Applications	Shell-sort method	Tilings	Sylver coinage

Frobenius problem: Applications

J.L. Ramírez Alfonsín

Université Montpellier 2

J.L. Ramírez Alfonsín Frobenius problem: Applications Université Montpellier 2

< □ > < ---->

Applications	Shell-sort method	Tilings	Sylver coinage

Applications

Let $g_S = \{g(s_1, \ldots, s_n) - s | s \in S\}$. A semigroup S is called symmetric if $S \cup g_S = \mathbb{Z}$.

Symmetric semigroups (Bresinsky, 1979) Monomial curves (Kunz, 1979, Herzog, 1970) Gorestein rings (Apéry, 1945) Classification plane of algebraic branches (Buchweitz, 1981) Weierstrass semigroups (Pellikaan and Torres, 1999) Algebraic codes

Image: A match a ma

Applications	Shell-sort method	Tilings	Sylver coinage

Applications

Let $g_S = \{g(s_1, \ldots, s_n) - s | s \in S\}$. A semigroup S is called symmetric if $S \cup g_S = \mathbb{Z}$.

Symmetric semigroups (Bresinsky, 1979) Monomial curves (Kunz, 1979, Herzog, 1970) Gorestein rings (Apéry, 1945) Classification plane of algebraic branches (Buchweitz, 1981) Weierstrass semigroups (Pellikaan and Torres, 1999) Algebraic codes

Applications	Shell-sort method	Tilings	Sylver coinage

Random vectors generator (Vizvári, 1994) A method to generate a random vector without cyclic drawbacks

Petri nets (Chrzastowski-Wachtel and Raczunas, 1993) The problem of finding a formula for the least weight in *conservative weights circuits* and the Frobenius problem are equivalent.

Applications	Shell-sort method	Tilings	Sylver coinage

Random vectors generator (Vizvári, 1994) A method to generate a random vector without cyclic drawbacks

Petri nets (Chrzastowski-Wachtel and Raczunas, 1993) The problem of finding a formula for the least weight in *conservative weights circuits* and the Frobenius problem are equivalent.

Applications	Shell-sort method	Tilings	Sylver coinage

Hypohamiltonian graphs

A graph G = (V, E) is hypohamiltonian if G is not hamiltonian but $G \setminus v$ is hamiltonian for all $v \in V(G)$.

Origin : 'Le cercle des irascibles' (the cercle of bad-tempered)

(Skupién, 1992) Construction of an infinite family of hypohamiltonian graphs via a modular version of the Frobenius problem.

Image: A match a ma

Applications	Shell-sort method	Tilings	Sylver coinage

Hypohamiltonian graphs

A graph G = (V, E) is hypohamiltonian if G is not hamiltonian but $G \setminus v$ is hamiltonian for all $v \in V(G)$.

Origin : 'Le cercle des irascibles' (the cercle of bad-tempered)

(Skupién, 1992) Construction of an infinite family of hypohamiltonian graphs via a modular version of the Frobenius problem.

Image: A math a math

Applications	Shell-sort method	Tilings	Sylver coinage

Hypohamiltonian graphs

A graph G = (V, E) is hypohamiltonian if G is not hamiltonian but $G \setminus v$ is hamiltonian for all $v \in V(G)$.

Origin : 'Le cercle des irascibles' (the cercle of bad-tempered)

(Skupién, 1992) Construction of an infinite family of hypohamiltonian graphs via a modular version of the Frobenius problem.

Image: A match a ma

Applications	Shell-sort method	Tilings	Sylver coinage

Integer partition

A partition of an integer n is an unordered multiset of positive integers (*parts*) whose some is n.

Theorem (Holroyd 2008)Let n, a, b be positives integers. Then, the following are all equinumerous :

(*i*) partitions of *n* in which each part and each difference between two parts lies in $\langle a, b \rangle$

(*ii*) partitions of *n* in which each part appears with multiplicity lying in $\langle a, b \rangle$

(iii) partitions of *n* in which each part is divisible by *a* or *b*

A ∰ ► A ∃

J.L. Ramírez Alfonsín

Applications	Shell-sort method	Tilings	Sylver coinage

Integer partition

A partition of an integer n is an unordered multiset of positive integers (*parts*) whose some is n.

Theorem (Holroyd 2008)Let n, a, b be positives integers. Then, the following are all equinumerous :

(*i*) partitions of *n* in which each part and each difference between two parts lies in $\langle a, b \rangle$

(*ii*) partitions of *n* in which each part appears with multiplicity lying in $\langle a, b \rangle$

(iii) partitions of n in which each part is divisible by a or b

Applications	Shell-sort method	Tilings	Sylver coinage

Integer partition

A partition of an integer n is an unordered multiset of positive integers (*parts*) whose some is n.

