define the set $E(d)$ to be the set of integers a coprime to d not holding the equality of Corollary [2.9,](#page-7-0) that is,

 $E(d) := \{ a \in \mathbb{N} \setminus \{0, 1\} \mid \gcd(a, d) = 1 \text{ and } \frac{2r(\langle a, a + d \rangle) \neq h(a, d, 1) \}.$

Since $\lambda^* \leq d-1$ then, from Corollary [2.9,](#page-7-0) we obtain that $E(d) \subset [2, 4d^3 - 1] \cap \mathbb{N}$. We completely determine the set $E(d)$ for a few values of $d \geq 3$ by computer calculations, see Table [1.](#page-8-2)

d	E(d)	
3		Ø
4		Ø
5	5	$\{2,4,13,27,32\}$
6		
	10	$\{2, 3, 4, 9, 16, 18, 19, 23, 30, 114\}$
8	5	$\{5, 9, 21, 45, 77\}$
9	5	$\{2, 4, 7, 8, 16\}$
10	14	$\{3, 9, 13, 23, 27, 33, 43, 123, 133, 143, 153, 163, 333, 343\}$
11	14	$\{2, 3, 4, 5, 7, 8, 9, 14, 16, 18, 25, 36, 38, 47\}$
12	Q	$\{13, 19, 25, 31, 67, 79, 139, 151, 235\}$

TABLE 1. $E(d)$ for the first values of $d \geq 3$.

The exact values of ${}^{2}r(\langle a, a+d \rangle)$ when $a \in E(d)$, for $d \in \{3, ..., 12\}$, are given in Appendix [A.](#page-15-0)

For each value $d \in \{3, \ldots, 12\}$, an explicit formula for $\frac{2r}{a, a + d}$ can be presented excluding the values given in Table [1.](#page-8-2) The latter can be done by using (essentially) the same arguments as those applied in the proofs of Theorem [2.7](#page-4-0) and Corollary [2.9.](#page-7-0) We present the proof for the case $d = 3$.

Theorem 3.1. Let $a \geq 2$ be an integer not divisible by 3 and let $S = \langle a, a + 3 \rangle$. Then,

$$
{}^{2}r(S) = \begin{cases} (a - (3b - 1))^{2} & \text{if either } (3b + 1)^{2} \leq a + 3 < (3b + 2)^{2} \text{ and } a \equiv 1 \text{ mod } 3 \\ & \text{or } (3b + 1)^{2} \leq 2(a + 3) < (3b + 2)^{2} \text{ and } a \equiv 2 \text{ mod } 3, \\ (a - (3b + 1))^{2} & \text{if either } (3b + 2)^{2} \leq a + 3 < (3b + 4)^{2} \text{ and } a \equiv 1 \text{ mod } 3 \\ & \text{or } (3b + 2)^{2} \leq 2(a + 3) < (3b + 4)^{2} \text{ and } a \equiv 2 \text{ mod } 3. \end{cases}
$$

Proof. Since $g(S) = (a-1)(a+2) - 1 = a^2 + a - 3 < (a+1)^2$ then ${}^{2}r(S) \leqslant (a-1)^{2}.$

By Proposition [2.1,](#page-1-1) we know that

(12)
$$
(a-i)^2 \in S \iff (i+3)^2 \leq \left(3\left\lfloor\frac{i^2+\lambda_i a}{3a}\right\rfloor + 3 - \lambda_i\right)(a+3),
$$

where $\lambda_i \in \{0, 1, 2\}$ such that $\lambda_i a + i^2 \equiv 0 \mod 3$, that is,

$$
\lambda_i = \begin{cases} 0 & \text{if } i \equiv 0 \bmod 3 \text{ and } a \equiv 1, 2 \bmod 3, \\ 1 & \text{if } i \equiv 1, 2 \bmod 3 \text{ and } a \equiv 2 \bmod 3, \\ 2 & \text{if } i \equiv 1, 2 \bmod 3 \text{ and } a \equiv 1 \bmod 3. \end{cases}
$$

We have four cases.

