

Frobenius problem: Applications

J.L. Ramírez Alfonsín

Université Montpellier 2

J.L. Ramírez Alfonsín a compositor a compositor a compositor and compositor and compositor U Université Montpellier 2 [Frobenius problem: Applications](#page-84-0)

つへへ

KD > KFIX

Applications

Let $g_S = \{g(s_1, \ldots, s_n) - s | s \in S\}$. A semigroup S is called symmetric if $S \cup g_S = \mathbb{Z}$.

(Bresinsky, 1979) Monomial curves

つひひ

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶

Applications

Let $g_S = \{g(s_1, \ldots, s_n) - s | s \in S\}$. A semigroup S is called symmetric if $S \cup g_S = \mathbb{Z}$.

Symmetric semigroups (Bresinsky, 1979) Monomial curves (Kunz, 1979, Herzog, 1970) Gorestein rings (Apéry, 1945) Classification plane of algebraic branches (Buchweitz, 1981) Weierstrass semigroups (Pellikaan and Torres, 1999) Algebraic codes

つひひ

Random vectors generator (Vizvári, 1994) A method to generate a random vector without cyclic drawbacks

Random vectors generator (Vizvári, 1994) A method to generate a random vector without cyclic drawbacks

Petri nets (Chrzastowski-Wachtel and Raczunas, 1993) The problem of finding a formula for the least weight in *conservative* weights circuits and the Frobenius problem are equivalent.

∽≏∩

J.L. Ramírez Alfonsín a composition a composition of the Montpellier 2 and [Frobenius problem: Applications](#page-0-0)

Hypohamiltonian graphs

A graph $G = (V, E)$ is hypohamiltonian if G is not hamiltonian but $G \setminus v$ is hamiltonian for all $v \in V(G)$.

K ロ ト K 伺 ト K ヨ ト

Hypohamiltonian graphs

A graph $G = (V, E)$ is hypohamiltonian if G is not hamiltonian but $G \setminus v$ is hamiltonian for all $v \in V(G)$.

Origin : 'Le cercle des irascibles' (the cercle of bad-tempered)

つひひ

イロト イ母ト イヨト イ

Hypohamiltonian graphs

A graph $G = (V, E)$ is hypohamiltonian if G is not hamiltonian but $G \setminus v$ is hamiltonian for all $v \in V(G)$.

Origin : 'Le cercle des irascibles' (the cercle of bad-tempered)

(Skupién, 1992) Construction of an infinite family of hypohamiltonian graphs via a modular version of the Frobenius problem.

つひひ

イロト イ部ト イミトン

Integer partition

A partition of an integer *n* is an unordered multiset of positive

Integer partition

A partition of an integer n is an unordered multiset of positive integers (*parts*) whose some is *n*.

 $\left\{ \left| \left| \left| \left| \left| \left| \left| \left| \right| \right| \right| \right| \right| \right| \right\} \right\}$ $\left| \left| \right| \right| \right| \right| \right| \right| \right| \right\}$

Integer partition

A partition of an integer n is an unordered multiset of positive integers (*parts*) whose some is *n*.

Theorem (Holroyd 2008)Let n, a, b be positives integers. Then, the following are all equinumerous :

 (i) partitions of n in which each part and each difference between two parts lies in $\langle a, b \rangle$

 (ii) partitions of n in which each part appears with multiplicity lying in $\langle a, b \rangle$

 (iii) partitions of n in which each part is divisible by a or b

[Frobenius problem: Applications](#page-0-0)

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶

Example : Let $n = 13$, $a = 3$ and $b = 4$. Then,

 (i) the partitions of 13 in which each part and each difference between two parts lies in $(3, 4)$ are : $\{(13), (10, 3), (7, 3, 3)\}$

 (ii) the partitions of 13 in which each part appears with multiplicity lying in $\langle 3, 4 \rangle$ are : $\{(3, 3, 3, 1, 1, 1, 1), (2, 2, 2, 1, \ldots, 1), (1, \ldots, 1)\}\$

 (iii) the partitions of n in which each part is divisible by 3 or 4 are : $\{(9, 4), (6, 4, 3), (4, 3, 3, 3)\}.$

つひひ

∢ ロ ▶ . ∢ 伺 ▶ . ∢ ヨ ▶ .

In the case $a = 2$ and $b = 3$, the equality between (i) and (ii) gives the following partition identity (due to MacMahon 1960)

The number of partitions of n into parts not congruent to ± 1 modulo 6 equals the number of partitions of n with no consecutive integers and no ones as parts.