Theorem (Holroyd 2008)Let n, a, b be positives integers. Then, the following are all equinumerous :

(i) partitions of n in which each part and each difference between two parts lies in $\langle a,b\rangle$

(*ii*) partitions of *n* in which each part appears with multiplicity lying in $\langle a, b \rangle$

(iii) partitions of n in which each part is divisible by a or b

Applications	Shell-sort method	Tilings	Sylver coinage

Example : Let n = 13, a = 3 and b = 4. Then,

(*i*) the partitions of 13 in which each part and each difference between two parts lies in (3, 4) are : {(13), (10, 3), (7, 3, 3)}

(*ii*) the partitions of 13 in which each part appears with multiplicity lying in (3, 4) are : {(3, 3, 3, 1, 1, 1, 1), (2, 2, 2, 1, ..., 1), (1, ..., 1)}

(*iii*) the partitions of *n* in which each part is divisible by 3 or 4 are : $\{(9,4), (6,4,3), (4,3,3,3)\}$.

Applications	Shell-sort method	Tilings	Sylver coinage

In the case a = 2 and b = 3, the equality between (i) and (ii) gives the following partition identity (due to MacMahon 1960)

The number of partitions of n into parts not congruent to ± 1 modulo 6 equals the number of partitions of n with no consecutive integers and no ones as parts.

Applications	Shell-sort method	Tilings	Sylver coinage

Vector space partition

A collection $\{V_i\}_{i=1}^k$ of subspaces of $V = V_n(q)$ is called a partition of V if and only if $V = \bigcup_{i=1}^k V_i$ and $V_i \cap V_j = \{0\}$ for all $1 \le i \ne j \le k$.

Remark : Generalization of partitions of abelian groups

Image: A math a math

Applications	Shell-sort method	Tilings	Sylver coinage

Vector space partition

A collection $\{V_i\}_{i=1}^k$ of subspaces of $V = V_n(q)$ is called a partition of V if and only if $V = \bigcup_{i=1}^k V_i$ and $V_i \cap V_j = \{0\}$ for all $1 \le i \ne j \le k$.

Remark : Generalization of partitions of abelian groups

J.L. Ramírez Alfonsín Frobenius problem: Applications

Applications	Shell-sort method	Tilings	Sylver coinage

Vector space partition

A collection $\{V_i\}_{i=1}^k$ of subspaces of $V = V_n(q)$ is called a partition of V if and only if $V = \bigcup_{i=1}^k V_i$ and $V_i \cap V_j = \{0\}$ for all $1 \le i \ne j \le k$.

Remark : Generalization of partitions of abelian groups

J.L. Ramírez Alfonsín Frobenius problem: Applications

Applications	Shell-sort method	Tilings	Sylver coinage

Let $T = \{t_1 < \cdots < t_k\}$ be a set of positive integers. A partition π is said to be of type T if (a) for any element W in π the dim $(W) = t_i$ for some i and (b) there is an element W in π such that the dim $(W) = t_i$ for each $1 \le i \le k$

Theorem (Beutelspacher, 1978) Let *n* be an integer such that $n > dg(t_1/d, ..., t_k/d) + t_1 + \cdots + t_k$ where $d = gcd(t_1, ..., t_k)$. Then $V_n(q)$ admits a partition of type $T = \{t_1 < \cdots < t_k\}$ if and only if d|n.

Image: A match a ma

Applications	Shell-sort method	Tilings	Sylver coinage

Let $T = \{t_1 < \cdots < t_k\}$ be a set of positive integers. A partition π is said to be of type T if (a) for any element W in π the dim $(W) = t_i$ for some i and (b) there is an element W in π such that the dim $(W) = t_i$ for each $1 \le i \le k$

Theorem (Beutelspacher, 1978) Let *n* be an integer such that $n > dg(t_1/d, \ldots, t_k/d) + t_1 + \cdots + t_k$ where $d = gcd(t_1, \ldots, t_k)$. Then $V_n(q)$ admits a partition of type $T = \{t_1 < \cdots < t_k\}$ if and only if d|n.

Applications	Shell-sort method	Tilings	Sylver coinage

- 3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)
- 7-sorted : 3,2,6,9,8,1,1,5,2,6
- 3-sorted : 1,2,1,3,5,2,7,8,6,9
- 1-sorted : 1,1,2,2,3,5,6,7,8,9
- Let $n_d(a_1, \ldots, a_n)$ be the number of multiples of d not belonging to $\langle a_1, \ldots, a_n \rangle$.

Applications	Shell-sort method	Tilings	Sylver coinage

3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)

7-sorted : 3,2,6,9,8,1,1,5,2,6

3-sorted : 1,2,1,3,5,2,7,8,6,9

1-sorted : 1,1,2,2,3,5,6,7,8,9

Let $n_d(a_1, \ldots, a_n)$ be the number of multiples of d not belonging to $\langle a_1, \ldots, a_n \rangle$.

Applications	Shell-sort method	Tilings	Sylver coinage

3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)

7-sorted : 3,2,6,9,8,1,1,5,2,6

3-sorted : 1,2,1,3,5,2,7,8,6,9

1-sorted : 1,1,2,2,3,5,6,7,8,9

Let $n_d(a_1, \ldots, a_n)$ be the number of multiples of d not belonging to $\langle a_1, \ldots, a_n \rangle$.