Case 1. Suppose that $a \equiv 1 \mod 3$ with $(3b+1)^2 \leq a+3 < (3b+2)^2$. Note that $b \geq 1$ since $a + 3 \geqslant 19$. If $i \leq 3b - 2$ then

$$
(i+3)^2 \leq (3b+1)^2 \leq a+3 \leq \left(3\left\lfloor\frac{i^2+\lambda_i a}{3a}\right\rfloor + 3 - \lambda_i\right)(a+3),
$$

obtaining, by equation [\(12\)](#page-8-3), that $(a - i)^2 \in S$.

If $i = 3b - 1$ then

$$
i^2 = (3b - 1)^2 = 9b^2 - 6b + 1 \stackrel{b \ge 1}{\le} 9b^2 + 6b - 2 = (3b + 1)^2 - 3 \leq a,
$$

obtaining that

$$
0 \le \frac{i^2 + \lambda_i a}{3a} = \frac{i^2 + 2a}{3a} < 1 \quad \text{(since } 3b - 1 \equiv 2 \text{ mod } 3\text{)}
$$

and thus

$$
\left\lfloor \frac{i^2 + \lambda_i a}{3a} \right\rfloor = 0.
$$

Moreover, since

$$
\left(3\left\lfloor\frac{i^2+\lambda_i a}{3a}\right\rfloor + 3 - \lambda_i\right)(a+3) = a+3 < (3b+2)^2 = (i+3)^2,
$$

by equation [\(12\)](#page-8-3), we have that $(a - i)^2 \notin S$.

Case 2. Suppose that $a \equiv 1 \mod 3$ with $(3b+2)^2 \leq a+3 < (3b+4)^2$. If $b=0$, we have $(a-1) \notin S$ since

$$
\left(3\left\lfloor\frac{1+\lambda_i a}{3a}\right\rfloor + 3 - \lambda_i\right)(a+3) = a+3 < 4^2.
$$

Therefore $^{2}r(S) = (a-1)^{2}$ in this case. Suppose now that $b \geq 1$. If $i \leq 3b - 1$, then

$$
(i+3)^2 \le (3b+2)^2 \le a+3 \le \left(3\left\lfloor\frac{i^2+\lambda_i a}{3a}\right\rfloor + 3-\lambda_i\right)(a+3),
$$

obtaining, by equation [\(12\)](#page-8-3), that $(a - i)^2 \in S$.

If $i = 3b$ then, using that $\lambda_i = 0$,

$$
(i+3)^2 = (3b+3)^2 \leq 3(3b+2)^2 \leq 3(a+3) \leq \left(3\left\lfloor\frac{i^2+\lambda_i a}{3a}\right\rfloor + 3 - \lambda_i\right)(a+3),
$$

obtaining, by equation [\(12\)](#page-8-3), that $(a - i)^2 \in S$.

If $i = 3b + 1$ then

$$
i^2 = (3b+1)^2 = 9b^2 + 6b + 1 \stackrel{b \geq 1}{\leq} 9b^2 + 12b + 1 = (3b+2)^2 - 3 \leq a,
$$

obtaining that

$$
0 \le \frac{i^2 + \lambda_i a}{3a} = \frac{i^2 + 2a}{3a} < 1 \quad \text{(since } 3b + 1 \equiv 1 \text{ mod } 3\text{)}
$$

and thus

$$
\left\lfloor \frac{i^2 + \lambda_i a}{3a} \right\rfloor = 0.
$$

Moreover, since

$$
\left(3\left\lfloor\frac{i^2+\lambda_i a}{3a}\right\rfloor + 3 - \lambda_i\right)(a+3) = a+3 < (3b+4)^2 = (i+3)^2,
$$

therefore, by equation [\(12\)](#page-8-3), we have that $(a - i)^2 \notin S$.

Case 3. Suppose that $a \equiv 2 \mod 3$ with $(3b+1)^2 \leq 2(a+3) < (3b+2)^2$. Note that $b \geq 1$ since $2(a+3) \geq 16$. If $i \leq 3b - 2$ then

$$
(i+3)^2 \leq (3b+1)^2 \leq 2(a+3) \stackrel{\lambda_i \leq 1}{\leq} \left(3\left\lfloor\frac{i^2+\lambda_i a}{3a}\right\rfloor + 3 - \lambda_i\right)(a+3),
$$

obtaining, by equation [\(12\)](#page-8-3), that $(a - i)^2 \in S$.

