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Abstract. In 1986, Hamidoune and Las Vergnas [3] introduced an oriented ma-
troid version of the so-called Shannon’s switching game. They conjectured that
the classification of the directed switching game on oriented matroids is identical
to the classification of the non-oriented version. In this note, we support this con-
jecture by showing its validity for an infinity class of oriented matroids obtained
as unions of rank-1 and/or rank-2 uniform oriented matroids.
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1. Introduction

In 1960, C.E. Shannon introduced the following game.

Switching game for graphs. Let G be a graph and e an edge

of G. Two players, Maker and Breaker, play alternatively. A move

of Maker consists of making an unplayed edge invulnerable to dele-

tion (the objective of Maker is to construct a path between the end

points of the unplayable edge e). A move of Breaker consists of delet-

ing an unplayed edge (the objective of Breaker is to prevent Maker

to succeed). The game proceed until one of the players reaches its

objective.

The above game has been generalized and elegantly solved for matroids by Lehman

[8]. In 1986, Hamidoune and Las Vergnas [3] introduced the directed switching game

on graphs (see [4] for a arborescence rooted variant). They naturally considered the

following oriented matroid version.

Directed switching game for oriented matroids. Let M be

an oriented matroid and e one of its elements. Maker and Breaker

alternatively play by choosing an unplayed element of M different

from e, Maker signs it and Breaker deletes it. Maker wins the game
1
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if the final orientation of M contains a positive circuit containing e.

Breaker wins otherwise.

Hamidoune and Las Vergnas [3] presented a complete solution for graphic and

cographic oriented matroids and conjectured that the classification of the oriented

game is identical to the classification of the non-oriented version.

Conjecture 1. [3, Conjecture 8.1] Let M be an oriented matroid on E. If E is the

union of two disjoint bases, then the directed switching game on M is winning for

Maker playing first.

Recently, Forge and Vieilleribière [2] proved the above conjecture for the class of

Lawrence oriented matroids.

In this note, we show that Conjecture 1 holds for oriented matroids obtained

as union of rank-1 and/or rank-2 uniform oriented matroids (Theorem 1). The

latter contains Forge and Vieilleribière’s result in the particular case when the union

consists of only rank-1 uniform oriented matroids.

2. Main result

We assume that the reader is familiar with basic oriented matroid theory [1]. Let

M be an oriented matroid on the ground set E = {1, . . . , n}. Let C(M),B(M) and

r(M) denote the set of circuits, the set of bases and the rank of M respectively.

The union operation for oriented matroids is the oriented analogue to the union of

(ordinary) matroids. The oriented version has first appeared as a particular case of

a more general result due to Las Vergnas [5] who proved that principal extensions

of oriented matroids can be oriented. Las Vergnas [6] used this to show that images

of orientable matroids are also orientable (and thus unions of orientable matroids

are orientables).

Lawrence and Weinberg [7] have shown that the union operation can be described

in terms of bases orientation (or chirotopes). LetM1 andM2 be oriented matroids

on the (totally ordered) set E with n elements of rank r1 and r2 respectively, and let

χM1 and χM2 denote their corresponding chirotopes. We assume that r1+r2 ≤ n−1.

Let

χM(j1, . . . , jr1+r2) := χM1(j1, . . . , jr1) · χM2(jr1+1, . . . , jr1+r2) (1)

for all (r1 + r2)-tuple j1 < · · · < jr1+r2 of E. Lawrence and Weinberg [7, Theorem

3] proved that χM is the base orientation of an oriented matroid of rank r1 + r2 on
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E, called union of M1 and M2 (and denoted by M =M1 ∪M2). If M1 and M2

are uniform1 then M1 ∪M2 is also uniform.

Proposition 1. Let M = M1 ∪ M2 where M1 and M2 are uniform oriented

matroids of rank r1 and r2 respectively. Let C = (i1, . . . , ir1 , j1, . . . , jr2+1) be a circuit

of M such that C1 = (i1, . . . , ir1 , j1) (resp. C2 = (j1, . . . , jr2+1)) is a circuit of M1

(resp. a circuit of M2) with C1(j1) = C2(j1) = C(j1). Then,

C1(ik) = C(ik) for each 1 ≤ k ≤ r1 and C2(jk) = C(jk) for each 1 ≤ k ≤ r2 + 1

where C(f) denotes the sign of element f in C.