Applications	Shell-sort method	Tilings	Sylver coinage

- 3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)
- 7-sorted : 3,2,6,9,8,1,1,5,2,6
- 3-sorted : 1,2,1,3,5,2,7,8,6,9
- 1-sorted : 1,1,2,2,3,5,6,7,8,9
- Let $n_d(a_1, \ldots, a_n)$ be the number of multiples of d not belonging to $\langle a_1, \ldots, a_n \rangle$.

Applications	Shell-sort method	Tilings	Sylver coinage

- 3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)
- 7-sorted : 3,2,6,9,8,1,1,5,2,6
- 3-sorted : 1,2,1,3,5,2,7,8,6,9
- 1-sorted : 1,1,2,2,3,5,6,7,8,9
- Let $n_d(a_1, \ldots, a_n)$ be the number of multiples of d not belonging to $\langle a_1, \ldots, a_n \rangle$.

Applications	Shell-sort method	Tilings	Sylver coinage

- 3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)
- 7-sorted : 3,2,6,9,8,1,1,5,2,6
- 3-sorted : 1,2,1,3,5,2,7,8,6,9
- 1-sorted: 1,1,2,2,3,5,6,7,8,9

Let $n_d(a_1, \ldots, a_n)$ be the number of multiples of d not belonging to $\langle a_1, \ldots, a_n \rangle$.

- 3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)
- 7-sorted : 3,2,6,9,8,1,1,5,2,6
- 3-sorted : 1,2,1,3,5,2,7,8,6,9
- 1-sorted : 1,1,2,2,3,5,6,7,8,9

Let $n_d(a_1, \ldots, a_n)$ be the number of multiples of d not belonging to $\langle a_1, \ldots, a_n \rangle$.

$$O\left(\frac{Nn_{h_j}(h_{j+1},h_{j+2},\ldots,h_t)}{h_j}\right).$$

Proof (idea).

- The number of steps required to insert element a[i] is the number of elements in $a[i h_j]$ which are greater than a[i].
- Any element a[i x] with $x \in \langle h_{j+2}, \dots, h_t \rangle$ must be less than a[i] since the file is already $h_{j+1} h_{j+2} \dots h_t$ -sorted

• Then, an upper bound on the number of steps required to insert element a[i], $1 \le i \le N$, is the number of multiples of h_j not belonging to $\langle h_{j+1}, \ldots, h_t \rangle$, that is, $n_{h_j}(h_{j+1}, h_{j+2}, \ldots, h_t)$.

(日) (同) (三) (

$$O\left(\frac{Nn_{h_j}(h_{j+1},h_{j+2},\ldots,h_t)}{h_j}\right).$$

Proof (idea).

- The number of steps required to insert element a[i] is the number of elements in $a[i h_j]$ which are greater than a[i].
- Any element a[i x] with $x \in \langle h_{j+2}, \dots, h_t \rangle$ must be less than a[i] since the file is already $h_{j+1} h_{j+2} \dots h_t$ -sorted

• Then, an upper bound on the number of steps required to insert element a[i], $1 \le i \le N$, is the number of multiples of h_j not belonging to $\langle h_{j+1}, \ldots, h_t \rangle$, that is, $n_{h_j}(h_{j+1}, h_{j+2}, \ldots, h_t)$.

・ロト ・回ト ・ヨト ・

$$O\left(\frac{Nn_{h_j}(h_{j+1},h_{j+2},\ldots,h_t)}{h_j}\right).$$

Proof (idea).

- The number of steps required to insert element a[i] is the number of elements in $a[i h_i]$ which are greater than a[i].
- Any element a[i x] with $x \in \langle h_{j+2}, \dots, h_t \rangle$ must be less than a[i] since the file is already $h_{j+1} h_{j+2} \dots h_t$ -sorted

• Then, an upper bound on the number of steps required to insert element a[i], $1 \le i \le N$, is the number of multiples of h_j not belonging to $\langle h_{j+1}, \ldots, h_t \rangle$, that is, $n_{h_j}(h_{j+1}, h_{j+2}, \ldots, h_t)$.

$$O\left(\frac{Nn_{h_j}(h_{j+1},h_{j+2},\ldots,h_t)}{h_j}\right)$$

Proof (idea).

- The number of steps required to insert element a[i] is the number of elements in $a[i h_i]$ which are greater than a[i].
- Any element a[i x] with $x \in \langle h_{j+2}, \ldots, h_t \rangle$ must be less than a[i] since the file is already $h_{j+1} h_{j+2} \cdots h_t$ -sorted

• Then, an upper bound on the number of steps required to insert element a[i], $1 \le i \le N$, is the number of multiples of h_j not belonging to $\langle h_{j+1}, \ldots, h_t \rangle$, that is, $n_{h_j}(h_{j+1}, h_{j+2}, \ldots, h_t)$.

ヘロト 人間ト 人間ト 人間

$$O\left(\frac{Nn_{h_j}(h_{j+1},h_{j+2},\ldots,h_t)}{h_j}\right)$$

Proof (idea).