If $i = 3b - 1$ then

$$
i^2 = (3b - 1)^2 = 9b^2 - 6b + 1 \stackrel{b \ge 1}{\le} 9b^2 + 6b - 5 = (3b + 1)^2 - 6 \le 2a,
$$

obtaining that

$$
0 \leq \frac{i^2 + \lambda_i a}{3a} = \frac{i^2 + a}{3a} < 1 \quad \text{(since } 3b - 1 \equiv 2 \text{ mod } 3\text{)}
$$

and thus

$$
\left\lfloor \frac{i^2 + \lambda_i a}{3a} \right\rfloor = 0.
$$

Moreover, since

$$
\left(3\left\lfloor\frac{i^2+\lambda_i a}{3a}\right\rfloor + 3 - \lambda_i\right)(a+3) = 2(a+3) < (3b+2)^2 = (i+3)^2,
$$

therefore, by equation [\(12\)](#page-8-3), we have that $(a - i)^2 \notin S$.

Case 4. Suppose that $a \equiv 2 \mod 3$ with $(3b+2)^2 \leq 2(a+3) < (3b+4)^2$. If $b = 0$, we have $(a-1) \notin S$ since

$$
\left(3\left\lfloor\frac{1+\lambda_i a}{3a}\right\rfloor + 3 - \lambda_i\right)(a+3) = 2(a+3) < 4^2.
$$

Therefore $^{2}r(S) = (a-1)^{2}$ in this case. Suppose now that $b \geq 1$. If $i\leqslant 3b-1$ then

$$
(i+3)^2 \le (3b+2)^2 \le 2(a+3) \le \left(3\left\lfloor\frac{i^2+\lambda_i a}{3a}\right\rfloor + 3 - \lambda_i\right)(a+3),
$$

obtaining, by equation [\(12\)](#page-8-3), that $(a - i)^2 \in S$.

If $i = 3b$ then, using that $\lambda_i = 0$,

$$
(i+3)^2 = (3b+3)^2 \stackrel{b \ge 1}{\le} \frac{3}{2}(3b+2)^2 \le 3(a+3) \le \left(3\left\lfloor\frac{i^2+\lambda_i a}{3a}\right\rfloor + 3 - \lambda_i\right)(a+3).
$$

Therefore, by equation [\(12\)](#page-8-3), we have $(a - i)^2 \in S$.

If $i = 3b + 1$ then

$$
i^2 = (3b+1)^2 = 9b^2 + 6b + 1 \stackrel{b \ge 1}{\le} 9b^2 + 12b - 2 = (3b+2)^2 - 6 \le 2a,
$$

when $b \geq 1$ and clearly $i^2 = 1 < 2a$ when $b = 0$, obtaining that

$$
0 \leqslant \frac{i^2 + \lambda_i a}{3a} = \frac{i^2 + a}{3a} < 1
$$

and

$$
\left\lfloor \frac{i^2 + \lambda_i a}{3a} \right\rfloor = 0.
$$

Moreover, since

$$
\left(3\left\lfloor\frac{i^2+\lambda_i a}{3a}\right\rfloor+3-\lambda_i\right)(a+3) = 2(a+3) < (3b+4)^2 = (i+3)^2,
$$

therefore, by equation[\(12\)](#page-8-3), we have that $(a - i)^2 \notin S$.

The proofs of the following two theorems are completely analogous to that of Theorem [3.1](#page-8-1) with a larger number of cases to be analyzed (in each case, the appropriate inequality is obtained in order to apply Proposition [2.1\)](#page-1-1).