Proof. Since M is uniform then,

χM(Bj) · χM(Bj+1) = −C(ij) · C(ij+1), 1 ≤ j ≤ r1 + r2 (2)

where Bj = C \ {ij} and Bj+1 = C \ {ij+1} are bases of M. Therefore,

χM(i1, . . . , ir1−1, j1, . . . , jr2+1) · χM(i1, . . . , ir1 , j2, . . . , jr2+1) = −C(ir1) · C(j1). (3)

Now, by equation (1), we have

χM(i1, . . . , ir1−1, j1, . . . , jr2+1) = χM1(i1, . . . , ir1−1, j1) · χM2(j2, . . . , jr2+1) (4)

and

χM(i1, . . . , ir1 , j2, . . . , jr2+1) = χM1(i1, . . . , ir1−1, ir1) · χM2(j2, . . . , jr2+1). (5)

Combining equations (2), (3), (4) and (5) we obtain

C(ir1) · C(j1) = −χM1(i1, . . . , ir1−1, j1) · χM1(i1, . . . , ir1−1, ir1) = C1(ir1) · C1(j1).

Since C1(j1) = C(j1) then C(ir1) = C1(ir1). The result follows by recursively

carrying on the above argument. �

Lemma 1. The directed switching game on U2,4 is winning for Maker playing first.

Moreover, there are two winning choices for the first move of Maker.

1An uniform matroid, denoted by Ur,n, is a matroid with set of bases all r-subsets of a set of n

elements.
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Proof. Without loss of generality, we suppose that the given element is 1 and so

Maker’s goal is to create a positive circuit containing 1. We claim that Maker’s goal

can be achieved if there exists an element f ∈ {2, 3, 4} such that either C(1) ·C(f) =

+ or C(1) · C(f) = − for any circuit C containing 1 and f . Indeed, suppose that

C(1) ·C(f) = + and let C be a circuit containing 1 and f . In this case, Maker keeps

the sign C(f) and for every choice of Breaker the remaining element g belongs to a

circuit C ′ containing 1 and f . Maker then signs g such that C ′(1) = C ′(f) = C ′(g)

and thus circuit C ′ is positive. In the case when C(1) · C(f) = − we may proceed

as above except that at the beginning Maker changes the sign of C(f).

We now show that there are two elements verifying the above condition. Let

us suppose that there are two different circuits C1 = {1, 2, 3} and C2 = {1, 2, 4}
(containing elements 1 and 2) such that C1(1) = C2(1) = +. Then, C1(1) · C1(2) 6=
C2(1) ·C2(2) and C1(2) 6= C2(2). Without loss of generality we suppose that C1(2) =

+. Since C1 6= C2 and 2 ∈ C+
1 ∩ C−2 then there exists a circuit C3 such that

C+
3 ⊂ (C+

1 ∪ C+
2 ) \ {2} and C−3 ⊂ (C−1 ∪ C−2 ) \ {2}. So, C3 = {1, 3, 4} with

C3(1) = C1(1) = C2(1), C3(3) = C1(3) and C3(4) = C2(4). Therefore, both elements

3 and 4 verify the above conditions. �

Theorem 1. Let M = ∪p
i=1Mi where Mi is a uniform oriented matroid on E of

rank ri = 1 or 2 for each 1 ≤ i ≤ p. Then, the directed switching game on M is

winning for Maker playing first if and only if |E| ≥ 2r where r =
p∑

i=1

ri is the rank

of M.

Proof. Let e be an element in M. If |E| < 2r then there are not enough elements

for Maker to create a positive circuit containing e and so Maker loses. Suppose that

|E| = 2r. Maker’s strategy would be to construct a positive circuit Ci ∈ C(Mi) for

each 1 ≤ i ≤ p such that

(a) Ci ∩ Cj = ∅ for all 1 ≤ i < j ≤ p and j 6= i+ 1,

(b) the last element of Ci is the first element of Ci+1 for each 1 ≤ i ≤ p− 1 (and

this is the only element in common) and

(c) e ∈ Ci for some 1 ≤ i ≤ p.

The above strategy is winning for Maker since, by Proposition 1, it yields to the

positive circuit C = ∪p
i=1Ci in C(M) containing e.

We partition E into p intervals Ii where
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Ii =

{
(ni − 3, ni − 2, ni − 1, ni) if ri = 2,

(ni − 1, ni) if ri = 1

with ni = 2
i∑

j=1

rj for each 1 ≤ i ≤ p (notice that np = 2r and that Ii contains 2ri

elements). Let us suppose that e ∈ Ii for some 1 ≤ i ≤ p. We have two cases.

Case A) If ri = 1 then either e = ni or ni− 1. Maker chooses either eM = ni− 1

or ni. This permits Maker to sign ni or ni−1 such that χMi
(ni) ·χMi

(ni−1) = −1.