- The number of steps required to insert element a[i] is the number of elements in $a[i h_i]$ which are greater than a[i].
- Any element a[i x] with $x \in \langle h_{j+2}, \dots, h_t \rangle$ must be less than a[i] since the file is already $h_{j+1} h_{j+2} \dots h_t$ -sorted

• Then, an upper bound on the number of steps required to insert element a[i], $1 \le i \le N$, is the number of multiples of h_j not belonging to $\langle h_{j+1}, \ldots, h_t \rangle$, that is, $n_{h_j}(h_{j+1}, h_{j+2}, \ldots, h_t)$.

ヘロト 人間ト 人間ト 人間

Applications	Shell-sort method	Tilings	Sylver coinage

Lemme If
$$gcd(a_1, \ldots, a_n) = 1$$
 then

$$n_d(a_1,\ldots,a_n) < \frac{g(a_1,\ldots,a_n)}{d}.$$

Theorem (Incerpi and Sedgewick, 1985)The running time of Shell-sort is $O(N^{3/2})$ where N is the number of elements in the file (on average and in worst case).

Conjecture (Gonnet, 1984)The asymptotic growth of the average case running time of Shell-sort is $O(N \log N \log \log N)$ where N is the number of elements in the file.

Applications	Shell-sort method	Tilings	Sylver coinage

Lemme If $gcd(a_1, \ldots, a_n) = 1$ then

$$n_d(a_1,\ldots,a_n) < \frac{g(a_1,\ldots,a_n)}{d}.$$

Theorem (Incerpi and Sedgewick, 1985)The running time of Shell-sort is $O(N^{3/2})$ where N is the number of elements in the file (on average and in worst case).

Conjecture (Gonnet, 1984)The asymptotic growth of the average case running time of Shell-sort is $O(N \log N \log \log N)$ where N is the number of elements in the file.

Applications	Shell-sort method	Tilings	Sylver coinage

Lemme If $gcd(a_1, \ldots, a_n) = 1$ then

$$n_d(a_1,\ldots,a_n) < \frac{g(a_1,\ldots,a_n)}{d}.$$

Theorem (Incerpi and Sedgewick, 1985)The running time of Shell-sort is $O(N^{3/2})$ where N is the number of elements in the file (on average and in worst case).

Conjecture (Gonnet, 1984)The asymptotic growth of the average case running time of Shell-sort is $O(N \log N \log \log N)$ where N is the number of elements in the file.

Applications	Shell-sort method	Tilings	Sylver coinage

Tiling rectangles

Let R(a, b) be the 2-dimensional rectangle.

We say that R can be tiled with bricks R_1, \ldots, R_n if R can be filled entirely with copies of R_i (rotations are allowed).

Image: A math a math

Applications	Shell-sort method	Tilings	Sylver coinage

Tiling rectangles

Let R(a, b) be the 2-dimensional rectangle.

We say that R can be tiled with bricks R_1, \ldots, R_n if R can be filled entirely with copies of R_i (rotations are allowed).

Applications	Shell-sort method	Tilings	Sylver coinage

Question : Can R(13, 13) be tiled with R(2, 2), R(3, 3) and R(5, 5)?

うせん 聞 ふぼくふせく きょうしゃ

Applications	Shell-sort method	Tilings	Sylver coinage

Question : Can R(13, 13) be tiled with R(2, 2), R(3, 3) and R(5, 5)?

	-	2	2	2	2
	5	2	2	2	2
		2	2	2	2
2	3	2	2	2	2
2			2	2	2
2	5			2	
2			3		3

Applications	Shell-sort method	Tilings	Sylver coinage

Question : Does there exist a function $C_R = C_R(x, y, u, v)$ such that for all integers $a, b \ge C_R$ the rectangle R(a, b) can be tiled with copies of the rectangles R(x, y) and R(u, v) for given positive integers x, y, u and v?

The special case when x = 4, y = 6, u = 5 and v = 7 was posed in the 1991 William Mowell Putnam Examination (Problem B-3).

Theorem (Klosinski, Alexanderson and Larson, 1992) R(a, b) can be tiled with R(4, 6) and R(5, 7) if $a, b \ge 2214$.

Applications	Shell-sort method	Tilings	Sylver coinage

Question : Does there exist a function $C_R = C_R(x, y, u, v)$ such that for all integers $a, b \ge C_R$ the rectangle R(a, b) can be tiled with copies of the rectangles R(x, y) and R(u, v) for given positive integers x, y, u and v?

The special case when x = 4, y = 6, u = 5 and v = 7 was posed in the 1991 William Mowell Putnam Examination (Problem B-3).

Theorem (Klosinski, Alexanderson and Larson, 1992) R(a, b) can be tiled with R(4, 6) and R(5, 7) if $a, b \ge 2214$.