Theorem 3.2. Let $a \geq 3$ be an odd integer and let $S = \langle a, a+4 \rangle$. Then,

$$
{}^{2}r(S) = \begin{cases} (a - (4b - 1))^{2} & \text{if either } (4b + 1)^{2} \leq a + 4 < (4b + 3)^{2} \text{ and } a \equiv 1 \mod 4 \\ & \text{or } (4b + 1)^{2} \leq 3(a + 4) < (4b + 3)^{2} \text{ and } a \equiv 3 \mod 4, \\ (a - (4b + 1))^{2} & \text{if either } (4b + 3)^{2} \leq a + 4 < (4b + 5)^{2} \text{ and } a \equiv 1 \mod 4 \\ & \text{or } (4b + 3)^{2} \leq 3(a + 4) < (4b + 5)^{2} \text{ and } a \equiv 3 \mod 4. \end{cases}
$$

Theorem 3.3. Let $a \geq 2$ be an integer not divisible by 5 and let $S = \langle a, a + 5 \rangle$. Then,

$$
\begin{cases}\n1 & \text{if } a = 2 \text{ or } 4, \\
10^2 & \text{if } a = 13, \\
(a - 6)^2 & \text{if } e = 27 \text{ or } 32, \\
(a - (5b - 2))^2 & \text{if } either (5b + 2)^2 \le a + 5 < (5b + 3)^2 \text{ and } a \equiv 4 \text{ mod } 5 \\
& \text{or } (5b + 2)^2 \le 2(a + 5) < (5b + 3)^2 \text{ and } a \equiv 2 \text{ mod } 5,\n\end{cases}
$$
\n
$$
{}^{2}r(S) = \n\begin{cases}\n(a - (5b - 1))^2 & \text{if } either (5b + 1)^2 \le a + 5 < (5b + 4)^2 \text{ and } a \equiv 1 \text{ mod } 5 \\
& \text{or } (5b + 1)^2 \le 2(a + 5) < (5b + 4)^2 \text{ and } a \equiv 3 \text{ mod } 5, a \neq 13, \\
(a - (5b + 1))^2 & \text{if } either (5b + 4)^2 \le a + 5 < (5b + 6)^2 \text{ and } a \equiv 1 \text{ mod } 5 \\
& \text{or } (5b + 4)^2 \le 2(a + 5) < (5b + 6)^2 \text{ and } a \equiv 3 \text{ mod } 5, \\
(a - (5b + 2))^2 & \text{if } either (5b + 3)^2 \le a + 5 < (5b + 7)^2 \text{ and } a \equiv 4 \text{ mod } 5, a \neq 4 \\
& \text{or } (5b + 3)^2 \le 2(a + 5) < (5b + 7)^2 \text{ and } a \equiv 2 \text{ mod } 5, a \neq 2, 27, 32.\n\end{cases}
$$

4. STUDY OF $\langle a, a+1 \rangle$

We investigate the square Frobenius number of $\langle a, a+1 \rangle$ with $a \geq 2$. We first study the case when neither a nor $a + 1$ is a square integer.

Proposition 4.1. Let a be a positive integer such that $b^2 < a < a+1 < (b+1)^2$ for some integer $b \geqslant 1$. Then,

$$
{}^{2}r(\langle a,a+1\rangle)=(a-b)^{2}.
$$

Proof. Since $g(\langle a, a+1 \rangle) = a^2 - a - 1$ then

$$
(a-1)^2 \leqslant g(\langle a, a+1 \rangle) < a^2.
$$

We thus have that ${}^{2}r(\langle a,a+1\rangle) < a^2$. We shall show that $(a-i)^2 \in \langle a,a+1\rangle$ for $i \in \{1, 2, \ldots, b-1\}.$

We first observe that

(13)
$$
(a - i)^2 = a^2 - 2ai + i^2 = (a - 2i)a + i^2 = (a - 2i - i^2)a + i^2(a + 1),
$$

for any integer i.

Since for any $i \in \{1, 2, \ldots, b-1\}$ we have $a - 2i - i^2 = a - i(i + 2) \geq a - (b - 1)(b + 1) = a - b^2 + 1 > 0$ □

and

$$
i^2>0
$$

then, by [\(13\)](#page-11-4), we deduce that $(a - i)^2 \in \langle a, a + 1 \rangle$ for any $i \in \{1, 2, \ldots, b - 1\}.$

Finally, since $a+1 < (b+1)^2$ (implying that $a-2b-b^2 < 0$) and $0 < b^2 < a$ then we may deduce, from [\(13\)](#page-11-4), that $(a - b)^2 \notin \langle a, a + 1 \rangle$. $2 \notin \langle a, a+1 \rangle$.

