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Let gS = {g(s1, . . . , sn)− s|s ∈ S}. A semigroup S is called
symmetric if S ∪ gS = Z.

Symmetric semigroups

(Bresinsky, 1979) Monomial curves

(Kunz, 1979, Herzog, 1970) Gorestein rings

(Apéry, 1945) Classification plane of algebraic branches

(Buchweitz, 1981) Weierstrass semigroups

(Pellikaan and Torres, 1999) Algebraic codes
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Random vectors generator (Vizvári, 1994) A method to generate a
random vector without cyclic drawbacks

Petri nets (Chrzastowski-Wachtel and Raczunas, 1993) The
problem of finding a formula for the least weight in conservative
weights circuits and the Frobenius problem are equivalent.
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Hypohamiltonian graphs

A graph G = (V ,E ) is hypohamiltonian if G is not hamiltonian
but G \ v is hamiltonian for all v ∈ V (G ).

Origin : ‘Le cercle des irascibles’ (the cercle of bad-tempered)

(Skupién, 1992) Construction of an infinite family of
hypohamiltonian graphs via a modular version of the Frobenius
problem.
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Integer partition

A partition of an integer n is an unordered multiset of positive
integers (parts) whose some is n.

Theorem (Holroyd 2008)Let n, a, b be positives integers. Then, the
following are all equinumerous :
(i) partitions of n in which each part and each difference between
two parts lies in 〈a, b〉
(ii) partitions of n in which each part appears with multiplicity
lying in 〈a, b〉
(iii) partitions of n in which each part is divisible by a or b
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Example : Let n = 13, a = 3 and b = 4. Then,

(i) the partitions of 13 in which each part and each difference
between two parts lies in 〈3, 4〉 are : {(13), (10, 3), (7, 3, 3)}

(ii) the partitions of 13 in which each part appears with multiplicity
lying in 〈3, 4〉 are : {(3, 3, 3, 1, 1, 1, 1), (2, 2, 2, 1, . . . , 1), (1, . . . , 1)}

(iii) the partitions of n in which each part is divisible by 3 or 4
are : {(9, 4), (6, 4, 3), (4, 3, 3, 3)}.
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In the case a = 2 and b = 3, the equality between (i) and (ii)
gives the following partition identity (due to MacMahon 1960)

The number of partitions of n into parts not congruent to ±1
modulo 6 equals the number of partitions of n with no consecutive
integers and no ones as parts.
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Vector space partition

A collection {Vi}k
i=1 of subspaces of V = Vn(q) is called a

partition of V if and only if V = ∪k
i=1Vi and Vi ∩ Vj = {0} for all

1 ≤ i (= j ≤ k.

Remark : Generalization of partitions of abelian groups
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Let T = {t1 < · · · < tk} be a set of positive integers. A partition π
is said to be of type T if
(a) for any element W in π the dim(W ) = ti for some i and
(b) there is an element W in π such that the dim(W ) = ti for
each 1 ≤ i ≤ k

Theorem (Beutelspacher, 1978) Let n be an integer such that
n > dg(t1/d , . . . , tk/d) + t1 + · · · + tk where d = gcd(t1, . . . , tk).
Then Vn(q) admits a partition of type T = {t1 < · · · < tk} if and
only if d |n.
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Shell-sort method

3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)

7-sorted : 3,2,6,9,8,1,1,5,2,6

3-sorted : 1,2,1,3,5,2,7,8,6,9

1-sorted : 1,1,2,2,3,5,6,7,8,9

Let nd(a1, . . . , an) be the number of multiples of d not belonging
to 〈a1, . . . , an〉.
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Lemme The number of steps required to hj -sort a set on N
integers that is already hj+1 − hj+2 − · · · − ht-sorted is

O

(
Nnhj (hj+1, hj+2, . . . , ht)

hj

)
.

Proof (idea).

• The number of steps required to insert element a[i ] is the
number of elements in a[i − hj ] which are greater than a[i ].

• Any element a[i − x ] with x ∈ 〈hj+2, . . . , ht〉 must be less than
a[i ] since the file is already hj+1 − hj+2 − · · · − ht-sorted

• Then, an upper bound on the number of steps required to insert
element a[i ], 1 ≤ i ≤ N, is the number of multiples of hj not
belonging to 〈hj+1, . . . , ht〉, that is, nhj (hj+1, hj+2, . . . , ht).
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Lemme If gcd(a1, . . . , an) = 1 then

nd(a1, . . . , an) <
g(a1, . . . , an)

d
.

Theorem (Incerpi and Sedgewick, 1985)The running time of
Shell-sort is O(N3/2) where N is the number of elements in the file
(on average and in worst case).