Applications	Shell-sort method	Tilings	Sylver coinage

Question : Does there exist a function $C_R = C_R(x, y, u, v)$ such that for all integers $a, b \ge C_R$ the rectangle R(a, b) can be tiled with copies of the rectangles R(x, y) and R(u, v) for given positive integers x, y, u and v?

The special case when x = 4, y = 6, u = 5 and v = 7 was posed in the 1991 William Mowell Putnam Examination (Problem B-3).

Theorem (Klosinski, Alexanderson and Larson, 1992) R(a, b) can be tiled with R(4, 6) and R(5, 7) if $a, b \ge 2214$.

Applications	Shell-sort method	Tilings	Sylver coinage

Theorem (Klarner - Bruijn, 1969) R(a, b) can be tiled with R(x, y) if and only if either x divides one side of R and y divides the other or xy divides one side of R and the other side can be expressed as a nonnegative integer combination of x and y.

Theorem (Fricke, 1995) R(a, b) can be tiled with R(x, x) and R(y, y) if and only if either a and b are both multiple of x or a and b are both multiple of y or one of the numbers a, b is a multiple of xy and the other can be expressed as a nonnegative integer combination of x and y.

Applications	Shell-sort method	Tilings	Sylver coinage

Theorem (Klarner - Bruijn, 1969) R(a, b) can be tiled with R(x, y) if and only if either x divides one side of R and y divides the other or xy divides one side of R and the other side can be expressed as a nonnegative integer combination of x and y.

Theorem (Fricke, 1995) R(a, b) can be tiled with R(x, x) and R(y, y) if and only if either a and b are both multiple of x or a and b are both multiple of y or one of the numbers a, b is a multiple of xy and the other can be expressed as a nonnegative integer combination of x and y.

Applications	Shell-sort method	Tilings	Sylver coinage

Theorem (Labrousse and R.A., 2007) Let $R^i(a_1^j, \ldots, a_n^j)$ $i = 1, \ldots, m$ be rectangles. If a) $gcd(a_1^{i_1}, \ldots, a_1^{i_k}) = 1$ for all $\{i_1, \ldots, i_k\} \subset \{1, \ldots, m\}$ b) gcd(e, f) = 1 for all $\{e, f\} \subset \{a_j^1, \ldots, a_j^m\}$ with $2 \le j \le n$ then all *sufficiently* large rectangle can be tiled with R^1, \ldots, R^m .

Applications	Shell-sort method	Tilings	Sylver coinage

4

(a) < (a) < (a) < (b) < (b)

J.L. Ramírez Alfonsín

Frobenius problem: Applications

Applications	Shell-sort method	Tilings	Sylver coinage

 $B(R_1, R_2) = (t, uv) \ t > g(p, q)$ $B(R_1, R_3) = (t, uw)$ $B(R_2, R_3) = (t, vw)$

Université Montpellier 2

・ロト ・ 日 ト ・ ヨ ト ・

Applications	Shell-sort method	Tilings	Sylver coinage

 $B(R_1, R_2) = (t, uv) \ t > g(p, q)$ $B(R_1, R_3) = (t, uw)$ $B(R_2, R_3) = (t, vw)$

Université Montpellier 2

Image: Image:

Applications	Shell-sort method	Tilings	Sylver coinage

$$B(R_1, R_2) = (t, uv) \ t > g(p, q) B(R_1, R_3) = (t, uw) B(R_2, R_3) = (t, vw)$$

Image: A matched block

Frobenius problem: Applications

J.L. Ramírez Alfonsín

Applications	Shell-sort method	Tilings	Sylver coinage

Condition (b) implies gcd(uv, uw, vw) = 1. Then for any s > g(uv, uw, vw)

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Applications	Shell-sort method	Tilings	Sylver coinage

Condition (b) implies gcd(uv, uw, vw) = 1. Then for any s > g(uv, uw, vw)

Applications	Shell-sort method	Tilings	Sylver coinage

Corollary (Labrousse and R.A., 2010) Let a, b, p, q, r, s be integers such that gcd(qs, qr, rs) = gcd(p, r) = gcd(p, s) = gcd(r, s) = 1. Then, R(a, b) can be tiled with R(p, q) and R(r, s) if $a, b > max\{2qrs - (qs + qr + rs), ps - p - s, rs - r - s\}$.

Special case : If p = 6, q = 4, r = 5 and s = 7 then R(a, b) can be tiled with (4, 6) and (5, 7) if a, b > 197.

Theorem (Narayan and Schwenk, 2002) R(a, b) can be tiled with (4, 6) and (5, 7) if $a, b \ge 33$.

Image: A math a math

Applications	Shell-sort method	Tilings	Sylver coinage

Corollary (Labrousse and R.A., 2010) Let a, b, p, q, r, s be integers such that gcd(qs, qr, rs) = gcd(p, r) = gcd(p, s) = gcd(r, s) = 1. Then, R(a, b) can be tiled with R(p, q) and R(r, s) if $a, b > max\{2qrs - (qs + qr + rs), ps - p - s, rs - r - s\}$.

Special case : If p = 6, q = 4, r = 5 and s = 7 then R(a, b) can be tiled with (4,6) and (5,7) if a, b > 197.