Let $(u_n)_{n\geq 1}$ be the recursive sequence defined by

(14) $u_1 = 1, u_2 = 2, u_3 = 3, u_{2n} = u_{2n-1} + u_{2n-2}$ and $u_{2n+1} = u_{2n} + u_{2n-2}$ for all $n \ge 2$.

The first few values of $(u_n)_{n\geq 1}$ are

 $1, 2, 3, 5, 7, 12, 17, 29, 41, 70, 99, 169, 239, 408, 577, 985, \ldots$

This sequence appears in a number of other contexts. For instance, it corresponds to This sequence appears in a number of other contexts. For instance, it corresponds to the *denominators of Farey fraction approximations to* $\sqrt{2}$, where the fractions are $\frac{1}{1}$, $\frac{2}{1}$ $\frac{2}{1}$, 3 $\frac{3}{2}$, $\frac{4}{3}$ $\frac{4}{3}, \frac{7}{5}$ $\frac{7}{5}, \frac{10}{7}$ $\frac{10}{7}, \frac{17}{12}, \frac{24}{17} \ldots$, see [\[5\]](#page-14-5).

We pose the following conjecture in the case when either a or $a + 1$ is a square integer.

Conjecture 4.2. Let $(u_n)_{n\geq 1}$ be the recursive sequence given in [\(14\)](#page-12-3). If $a = b^2$ for some integer $b \geq 1$ then

$$
{}^{2}r(\langle a, a+1 \rangle) = \begin{cases} \left(a - \lfloor b\sqrt{2} \rfloor\right)^{2} & \text{if } b \notin \bigcup_{n \geq 0} \{u_{4n+1}, u_{4n+2}\}, \\ \left(a - \lfloor b\sqrt{3} \rfloor\right)^{2} & \text{if } b \in \bigcup_{n \geq 0} \{u_{4n+1}, u_{4n+2}\} \,. \end{cases}
$$

If $a + 1 = b^2$ for some integer $b \geq 1$ then

$$
{}^{2}r(\langle a, a+1 \rangle) = \begin{cases} (a - \lfloor b\sqrt{2} \rfloor)^{2} & \text{if } b \notin \bigcup_{n \geq 1} \{u_{4n-1}, u_{4n}\}, \\ a - \lfloor b\sqrt{3} \rfloor^{2} & \text{if } b \in \bigcup_{n \geq 1} \{u_{4n}, u_{4n+3}\}, \\ 2^{2} & \text{if } b = u_{3} = 3. \end{cases}
$$

The formulas of Conjecture [4.2](#page-12-2) have been verified by computer for all integers $a \geq 2$ up to 10^6 .

5. STUDY OF $\langle a, a+2 \rangle$

We investigate the square Frobenius number of $\langle a, a+2 \rangle$ with $a \geq 3$ odd. We first study the case when neither a nor $a + 2$ is a square integer.

Proposition 5.1. Let $a \geq 3$ be an odd integer such that $(2b+1)^2 < a < a+2 < (2b+3)^2$ for some integer $b \geqslant 1$. Then,

$$
{}^{2}r(\langle a, a+2 \rangle) = (a - (2b+1))^{2}.
$$

Proof. Since $g(\langle a, a+2 \rangle) = (a-1)(a+1) - 1 = a^2 - 2$ then

$$
(a-1)^2 < g(\langle a, a+2 \rangle) < a^2.
$$

We thus have that ${}^{2}r(\langle a,a+2\rangle) < a^{2}$. We shall show that $(a - i)^{2} \in \langle a,a+2\rangle$ for $i \in \{1, 2, \ldots, 2b\}.$

We first observe that for any integer i , we have

(15)
$$
(a-2i)^2 = a^2 - 4ai + 4i^2 = (a-4i)a + 4i^2 = (a-4i-2i^2)a + 2i^2(a+2).
$$

Since for any $i \in \{1, 2, ..., b\}$ we have

 $a - 4i - 2i^2 = a - 2i(i + 2) \geq a - 2i(2i + 1) > a - (2i + 1)^2 \geq a - (2b + 1)^2 > 0$

and $2i^2 > 0$

then, by [\(15\)](#page-13-1), it follows that $(a-2i)^2 \in \langle a, a+2 \rangle$ for any $i \in \{1, 2, ..., b\}$.