つひひ

J.L. Ramírez Alfonsín a composition a composition of the Montpellier 2 and [Frobenius problem: Applications](#page-0-0)

Vector space partition

A collection $\{V_i\}_{i=1}^k$ of subspaces of $V=V_n(q)$ is called a partition of V if and only if $V = \cup_{i=1}^k V_i$ and $V_i \cap V_j = \{0\}$ for all $1 \leq i \neq j \leq k$.

つひひ

(□) (n) () =

Vector space partition

A collection $\{V_i\}_{i=1}^k$ of subspaces of $V = V_n(q)$ is called a partition of V if and only if $V = \bigcup_{i=1}^{k} V_i$ and $V_i \cap V_j = \{0\}$ for all $1 \leq i \neq j \leq k$.

つひひ

K ロ ト K 何 ト K 手

Vector space partition

A collection $\{V_i\}_{i=1}^k$ of subspaces of $V = V_n(q)$ is called a partition of V if and only if $V = \bigcup_{i=1}^{k} V_i$ and $V_i \cap V_j = \{0\}$ for all $1 \leq i \neq j \leq k$.

Remark : Generalization of partitions of abelian groups

つひひ

(□) (n) () =

Let $T = \{t_1 < \cdots < t_k\}$ be a set of positive integers. A partition π is said to be of type T if (a) for any element W in π the dim(W) = t_i for some i and (b) there is an element W in π such that the dim(W) = t_i for each $1 \leq i \leq k$

 $n > dg(t_1/d, \ldots, t_k/d) + t_1 + \cdots + t_k$ where $d = \gcd(t_1, \ldots, t_k)$. Then $V_n(q)$ admits a partition of type $T = \{t_1 < \cdots < t_k\}$ if and

イロト イ母ト イヨト イ

Let $T = \{t_1 < \cdots < t_k\}$ be a set of positive integers. A partition π is said to be of type T if (a) for any element W in π the dim(W) = t_i for some i and (b) there is an element W in π such that the dim(W) = t_i for each $1 \leq i \leq k$

Theorem (Beutelspacher, 1978) Let n be an integer such that $n > dg(t_1/d, \ldots, t_k/d) + t_1 + \cdots + t_k$ where $d = \gcd(t_1, \ldots, t_k)$. Then $V_n(q)$ admits a partition of type $T = \{t_1 < \cdots < t_k\}$ if and only if $d|n$.

イロト イ母ト イヨト イ

-
-
-
-
-

4 日下

3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)

3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)

- 3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)
- 7-sorted : 3,2,6,9,8,1,1,5,2,6
-
-
-

- 3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)
- 7-sorted : 3,2,6,9,8,1,1,5,2,6
- 3-sorted : 1,2,1,3,5,2,7,8,6,9
-
-

- 3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)
- 7-sorted : 3,2,6,9,8,1,1,5,2,6
- 3-sorted : 1,2,1,3,5,2,7,8,6,9
- 1-sorted : 1,1,2,2,3,5,6,7,8,9

J.L. Ramírez Alfonsín a composition of the Montpellier 2 and 2 a [Frobenius problem: Applications](#page-0-0)

- 3,2,7,9,8,1,1,5,2,6 (increment sequence : 7,3,1)
- 7-sorted : 3,2,6,9,8,1,1,5,2,6
- 3-sorted : 1,2,1,3,5,2,7,8,6,9
- 1-sorted : 1,1,2,2,3,5,6,7,8,9

Let $n_d(a_1, \ldots, a_n)$ be the number of multiples of d not belonging to $\langle a_1, \ldots, a_n \rangle$.

∢ ロ ▶ - ィ _印

$$
O\left(\frac{Nn_{h_j}(h_{j+1},h_{j+2},\ldots,h_t)}{h_j}\right).
$$

- The number of steps required to insert element $a[i]$ is the
- Any element $a[i x]$ with $x \in \langle h_{i+2}, \ldots, h_t \rangle$ must be less than
- Then, an upper bound on the number of steps required to insert element $a[i]$, $1 \le i \le N$, is the number of multiples of h_i not

 Ω

K ロ ⊁ K 倒 ≯ K ミ ≯ K

$$
O\left(\frac{Nn_{h_j}(h_{j+1},h_{j+2},\ldots,h_t)}{h_j}\right).
$$

Proof (idea).

• The number of steps required to insert element $a[i]$ is the

• Any element $a[i - x]$ with $x \in \langle h_{i+2}, \ldots, h_t \rangle$ must be less than

• Then, an upper bound on the number of steps required to insert element $a[i]$, $1 \le i \le N$, is the number of multiples of h_i not

 Ω

K ロ ⊁ K 倒 ≯ K ミ ≯ K

$$
O\left(\frac{Nn_{h_j}(h_{j+1},h_{j+2},\ldots,h_t)}{h_j}\right).
$$

Proof (idea).