Of course, by equation (2), the latter is done in order to have at the end Ci(ni) =

Ci(ni − 1) and thus constructing a positive circuit Ci ∈ C(Mi).

Now, if Breaker plays an element eB > ni (resp. eB < ni − 1) then we set

E ′ = E \ {eM , eB} and e′ = ni (resp. e′ = ni − 1) and restart our strategy with E ′

and e′. The latter is done so that in the next step, Maker will construct a positive

circuit Ci+1 ∈ C(Mi+1) whose first element will be the last element of Ci (resp. a

positive circuit Ci−1 ∈ C(Mi−1) whose last element will be the first element of Ci).

Case B) If ri = 2 then, we have four subcases.

Subcase 1) If e = ni then Maker chooses either ni − 2 or ni − 1. By Lemma 1,

there are two winning choices among ni − 1, ni − 2, ni − 3 and thus either ni − 2 or

ni − 1 is a winning choice for making a positive circuit Ci ∈ C(Mi). This winning

element, say e1M ∈ {ni − 1, ni − 2} is chosen by Maker.

Now, the next move of Maker depends on the element that will be played by

Breaker.

(i) If Breaker plays an element e1B < ni then Maker will choose e2M = max{j | j <
ni} creating the desired positive circuit Ci = {e1M , e2M , e} ∈ C(Mi). Moreover,

if Breaker plays next e2B < e2M < ni (resp. e2B > ni) then we set E ′ = E \
{e1M , ni, e

1
B, e

2
B} and e′ = e2M (resp. E ′ = E \ {e1M , e2M , e1B, e2B} and e′ = ni) and

restart our strategy with E ′ and e′. The latter is done so that in the next step,

Maker will construct a positive circuit Ci−1 ∈ C(Mi−1) whose last element will be

the first element of Ci (resp. Ci+1 ∈ C(Mi+1) whose first element will be the last

element of Ci)

(ii) If Breaker plays an element e1B > ni then we will form the circuit Ci ∈ C(Mi)

consisting of elements {e1M , e2M , ni} where e2M ∈ {ni− 1, ni− 2, ni− 3} \ {e1M}. This

will be done as soon as Breaker plays an element e2B < ni (the final choice of e2M
will depend on the element played by Breaker since e2M 6= e2B). In this case, we shall
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carry on our strategy by setting E ′ = E \ {e1M , e1B}, e′ = ni, and as soon as Breaker

plays an element e2B < ni (at any stage) circuit Ci will be completed right away

(that is, Maker plays e2M as above), elements e2B, e
2
M will be deleted and Breaker

restarts with a new move.

Remark 1. (a) While Breaker keeps playing elements strictly bigger than ni then

our strategy will construct circuits Cj with i+ 1 ≤ j ≤ p.

(b) We might have the case in which several circuits Ci1 , . . . , Cik with 1 ≤ i1 <

· · · < ik ≤ i might be awaiting to be completed. If Breaker plays an element e′B < ik
then the circuit to be completed will be Cij where ij is the smallest index such that

e′B < ij.

The following subcase is completely symmetric, with respect to the interval [ni−
3, ni − 2, ni − 1, ni], to subcase 1) and thus we may use analogous arguments.

Subcase 2) If e = ni − 3 then Maker chooses either ni − 2 or ni − 1. By Lemma

1, there are two winning choices among ni−1, ni−2, ni−3 and thus either ni−2 or

ni − 1 is a winning choice for making a positive circuit Ci ∈ C(Mi). This winning

element, say e1M ∈ {ni − 1, ni − 2} is chosen by Maker.

Now, the next move of Maker depends on the element that will be played by

Breaker.

(i) If Breaker plays an element e1B > ni − 3 then Maker will choose e2M =

min{j | j > ni − 3} creating the desired positive circuit Ci = {e1M , e2M , e} ∈ C(Mi).