Moreover, for any integer i , we have

(16)
$$
(a - (2i + 1))^2 = a^2 - 2a(2i + 1) + (2i + 1)^2 = (a - 2(2i + 1))a + (2i + 1)^2
$$

$$
= (a - 4i - 3)a + (2i + 1)^2 + a
$$

$$
= \left(a - 4i - 3 - \frac{(2i + 1)^2 + a}{2}\right)a + \frac{(2i + 1)^2 + a}{2}(a + 2)
$$

$$
= \frac{a - 4i^2 - 12i - 7}{2}a + \frac{(2i + 1)^2 + a}{2}(a + 2)
$$

$$
= \frac{a + 2 - (2i + 3)^2}{2}a + \frac{(2i + 1)^2 + a}{2}(a + 2).
$$

Note that $a + 2 - (2i + 3)^2$ and $(2i + 1)^2 + a$ are even because a is odd. Since, for any $i \in \{0, 1, \ldots, b-1\}$ we have

$$
\frac{a+2-(2i+3)^2}{2} \geqslant \frac{a+2-(2b+1)^2}{2} > 0
$$

and

$$
\frac{(2i+1)^2 + a}{2} > 0
$$

then it follows, from [\(16\)](#page-13-2) ,that $(a - (2i + 1))^2 \in \langle a, a + 2 \rangle$, for any $i \in \{0, 1, ..., b - 1\}$. Finally, since

$$
0 < \frac{(2b+1)^2 + a}{2} < a
$$

and

$$
\frac{a+2-(2b+3)^2}{2} < 0,
$$
\nhat (a - (2b+1))^2 \notin \langle a, a+2 \rangle.

then we have, from [\(16\)](#page-13-2), that $(a - (2b + 1))^2 \notin \langle a, a + 2 \rangle$. We pose the following conjecture in the case when either a or $a + 2$ is a square integer.

Conjecture 5.2. Let $(u_n)_{n\geq 1}$ be the recursive sequence given in [\(14\)](#page-12-3). If $a = (2b+1)^2$ for some integer $b \geq 1$ then

$$
{}^{2}r(\langle a, a+2 \rangle) = \begin{cases} \left(a - 2\left\lfloor \frac{(2b+1)\sqrt{2}}{2} \right\rfloor \right)^{2} & \text{if } (2b+1) \notin \bigcup_{n \geq 1} \{u_{4n+1}\}, \\ \left(a - \left\lfloor (2b+1)\sqrt{3} \right\rfloor \right)^{2} & \text{if } (2b+1) \in \bigcup_{n \geq 2} \{u_{4n+1}\}, \\ 38^{2} & \text{if } 2b+1 = u_{5} = 7. \end{cases}
$$

If $a + 2 = (2b + 1)^2$ for some integer $b \geq 1$ then

$$
{}^{2}r(\langle a,a+2\rangle) = \begin{cases} \left(a-2\left\lfloor\frac{(2b+1)\sqrt{2}}{2}\right\rfloor\right)^{2} & \text{if } (2b+1) \notin \bigcup_{n\geqslant 0} \{u_{4n+3}\},\\ \left(a-\left\lfloor\frac{(2b+1)\sqrt{3}}{2}\right\rfloor\right)^{2} & \text{if } (2b+1) \in \bigcup_{n\geqslant 0} \{u_{4n+3}\}. \end{cases}
$$

The formulas of Conjecture [5.2](#page-13-0) have been verified by computer for all odd integers $a \geqslant 3$ up to 10^6 .

6. Concluding remarks

In the process of investigating square Frobenius numbers different problems arose. We naturally consider the P-type function $_{k\text{-power}}r(S) = _{k}r(S)$ defined as,

 $k(r(S)) :=$ the smallest perfect k-power integer belonging to S.

It is clear that

$$
(17) \t\t s \leqslant {}_{k}r(S) \leqslant s^{k}
$$

where s is the multiplicity of S.