Theorem (Narayan and Schwenk, 2002) R(a, b) can be tiled with (4, 6) and (5, 7) if $a, b \ge 33$.

Applications	Shell-sort method	Tilings	Sylver coinage

Corollary (Labrousse and R.A., 2010) Let a, b, p, q, r, s be integers such that gcd(qs, qr, rs) = gcd(p, r) = gcd(p, s) = gcd(r, s) = 1. Then, R(a, b) can be tiled with R(p, q) and R(r, s) if $a, b > max\{2qrs - (qs + qr + rs), ps - p - s, rs - r - s\}$.

Special case : If p = 6, q = 4, r = 5 and s = 7 then R(a, b) can be tiled with (4,6) and (5,7) if a, b > 197.

Theorem (Narayan and Schwenk, 2002) R(a, b) can be tiled with (4, 6) and (5, 7) if $a, b \ge 33$.

R(29, 29)

R(7,5)	R(6,4)	R(6,4)	R(6,4)	R(6,4)
	R(6,4)	R(6,4) R(6,4)		(6,4)	R(6,4)
R(7,5)	R(6,4)	R(6,4)	F	R(7,5)	R(7,5)
	R(6,4)	R(6,4)	R	R(7,5)	-
R(7,5)	R(7,5)			(1,2)	R(7,5)
		R(7,5)	F	8(7,5)	
R(6,4)	R(6,4)				
R(6,4)	R(6,4)	R(6,4)	R(6,4)	R(6,4)	R(7,5)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲国 ● ④ ● ◎

J.L. Ramírez Alfonsín

Applications Shell-sort method Tilings Sylver coinage Lemme (Labrousse and R.A., 2010) Let $1 < a_1 < a_2 < \cdots < a_{n+1}$ be pairwise relatively prime integers, $n \geq 1$. Then $R(a, \ldots, a)$ can n be tiled with $R(a_1, \ldots, a_1), \ldots, R(a_{n+1}, \ldots, a_{n+1})$ if n n $a > g(A_1,\ldots,A_{n+1}) = nP - \sum_{i=1}^{n-1} A_i$ where $A_i = P/a_i$ with $P = \prod_{i=1}^{n+1} a_i$.

R(a, a) can be tiled with R(2, 2), R(3, 3) and R(p, p) if $a \ge 7p + 6$ where p is an odd integer and $3 \not\mid p$.

(日)

Applications Shell-sort method Tilings Sylv	er coinage
Lemme (Labrousse and R.A., 2010) Let $1 < a_1 < a_2 < \cdots < a_{n-1}$	1
be pairwise relatively prime integers, $n \ge 1$. Then $R(a, \ldots, a)$ car	ו
be tiled with $R(\underline{a_1,\ldots,a_1}),\ldots,R(\underline{a_{n+1},\ldots,a_{n+1}})$ if	
be then with $(a_1, \ldots, a_1), \ldots, (a_{n+1}, \ldots, a_{n+1})$	
n n	
<i>n</i> +1	
$a > g(A_1, \dots, A_{n+1}) = nP - \sum A_i$	
i=1	
- 1	
where $A_i = P/a_i$ with $P = \prod_{i=1}^{n+1} a_i$.	

R(a, a) can be tiled with R(2, 2), R(3, 3) and R(p, p) if $a \ge 7p + 6$ where p is an odd integer and $3 \not\mid p$.

Image: Image:

Applications	Shell-sort method	Tilings	Sylver coinage

Theorem (Labrousse and R.A., 2010) Let p > 4 be an odd integer with 3 $\not\mid p$ and let *a* be a positive integer. Then, R(a, a) can be tiled with R(2,2), R(3,3) and R(p,p) if $a \ge 3p + 2$.

Corollary (Labrousse and R.A., 2010)R(a, a) can be tiled with R(2,2), R(3,3) and R(5,5) if and only if $a \neq 1,7$ and with R(2,2), R(3,3) and R(7,7) if and only if $a \neq 1,5,11$.

Image: A matrix A

Applications	Shell-sort method	Tilings	Sylver coinage

Theorem (Labrousse and R.A., 2010) Let p > 4 be an odd integer with 3 $\not\mid p$ and let *a* be a positive integer. Then, R(a, a) can be tiled with R(2, 2), R(3, 3) and R(p, p) if $a \ge 3p + 2$.

Corollary (Labrousse and R.A., 2010)R(a, a) can be tiled with R(2,2), R(3,3) and R(5,5) if and only if $a \neq 1,7$ and with R(2,2), R(3,3) and R(7,7) if and only if $a \neq 1,5,11$.