- The number of steps required to insert element $a[i]$ is the number of elements in $a[i - h_i]$ which are greater than $a[i]$.
- Any element $a[i x]$ with $x \in \langle h_{i+2}, \ldots, h_t \rangle$ must be less than

• Then, an upper bound on the number of steps required to insert element $a[i]$, $1 \le i \le N$, is the number of multiples of h_i not

 Ω

メロメ メ都 メメ ヨメメ

$$
O\left(\frac{Nn_{h_j}(h_{j+1},h_{j+2},\ldots,h_t)}{h_j}\right).
$$

Proof (idea).

- The number of steps required to insert element $a[i]$ is the number of elements in $a[i - h_i]$ which are greater than $a[i]$.
- Any element $a[i x]$ with $x \in \langle h_{i+2}, \ldots, h_t \rangle$ must be less than a[i] since the file is already $h_{i+1} - h_{i+2} - \cdots - h_t$ -sorted

• Then, an upper bound on the number of steps required to insert element $a[i]$, $1 \le i \le N$, is the number of multiples of h_i not

つひひ

イロト イ押ト イミト イヨ

$$
O\left(\frac{Nn_{h_j}(h_{j+1},h_{j+2},\ldots,h_t)}{h_j}\right).
$$

Proof (idea).

- The number of steps required to insert element $a[i]$ is the number of elements in $a[i - h_i]$ which are greater than $a[i]$.
- Any element $a[i x]$ with $x \in \langle h_{i+2}, \ldots, h_t \rangle$ must be less than a[i] since the file is already $h_{i+1} - h_{i+2} - \cdots - h_t$ -sorted
- Then, an upper bound on the number of steps required to insert element $a[i]$, $1 \le i \le N$, is the number of multiples of h_i not belonging to $\langle h_{j+1}, \ldots, h_t \rangle$, that is, $n_{h_i}(h_{j+1}, h_{j+2}, \ldots, h_t)$.

つひひ

イロト イ部ト イミト イミ

$$
Lemme \ If \ gcd(a_1, \ldots, a_n) = 1 \ then
$$

$$
n_d(a_1,\ldots,a_n)<\frac{g(a_1,\ldots,a_n)}{d}.
$$

Shell-sort is $O(N^{3/2})$ where N is the number of elements in the file

case running time of Shell-sort is $O(N \log N \log N)$ where N is

- イ母 ト イヨ ト

$$
Lemme \ If \ gcd(a_1, \ldots, a_n) = 1 \ then
$$

$$
n_d(a_1,\ldots,a_n)<\frac{g(a_1,\ldots,a_n)}{d}.
$$

Theorem (Incerpi and Sedgewick, 1985)The running time of Shell-sort is $O(N^{3/2})$ where N is the number of elements in the file (on average and in worst case).

case running time of Shell-sort is $O(N \log N \log \log N)$ where N is

$$
Lemme \ If \ gcd(a_1, \ldots, a_n) = 1 \ then
$$

$$
n_d(a_1,\ldots,a_n)<\frac{g(a_1,\ldots,a_n)}{d}.
$$

Theorem (Incerpi and Sedgewick, 1985)The running time of Shell-sort is $O(N^{3/2})$ where N is the number of elements in the file (on average and in worst case).

Conjecture (Gonnet, 1984)The asymptotic growth of the average case running time of Shell-sort is $O(N \log N \log N)$ where N is the number of elements in the file.

Tiling rectangles

 Ω

K ロ ト K 何 ト K 手

Tiling rectangles

Let $R(a, b)$ be the 2-dimensional rectangle.

We say that R can be tiled with bricks R_1, \ldots, R_n if R can be filled entirely with copies of R*ⁱ* (rotations are allowed).

∢ ロ ▶ - ィ _印

Question : Can $R(13, 13)$ be tiled with $R(2, 2)$, $R(3, 3)$ and $R(5, 5)$?

 299 **K ロ ▶ K 御 ▶ K 君**

J.L. Ramírez Alfonsín a compositor a compositor a compositor and compositor and compositor U Université Montpellier 2 [Frobenius problem: Applications](#page-0-0)
Question : Can $R(13, 13)$ be tiled with $R(2, 2)$, $R(3, 3)$ and $R(5, 5)$?

K ロ ▶ K 御 ▶ K 君

×

Question : Does there exist a function $C_R = C_R(x, y, u, v)$ such that for all integers $a, b > C_R$ the rectangle $R(a, b)$ can be tiled with copies of the rectangles $R(x, y)$ and $R(u, v)$ for given positive integers x, y, u and y ?