Theorem 6.1. Let $S_A = \langle a, a+d, \ldots, a+kd \rangle$ where a, d, k are positive integers with $gcd(a, d) = 1$. If $d \leq \frac{ak}{1+d}$ $rac{ak}{1+2k}$ then

$$
_2r(S_A) \leqslant (a-d)^2.
$$

Proof. We shall use the characterization given in Proposition [2.1](#page-1-1) with $i = d$. In this case $\lambda_d = 0$ and $d \leq \frac{ak}{1+2k} < a$ thus

$$
\left(\left(\left[\frac{d^2 + 0a}{ad} \right] + k \right) d - 0 \right) (a + kd) = \left(\left(\left[\frac{d}{a} \right] + k \right) d - 0 \right) (a + kd) = akd + (kd)^2.
$$

Thus,

$$
(d+kd)^2 \leqslant akd + (kd)^2 \iff d^2 + 2kd^2 \leqslant akd \iff d \leqslant \frac{ak}{1+2k}.
$$

Therefore, by Proposition [2.1,](#page-1-1) $(a-d)^2 \in S_A$.

Problem 1. Let $k \geq 2$ be an integer and let S be a numerical semigroup. Investigate the computational complexity to determine $\kappa r(S)$ and/or $\kappa r(S)$.

Or more ambitious,

Question 1. Let $k \geq 2$ be an integer. Is there a closed formula for ${}^k r(S)$ and/or ${}_{k} r(S)$ for any semigroup S?

Perhaps a first step on this direction might be the following.

Problem 2. Give a formula for ${}^{2}r(\langle F_i, F_j \rangle)$ and/or ${}_{2}r(\langle F_i, F_j \rangle)$ with $gcd(F_i, F_j) = 1$ where F_k denotes the kth Fibonacci number. What about ${}^2r(\langle a^2, b^2 \rangle)$ where a and b are relatively prime integers ? We clearly have that $_2r(\langle a^2, b^2 \rangle) = a^2$ for $1 \leq a < b$.

REFERENCES

- [1] J.L. Ramírez Alfonsín, Complexity of the Frobenius problem, *Combinatorica* **16**(1) (1996), 143-147.
- [2] J.L. Ramírez Alfonsín, The Diophantine Frobenius Problem, Oxford Lecture Ser. in Math. and its Appl. 30, Oxford University Press 2005.
- [3] J.B. Roberts, Note on linear forms, Proc. Amer. Math. Soc. 7 (1956), 465-469.
- [4] Ø.J. Rødseth, On a linear diophantine problem of Frobenius II, J. Reine Angew. Math. 307/308 (1979), 431-440.
- [5] The On-line Encyclopedia of Integers Sequences, <https://oeis.org/A002965>

APPENDIX A. COMPLEMENT TO FORMULAS FOR $\langle a, a + d \rangle$ with small $d \geq 3$

In Tabular [2,](#page-15-1) we compare the exact values of ${}^{2}r(\langle a, a+d \rangle)$ and the formula $h(a, d, 1)$, when $a \in E(d)$ for $d \in \{3, ..., 12\}$.