Conjecture (Gonnet, 1984)The asymptotic growth of the average
case running time of Shell-sort is O(N log N log log N) where N is
the number of elements in the file.
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Tiling rectangles

Let R(a, b) be the 2-dimensional rectangle.

We say that R can be tiled with bricks R1, . . . ,Rn if R can be filled
entirely with copies of Ri (rotations are allowed).
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Question : Can R(13, 13) be tiled with R(2, 2),R(3, 3) and
R(5, 5) ?
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Question : Does there exist a function CR = CR(x , y , u, v) such
that for all integers a, b ≥ CR the rectangle R(a, b) can be tiled
with copies of the rectangles R(x , y) and R(u, v) for given positive
integers x , y , u and v ?

The special case when x = 4, y = 6, u = 5 and v = 7 was posed in
the 1991 William Mowell Putnam Examination (Problem B-3).

Theorem (Klosinski, Alexanderson and Larson, 1992) R(a, b) can
be tiled with R(4, 6) and R(5, 7) if a, b ≥ 2214.
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Theorem (Klarner - Bruijn, 1969) R(a, b) can be tiled with R(x , y)
if and only if either x divides one side of R and y divides the other
or xy divides one side of R and the other side can be expressed as
a nonnegative integer combination of x and y .

Theorem (Fricke, 1995) R(a, b) can be tiled with R(x , x) and
R(y , y) if and only if either a and b are both multiple of x or a and
b are both multiple of y or one of the numbers a, b is a multiple of
xy and the other can be expressed as a nonnegative integer
combination of x and y .
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Theorem (Labrousse and R.A., 2007)
Let R i (ai

1, . . . , a
i
n) i = 1, . . . ,m be rectangles. If

a) gcd(ai1
1 , . . . , aik

1 ) = 1 for all {i1, . . . , ik} ⊂ {1, . . . ,m}
b) gcd(e, f ) = 1 for all {e, f } ⊂ {a1

j , . . . , a
m
j } with 2 ≤ j ≤ n

then all sufficiently large rectangle can be tiled with R1, . . . ,Rm.
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p p q
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q

R R R R
1 1

2 2
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p p q q

u v

v

u

u

v

x x1 2

B(R1,R2) = (t, uv) t > g(p, q)
B(R1,R3) = (t, uw)
B(R2,R3) = (t, vw)
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Condition (b) implies gcd(uv , uw , vw) = 1. Then for any
s > g(uv , uw , vw)
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Condition (b) implies gcd(uv , uw , vw) = 1. Then for any
s > g(uv , uw , vw)

uv

uv

uw

uw

vw

vw

y

y

y

3

2

1

t
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Corollary (Labrousse and R.A., 2010) Let a, b, p, q, r , s be integers
such that gcd(qs, qr , rs) = gcd(p, r) = gcd(p, s) = gcd(r , s) = 1.
Then, R(a, b) can be tiled with R(p, q) and R(r , s) if
a, b > max{2qrs − (qs + qr + rs), ps − p − s, rs − r − s}.

Special case : If p = 6, q = 4, r = 5 and s = 7 then R(a, b) can be
tiled with (4, 6) and (5, 7) if a, b > 197.

Theorem (Narayan and Schwenk, 2002) R(a, b) can be tiled with
(4, 6) and (5, 7) if a, b ≥ 33.
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R(29, 29)

R(6,4)

R(6,4) R(6,4)

R(6,4)

R(6,4) R(6,4) R(6,4)

R(6,4) R(6,4)

R(6,4)R(6,4)

R(6,4) R(6,4)

R(6,4)R(6,4) R(6,4) R(6,4)

R(6,4)R(6,4)

R(7,5)
R(7,5)

R(7,5)

R(7,5)

R(7,5)
R(7,5)

R(7,5)
R(7,5)

R(7,5)

R(7,5)

R(7,5)
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Lemme (Labrousse and R.A., 2010) Let 1 < a1 < a2 < · · · < an+1

be pairwise relatively prime integers, n ≥ 1. Then R(a, . . . , a︸ ︷︷ ︸
n

) can

be tiled with R(a1, . . . , a1︸ ︷︷ ︸
n

), . . . ,R(an+1, . . . , an+1︸ ︷︷ ︸
n

) if

a > g(A1, . . . ,An+1) = nP −
n+1∑

i=1

Ai

where Ai = P/ai with P =
∏n+1

j=1 aj .

R(a, a) can be tiled with R(2, 2),R(3, 3) and R(p, p) if a ≥ 7p + 6
where p is an odd integer and 3 ( | p.
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Theorem (Labrousse and R.A., 2010) Let p > 4 be an odd integer
with 3 ( | p and let a be a positive integer. Then, R(a, a) can be
tiled with R(2, 2),R(3, 3) and R(p, p) if a ≥ 3p + 2.