Applications				

Tiling R(13, 13) with R(2, 2), R(3, 3) and R(5, 5)

	-	2	2	2	2	2
	5	2	2	2	2	2
2		2	2	2	2	2
2	3	2	2	1	2	2
2			2	2	2	2
2	5					
2			3			3

Université Montpellier 2

Image: A image: A

Tiling R(17, 17) with R(2, 2), R(3, 3) and R(7, 7)

			2	2	2	2	2
	7		2	2	2	2	2
			2	2	2	2	2
			2	2	2	2	2
2	2	3		-		2	
2	2		2	2	2	2	2
	_				2	2	2
2	2		_				
2	2		7		2	2	2
					2		2
2	2				3		3

Université Montpellier 2

Image: A image: A

J.L. Ramírez Alfonsín

Frobenius problem: Applications

Applications	Shell-sort method	Tilings	Sylver coinage

Tiling Tori

Let T(a, b) be the 2-dimensional torus. We say that T can be tiled with *bricks* R_1, \ldots, R_n if T can be filled entirely with copies of R_i (rotations are allowed).

Image: A math a math

Applications	Shell-sort method	Tilings	Sylver coinage

Tiling Tori

Let T(a, b) be the 2-dimensional torus. We say that T can be tiled with *bricks* R_1, \ldots, R_n if T can be filled entirely with copies of R_i (rotations are allowed).

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

We say that T can be tiled with bricks R_1, \ldots, R_n if T can be filled entirely with copies of R_i (rotations are allowed).

We say that T can be tiled with bricks R_1, \ldots, R_n if T can be filled entirely with copies of R_i (rotations are allowed).

a

Applications	Shell-sort method	Tilings	Sylver coinage

Question : Does there exist a function $C_T = C_T(x, y, u, v)$ such that for all integers $a, b \ge C_T$ T(a, b) can be tiled with copies of the rectangles R(x, y) and R(u, v) for given positive integers x, y, u and v?

Applications	Shell-sort method	Tilings	Sylver coinage

Theorem (Klarner - Bruijn, 1969) R(a, b) can be tiled with R(x, y) if and only if either x divides one side of R and y divides the other or xy divides one side of R and the other side can be expressed as a nonnegative integer combination of x and y.

Corollary R(a, b) can be tiled with R(1, n) if and only n divides either a or b.

Applications	Shell-sort method	Tilings	Sylver coinage

Theorem (Klarner - Bruijn, 1969) R(a, b) can be tiled with R(x, y) if and only if either x divides one side of R and y divides the other or xy divides one side of R and the other side can be expressed as a nonnegative integer combination of x and y.

Corollary R(a, b) can be tiled with R(1, n) if and only n divides either a or b.

Applications	Shell-sort method	Tilings	Sylver coinage

Example : Tiling T(15, 10) with R(1, 6)

J.L. Ramírez Alfonsín Frobenius problem: Applications Université Montpellier 2

A B > 4
B > 4
B

Applications	Shell-sort method	Tilings	Sylver coinage

Theorem (Fricke, 1995) R(a, b) can be tiled with R(x, x) and R(y, y) if and only if either a and b are both multiple of x or a and b are both multiple of y or one of the numbers a, b is a multiple of xy and the other can be expressed as a nonnegative integer combination of x and y.

Example : Tiling T(13, 13) with R(2, 2) and R(3, 3)

Applications	Shell-sort method	Tilings	Sylver coinage

Theorem (Fricke, 1995) R(a, b) can be tiled with R(x, x) and R(y, y) if and only if either a and b are both multiple of x or a and b are both multiple of y or one of the numbers a, b is a multiple of xy and the other can be expressed as a nonnegative integer combination of x and y.

Example : Tiling T(13, 13) with R(2, 2) and R(3, 3)

Applications	Shell-sort method	Tilings	Sylver coinage
Theorem (F	ricke, 1995) <i>R(a, b</i>) can	be tiled with $R(x,$	x) and
R(y,y) if a	nd only if either a and b	are both multiple of	of x or a and
hare both	nultiple of v or one of t	he numbers a his	multiple of

b are both multiple of y or one of the numbers a, b is a multiple of xy and the other can be expressed as a nonnegative integer combination of x and y.

Example : Tiling T(13, 13) with R(2, 2) and R(3, 3)

Image: Image:

Applications	Shell-sort method	Tilings	Sylver coinage

Theorem (Labrousse and R.A., 2010) Let u, v, x and y be positive integers. Then, there exists $C_T(x, y, u, v)$ such that T(a, b) can be tiled with R(x, y) and R(u, v) if and only if gcd(xy, uv) = 1.

Theorem (Labrousse and R.A., 2010) Let u, v, x and y be positive integers such that gcd(xy, uv) = 1. Then, T(a, b) can be tiled with R(x, y) and R(v, u) if

 $a, b \ge \min\{n_1(uv + xy) + 1, n_2(uv + xy) + 1\}$

where $n_1 = \max\{vx, uy\}$ and $n_2 = \max\{ux, vy\}$.

Image: A match a ma

Applications	Shell-sort method	Tilings	Sylver coinage

Theorem (Labrousse and R.A., 2010) Let u, v, x and y be positive integers. Then, there exists $C_T(x, y, u, v)$ such that T(a, b) can be tiled with R(x, y) and R(u, v) if and only if gcd(xy, uv) = 1.