\overline{d}	\boldsymbol{a}	$\sqrt[2]{r}(\langle a,a+d\rangle)$	h(a,d,1)	\boldsymbol{d}	\boldsymbol{a}	$\sqrt[2]{r(\langle a,a+d\rangle)}$	h(a,d,1)
$\overline{5}$	$\overline{2}$	1	$\overline{0}$	10	$\overline{43}$	40^2	$\overline{39^2}$
$\overline{5}$	$\overline{4}$	$\overline{1}$	2^2	10	$\overline{123}$	110^{2}	109^2
$\overline{5}$	$\overline{13}$	10^{2}	9^2	10	133	120^2	119^2
5	27	$\overline{21^2}$	$\overline{20^2}$	10	143	$\overline{130^2}$	$\overline{129^2}$
$\overline{5}$	32	$\overline{26^2}$	$\overline{25^2}$	10	$\overline{153}$	$1\overline{40^2}$	139^2
$\overline{7}$	$\overline{2}$	$\overline{1}$	$\overline{5^2}$	10	163	$\overline{150^2}$	149^2
$\overline{7}$	$\overline{3}$	$\overline{2^2}$	$\overline{0}$	$\overline{10}$	$\overline{333}$	$\overline{310^2}$	309^2
$\overline{7}$	$\,4\,$	$\overline{5^2}$	$\overline{6^2}$	10	$\overline{343}$	320^2	319^{2}
$\overline{7}$	9	$\overline{7}^2$	6^2	11	$\overline{2}$	3^2	4^2
7	16	14^{2}	$\overline{13^2}$	11	$\overline{3}$	5^2	9 ²
$\overline{7}$	18	$\overline{17^2}$	$\overline{16^2}$	11	$\overline{4}$	$\overline{5^2}$	$\overline{6^2}$
$\overline{7}$	19	$\overline{14^2}$	$\overline{13^2}$	11	$\bf 5$	$\overline{7^2}$	9^2
$\overline{7}$	$\overline{23}$	21^{2}	20^{2}	$\overline{11}$	$\overline{7}$	$\overline{4^2}$	$\overline{2^2}$
$\overline{7}$	$\overline{30}$	$\overline{28^2}$	$\overline{27^2}$	$\overline{11}$	$\overline{8}$	$\overline{7^2}$	$\overline{12^2}$
7	114	$\overline{105^2}$	104^2	11	9	$\overline{8^2}$	$\overline{12^2}$
8	$\overline{5}$	4^2	3^2	11	14	$\overline{13^2}$	$\overline{19^2}$
$\overline{8}$	$\overline{9}$	10 ²	12^{2}	11	$\overline{16}$	14^{2}	20^2
$\overline{8}$	$\overline{21}$	$\overline{16^2}$	$\overline{15^2}$	$\overline{11}$	18	$\overline{15^2}$	$\overline{13^2}$
$\overline{8}$	45	$\overline{36^2}$	$\overline{35^2}$	$\overline{11}$	$\overline{25}$	$\overline{22^2}$	$\overline{20^2}$
$\overline{8}$	77	64^{2}	63^2	11	$\overline{36}$	33^{2}	31^2
9	$\overline{2}$	3^2	$\overline{4^2}$	11	$\overline{38}$	36^2	34^2
$\overline{9}$	$\overline{4}$	$\overline{3^2}$	$\overline{6^2}$	11	47	44^{2}	$\overline{42^2}$
$\boldsymbol{9}$	$\overline{7}$	$\overline{6^2}$	11^2	12	$\overline{13}$	14^2	$\overline{18^2}$
$\boldsymbol{9}$	$\overline{8}$	6^2	4^2	$\overline{12}$	19	17^2	16^2
$\overline{9}$	16	9^2	$\overline{12^2}$	$\overline{12}$	$\overline{25}$	$\overline{26^2}$	30^2
10	3	$\overline{2^2}$	$\overline{7^2}$	$1\overline{2}$	$\overline{31}$	$\overline{29^2}$	$\overline{28^2}$
10	9	$\overline{7^2}$	$\overline{12^2}$	12	67	59^2	$\overline{58^2}$
10	13	10 ²	9^2	12	79	$\overline{71^2}$	70 ²
$\overline{10}$	$\overline{23}$	$\overline{20^2}$	$\overline{19^2}$	12	139	$\overline{125^2}$	124^2
10	27	$\overline{26^2}$	$\overline{25^2}$	12	$\overline{151}$	137^2	$\overline{136^2}$
$\overline{10}$	33	30 ²	29^2	$\overline{12}$	$\overline{235}$	215^2	214^2

TABLE 2. ${}^{2}r(\langle a, a+d \rangle)$ and $h(a, d, 1)$ when $a \in E(d)$ for $d \in \{3, ..., 12\}$

IMAG, Univ. Montpellier, CNRS, Montpellier, France Email address: jonathan.chappelon@umontpellier.fr

UMI2924 - Jean-Christophe Yoccoz, CNRS-IMPA, Brazil and IMAG, Univ. Montpellier, CNRS, Montpellier, France

Email address: jorge.ramirez-alfonsin@umontpellier.fr