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶

Question : Does there exist a function $C_R = C_R(x, y, u, v)$ such that for all integers $a, b > C_R$ the rectangle $R(a, b)$ can be tiled with copies of the rectangles $R(x, y)$ and $R(u, v)$ for given positive integers x, y, u and y ?

The special case when $x = 4$, $y = 6$, $u = 5$ and $v = 7$ was posed in the 1991 William Mowell Putnam Examination (Problem B-3).

K ロ ト K 何 ト K ヨ ト .

Question : Does there exist a function $C_R = C_R(x, y, u, v)$ such that for all integers $a, b \geq C_R$ the rectangle $R(a, b)$ can be tiled with copies of the rectangles $R(x, y)$ and $R(u, v)$ for given positive integers x, y, u and y ?

The special case when $x = 4$, $y = 6$, $u = 5$ and $v = 7$ was posed in the 1991 William Mowell Putnam Examination (Problem B-3).

Theorem (Klosinski, Alexanderson and Larson, 1992) $R(a, b)$ can be tiled with $R(4,6)$ and $R(5,7)$ if a, $b \ge 2214$.

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶

Theorem (Klarner - Bruijn, 1969) $R(a, b)$ can be tiled with $R(x, y)$ if and only if either x divides one side of R and y divides the other or xy divides one side of R and the other side can be expressed as a nonnegative integer combination of x and y .

- 4 何) 4 三)

Theorem (Klarner - Bruijn, 1969) $R(a, b)$ can be tiled with $R(x, y)$ if and only if either x divides one side of R and y divides the other or xv divides one side of R and the other side can be expressed as a nonnegative integer combination of x and y .

Theorem (Fricke, 1995) $R(a, b)$ can be tiled with $R(x, x)$ and $R(y, y)$ if and only if either a and b are both multiple of x or a and b are both multiple of y or one of the numbers a, b is a multiple of xy and the other can be expressed as a nonnegative integer combination of x and y .

Theorem (Labrousse and R.A., 2007) Let $R^i(a_1^i, \ldots, a_n^i)$ $i = 1, \ldots, m$ be rectangles. If a) $\gcd(a_1^{i_1}, \ldots, a_1^{i_k}) = 1$ for all $\{i_1, \ldots, i_k\} \subset \{1, \ldots, m\}$ b) $\gcd(e, f) = 1$ for all $\{e, f\} \subset \{a_j^1, \ldots, a_j^m\}$ with $2 \le j \le n$ then all *sufficiently* large rectangle can be tiled with R^1, \ldots, R^m .

J.L. Ramírez Alfonsín a composition a composition of the Montpellier 2 and [Frobenius problem: Applications](#page-0-0)

 299

メロトメ 倒 トメ きょくきょう

 $B(R_1, R_2) = (t, uv) t > g(p, q)$

J.L. Ramírez Alfonsín a compositor a compositor a compositor and compositor and compositor U Université Montpellier 2

∢ □ ▶ ∢ ⑦

× \prec 299

 $B(R_1, R_2) = (t, uv) t > g(p, q)$

J.L. Ramírez Alfonsín a compositor a compositor a compositor and compositor and compositor U Université Montpellier 2

 $\begin{array}{c} 4 \quad \text{I} \quad \text{I} \quad \text{I} \quad \text{I} \quad \text{I} \end{array}$

 299

$$
B(R_1, R_2) = (t, uv) t > g(p, q)
$$

\n
$$
B(R_1, R_3) = (t, uw)
$$

\n
$$
B(R_2, R_3) = (t, vw)
$$

ă J.L. Ramírez Alfonsín († 1888)
20. marec 20. marec Alfonsón († 1898)

Kロト K包 K

 299

Condition (b) implies $gcd(uv, uw, vw) = 1$. Then for any $s > g(uv, uw, vw)$

J.L. Ramírez Alfonsín a compositor a compositor a compositor and compositor and compositor U Université Montpellier 2 [Frobenius problem: Applications](#page-0-0)

Condition (b) implies $gcd(uv, uw, vw) = 1$. Then for any $s > g(uv, uw, vw)$

Corollary (Labrousse and R.A., 2010) Let a, b, p, q, r, s be integers such that $gcd(qs, qr, rs) = gcd(p, r) = gcd(p, s) = gcd(r, s) = 1$. Then, $R(a, b)$ can be tiled with $R(p, q)$ and $R(r, s)$ if $a, b > \max\{2qrs - (qs + qr + rs), ps - p - s, rs - r - s\}.$

つひひ

K ロ ト K 何 ト K ヨ ト K

Corollary (Labrousse and R.A., 2010) Let a, b, p, q, r, s be integers such that $gcd(qs, qr, rs) = gcd(p, r) = gcd(p, s) = gcd(r, s) = 1$. Then, $R(a, b)$ can be tiled with $R(p, q)$ and $R(r, s)$ if $a, b > \max\{2qrs - (qs + qr + rs), ps - p - s, rs - r - s\}.$

Special case : If $p = 6$, $q = 4$, $r = 5$ and $s = 7$ then $R(a, b)$ can be tiled with $(4, 6)$ and $(5, 7)$ if $a, b > 197$.