Moreover, if Breaker plays next e2B > e2M > ni − 3 (resp. e2B < ni − 3) then we set

E ′ = E \ {e1M , ni − 3, e1B, e
2
B} and e′ = e2M (resp. E ′ = E \ {e1M , e2M , e1B, e2B} and

e′ = ni − 3) and restart our strategy with E ′ and e′. The latter is done so that in

the next step, Maker will construct a positive circuit Ci+1 ∈ C(Mi+1) whose first

element will be the last element of Ci (resp. Ci−1 ∈ C(Mi−1) whose last element

will be the first element of Ci)

(ii) If Breaker plays an element e1B < ni − 3 then we will form the circuit Ci ∈
C(Mi) consisting of elements {e1M , e2M , ni} where e2M ∈ {ni − 1, ni − 2, ni} \ {e1M}.
This will be done as soon as Breaker plays an element e2B > ni − 3 (the final choice

of e2M will depend on the element played by Breaker since e2M 6= e2B). In this case,

we shall carry on our strategy by setting E ′ = E \{e1M , e1B}, e′ = ni−3, and as soon

as Breaker plays an element e2B > ni − 3 (at any stage) circuit Ci will be completed

right away (that is, Maker plays e2M as above), elements e2B, e
2
M will be deleted and

Breaker restarts with a new move.
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Remark 2. (a) While Breaker keeps playing elements strictly smaller than ni − 3

then our strategy will construct circuits Cj with 1 ≤ j ≤ i− 1.

(b) We might have the case in which several circuits Ci1 , . . . , Cik with i+ 1 ≤ i1 <

· · · < ik ≤ p are awaiting to be completed. If Breaker plays an element e′B > ik then

the circuit to be completed will be Cij where ij is the largest index such that e′B > ij.

Subcase 3) If e = ni − 1 then Maker chooses either ni − 2 or ni. By Lemma 1,

there are two winning choices among ni, ni − 2, n− 3 and thus either ni − 2 or ni is

a winning choice for making a positive circuit Ci ∈ C(Mi). This winning element,

say e1M ∈ {ni, ni − 2} is chosen by Maker.

If e1M = ni then we are back to subcase 1). Let us suppose then that e1M = ni− 2.

If Breaker plays element e1B < ni − 2 (resp. e1B > ni − 1) then Maker plays e2M = ni

(resp. e2M = ni − 3).

Moreover, if Breaker plays next e2B > ni (resp. e2B < ni − 3) then we set E ′ =

E \ {e1M , e2M , e1B, e2B} and e′ = ni (resp. E ′ = E \ {e1M , e2M , e1B, e2B} and e′ = ni − 3)

and restart our strategy with E ′ and e′. The latter is done so that in the next step,

Maker will construct a positive circuit Ci+1 ∈ C(Mi+1) whose first element will be

the last element of Ci (resp. Ci−1 ∈ C(Mi−1) whose last element will be the first

element of Ci)

The following subcase is completely symmetric, with respect to the interval [ni−
3, ni − 2, ni − 1, ni], to subcase 3) and thus we may use analogous arguments.

Subcase 4) If e = ni − 2 then Maker chooses either ni − 3 or ni − 1. By Lemma

1, there are two winning choices among ni, ni − 2, n − 3 and thus either ni − 3 or

ni − 1 is a winning choice for making a positive circuit Ci ∈ C(Mi). This winning

element, say e1M ∈ {ni − 1, ni − 3}, is chosen by Maker.

If e1M = ni−3 then we are back to subcase 2). Let us suppose then that e1M = ni−1.

If Breaker plays element e1B > ni−2 (resp. e1B < ni−1) then Maker plays e2M = ni−3

(resp. e2M = ni).

Moreover, if Breaker plays next e2B < ni − 3 (resp. e2B > ni) then we set E ′ =

E \ {e1M , e2M , e1B, e2B} and e′ = ni − 3 (resp. E ′ = E \ {e1M , e2M , e1B, e2B} and e′ = ni)

and restart our strategy with E ′ and e′. The latter is done so that in the next step,

Maker will construct a positive circuit Ci−1 ∈ C(Mi−1) whose last element will be

the first element of Ci (resp. Ci+1 ∈ C(Mi+1) whose first element will be the last

element of Ci).
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Notice that after r moves of Maker, the desired positive circuit is formed. We

finally notice that in the case when |E| > 2r then Maker first select a subset A from

{1, . . . , |E|} such that |A| = 2r and e ∈ A and then uses fictitious moves as done

in [3]. That is, Maker applies the above strategy to A by choosing an element for

Breaker in the case Breaker plays outside A. �

2.1. Concluding remarks. We have checked by computer that there is always

a winning strategy for Maker (playing first) for any oriented matroid of rank 3

and rank 4 with 6 and 8 elements respectively (supporting further Conjecture 1).

Moreover, we noticed that in each case there are always at least two winning choices

for the first move of Maker (similar to Lemma 1, that was a key ingredient for the

proof of our main result). The latter leads us to consider a possible extension of

Theorem 1 by taking union of uniform oriented matroids of rank 1, 2, 3 or 4 (work

in progress).
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Institut de Mathématiques et de Modélisation de Montpellier, Université Mont-
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