Theorem (Labrousse and R.A., 2010) Let u, v, x and y be positive integers such that gcd(xy, uv) = 1. Then, T(a, b) can be tiled with R(x, y) and R(v, u) if

 $a, b \ge \min\{n_1(uv + xy) + 1, n_2(uv + xy) + 1\}$

where $n_1 = \max\{vx, uy\}$ and $n_2 = \max\{ux, vy\}$.

Frobenius problem: Applications

Université Montpellier 2

Applications	Shell-sort method	Tilings	Sylver coinage
			ミンマミン 王 つつぐ
J.L. Ramírez Alfonsín			Université Montpellier 2

Applications	Shell-sort method	Tilings	Sylver coinage
	• • •	8 8	0 0 0
	000		

4

(a) < (a) < (a) < (b) < (b)

J.L. Ramírez Alfonsín

Applications	Shell-sort method	Tilings	Sylver coinage
			-
		• • • • • • • •	≣ × ≡ × ≡ • १९९

J.L. Ramírez Alfonsín

Applications	Shell-sort method	Tilings	Sylver coinage

Sylver coinage game (invented by J.C. Conway)

In this game the players alternatively name different numbers, but are not allowed to name *any* number that is a sum of previously named ones. The winner is the palyer who name the last number. Of course, as soon as 1 has been played, every other number is illegal (*i.e.*, representable as a sum of ones) and the game ends. Because the player who names 1 is declared the loser.

Question : Is there a winning strategy?

Applications	Shell-sort method	Tilings	Sylver coinage

Sylver coinage game (invented by J.C. Conway)

In this game the players alternatively name different numbers, but are not allowed to name *any* number that is a sum of previously named ones. The winner is the palyer who name the last number. Of course, as soon as 1 has been played, every other number is illegal (*i.e.*, representable as a sum of ones) and the game ends. Because the player who names 1 is declared the loser.

Question : Is there a winning strategy?

Applications	Shell-sort method	Tilings	Sylver coinage

Sylver coinage game (invented by J.C. Conway)

In this game the players alternatively name different numbers, but are not allowed to name *any* number that is a sum of previously named ones. The winner is the palyer who name the last number. Of course, as soon as 1 has been played, every other number is illegal (*i.e.*, representable as a sum of ones) and the game ends. Because the player who names 1 is declared the loser.

Question : Is there a winning strategy?

Applications	Shell-sort method	Tilings	Sylver coinage

The jugs problem

There are three jugs with integral capacities B, M, S respectively where B = M + S and $M \ge S \ge 1$. Any jug may be poured into any other jug until either the first one is empty or the second is full. Initially jug B is full and the other two are empty (we use B as the name of the jug with capacity B, etc.

We want to divide the wine equally, so that $\frac{1}{2}B$ gallons are in jugs B and M and jug S is empty, and we want to do so with as few pourings as possible. We ask three questions. Can we share equally? If so, what is the least number of pourings possible; and how do we achieve this least number?

Image: A (1) →

Applications	Shell-sort method	Tilings	Sylver coinage

The jugs problem

There are three jugs with integral capacities B, M, S respectively where B = M + S and $M \ge S \ge 1$. Any jug may be poured into any other jug until either the first one is empty or the second is full. Initially jug B is full and the other two are empty (we use B as the name of the jug with capacity B, etc.

We want to divide the wine equally, so that $\frac{1}{2}B$ gallons are in jugs B and M and jug S is empty, and we want to do so with as few pourings as possible. We ask three questions. Can we share equally? If so, what is the least number of pourings possible; and how do we achieve this least number?

Image: A (1) →

Applications	Shell-sort method	Tilings	Sylver coinage

The jugs problem

There are three jugs with integral capacities B, M, S respectively where B = M + S and $M \ge S \ge 1$. Any jug may be poured into any other jug until either the first one is empty or the second is full. Initially jug B is full and the other two are empty (we use B as the name of the jug with capacity B, etc.

We want to divide the wine equally, so that $\frac{1}{2}B$ gallons are in jugs B and M and jug S is empty, and we want to do so with as few pourings as possible. We ask three questions. Can we share equally? If so, what is the least number of pourings possible; and how do we achieve this least number?

Theorem (R.A., 1991) It is possible to share equally if and only if B is divisible by 2r, where $r = \gcd(M, S)$. If this is the case, then the least number of pourings is $\frac{1}{r}B - 1$, and the unique optimal sequence of pourings is given by the first $\frac{1}{r}B - 1$ steps (pourings). Image: A matrix A

Theorem (R.A., 1991) It is possible to share equally if and only if B is divisible by 2r, where r = gcd(M, S). If this is the case, then the least number of pourings is $\frac{1}{r}B - 1$, and the unique optimal sequence of pourings is given by the first $\frac{1}{r}B - 1$ steps (pourings). Jug Algorithm

Pour jug B into jug M

Repeat

Pour jug M into jug SPour jug S into jug B

if m < S then

Pour jug M into jug SPour jug B into jug M

J.L. Ramírez Alfonsín

Université Montpellier 2