Corollary (Labrousse and R.A., 2010)R(a, a) can be tiled with
R(2, 2),R(3, 3) and R(5, 5) if and only if a (= 1, 7 and with
R(2, 2),R(3, 3) and R(7, 7) if and only if a (= 1, 5, 11.
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Tiling R(13, 13) with R(2, 2),R(3, 3) and R(5, 5)

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2 2

2

2

2

2

3 3

3

5

5

2
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Tiling R(17, 17) with R(2, 2),R(3, 3) and R(7, 7)

7

7

3

3 3
2 2

22

2

2 2

22

2

2

2

2

2

2 2

2

2

2

2 2

2

2 2 2

22

2 2

22

2 2 2

222

2 2 2

2
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Tiling Tori

Let T (a, b) be the 2-dimensional torus. We say that T can be
tiled with bricks R1, . . . ,Rn if T can be filled entirely with copies
of Ri (rotations are allowed).
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Question : Does there exist a function CT = CT (x , y , u, v) such
that for all integers a, b ≥ CT T (a, b) can be tiled with copies of
the rectangles R(x , y) and R(u, v) for given positive integers
x , y , u and v ?
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Theorem (Klarner - Bruijn, 1969) R(a, b) can be tiled with R(x , y)
if and only if either x divides one side of R and y divides the other
or xy divides one side of R and the other side can be expressed as
a nonnegative integer combination of x and y .

Corollary R(a, b) can be tiled with R(1, n) if and only n divides
either a or b.
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Example : Tiling T (15, 10) with R(1, 6)
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Theorem (Fricke, 1995) R(a, b) can be tiled with R(x , x) and
R(y , y) if and only if either a and b are both multiple of x or a and
b are both multiple of y or one of the numbers a, b is a multiple of
xy and the other can be expressed as a nonnegative integer
combination of x and y .

Example : Tiling T (13, 13) with R(2, 2) and R(3, 3)
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Frobenius problem: Applications



Applications Shell-sort method Tilings Sylver coinage

Theorem (Fricke, 1995) R(a, b) can be tiled with R(x , x) and
R(y , y) if and only if either a and b are both multiple of x or a and
b are both multiple of y or one of the numbers a, b is a multiple of
xy and the other can be expressed as a nonnegative integer
combination of x and y .

Example : Tiling T (13, 13) with R(2, 2) and R(3, 3)
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Theorem (Labrousse and R.A., 2010) Let u, v , x and y be positive
integers. Then, there exists CT (x , y , u, v) such that T (a, b) can be
tiled with R(x , y) and R(u, v) if and only if gcd(xy , uv) = 1.

Theorem (Labrousse and R.A., 2010) Let u, v , x and y be positive
integers such that gcd(xy , uv) = 1. Then, T (a, b) can be tiled
with R(x , y) and R(v , u) if

a, b ≥ min{n1(uv + xy) + 1, n2(uv + xy) + 1}

where n1 = max{vx , uy} and n2 = max{ux , vy}.
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(0,0)
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Sylver coinage game (invented by J.C. Conway)

In this game the players alternatively name different numbers, but
are not allowed to name any number that is a sum of previously
named ones. The winner is the palyer who name the last number.
Of course, as soon as 1 has been played, every other number is
illegal (i.e., representable as a sum of ones) and the game ends.
Because the player who names 1 is declared the loser.

Question : Is there a winning strategy ?
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The jugs problem

There are three jugs with integral capacities B , M , S respectively
where B = M + S and M ≥ S ≥ 1. Any jug may be poured into
any other jug until either the first one is empty or the second is
full. Initially jug B is full and the other two are empty (we use B as
the name of the jug with capacity B, etc.

We want to divide the wine equally, so that 1
2B gallons are in jugs

B and M and jug S is empty, and we want to do so with as few
pourings as possible. We ask three questions. Can we share
equally ? If so, what is the least number of pourings possible ; and
how do we achieve this least number ?
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Theorem (R.A., 1991) It is possible to share equally if and only if
B is divisible by 2r , where r = gcd(M,S). If this is the case, then
the least number of pourings is 1

r B − 1, and the unique optimal
sequence of pourings is given by the first 1

r B − 1 steps (pourings).

Jug Algorithm

Pour jug B into jug M

Repeat

Pour jug M into jug S
Pour jug S into jug B

if m < S then

Pour jug M into jug S
Pour jug B into jug M
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B=8

2 3 3

7 1 0 4 1 3

2 5 1

5 0 3 5 3 0

7 0 1

4 4 0

S=3M=5
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