つひひ

K ロ ト K 何 ト K ヨ ト K

Corollary (Labrousse and R.A., 2010) Let a, b, p, q, r, s be integers such that $gcd(qs, qr, rs) = gcd(p, r) = gcd(p, s) = gcd(r, s) = 1$. Then, $R(a, b)$ can be tiled with $R(p, q)$ and $R(r, s)$ if $a, b > \max\{2qrs - (qs + qr + rs), ps - p - s, rs - r - s\}.$

Special case : If $p = 6$, $q = 4$, $r = 5$ and $s = 7$ then $R(a, b)$ can be tiled with $(4, 6)$ and $(5, 7)$ if $a, b > 197$.

Theorem (Narayan and Schwenk, 2002) $R(a, b)$ can be tiled with $(4, 6)$ and $(5, 7)$ if a, $b \geq 33$.

つひひ

∢ ロ ▶ . ∢ 伺 ▶ . ∢ ヨ ▶ .

R(29, 29)

 299 メロトメ 倒 トメ ミトメ ミト 唐

J.L. Ramírez Alfonsín († 1888)
20. marec 20. marec Alfonsón († 1898)

[Applications](#page-1-0) [Shell-sort method](#page-18-0) **Shell-sort method** [Tilings](#page-33-0) [Sylver coinage](#page-76-0) Lemme (Labrousse and R.A., 2010) Let $1 < a_1 < a_2 < \cdots < a_{n+1}$ be pairwise relatively prime integers, $n \geq 1$. Then $R(a, \ldots, a)$ can be tiled with $R(\textcolor{red}{a_1}, \ldots, \textcolor{red}{a_1})$ **n** $),\ldots,R(a_{n+1},\ldots,a_{n+1})$ **n**) if $a > g(A_1, \ldots, A_{n+1}) = nP - \sum_{i=1}^{n+1} A_i$ *i*=1 where $A_i = P/a_i$ with $P = \prod_{j=1}^{n+1} a_j$.

J.L. Ramírez Alfonsín a composition of the Montpellier 2 and 2 a [Frobenius problem: Applications](#page-0-0)

つひひ

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right\} \end{array} \right.$

[Applications](#page-1-0) [Shell-sort method](#page-18-0) **Shell-sort method** [Tilings](#page-33-0) [Sylver coinage](#page-76-0) Lemme (Labrousse and R.A., 2010) Let $1 < a_1 < a_2 < \cdots < a_{n+1}$ be pairwise relatively prime integers, $n \geq 1$. Then $R(a, \ldots, a)$ can be tiled with $R(\textcolor{red}{a_1}, \ldots, \textcolor{red}{a_1})$ **n** $),\ldots,R(a_{n+1},\ldots,a_{n+1})$ **n**) if $a > g(A_1, \ldots, A_{n+1}) = nP - \sum_{i=1}^{n+1} A_i$ *i*=1 where $A_i = P/a_i$ with $P = \prod_{j=1}^{n+1} a_j$. $R(a, a)$ can be tiled with $R(2, 2), R(3, 3)$ and $R(p, p)$ if $a > 7p + 6$ where p is an odd integer and $3 \not | p$.

[Frobenius problem: Applications](#page-0-0)

つひひ

Theorem (Labrousse and R.A., 2010) Let $p > 4$ be an odd integer with 3 ℓ p and let a be a positive integer. Then, $R(a, a)$ can be tiled with $R(2, 2), R(3, 3)$ and $R(p, p)$ if $a \ge 3p + 2$.

J.L. Ramírez Alfonsín a composition a composition of the Montpellier 2 and [Frobenius problem: Applications](#page-0-0)

つひひ

→ < 35

Theorem (Labrousse and R.A., 2010) Let $p > 4$ be an odd integer with 3 ℓ p and let a be a positive integer. Then, $R(a, a)$ can be tiled with $R(2, 2), R(3, 3)$ and $R(p, p)$ if $a > 3p + 2$.

Corollary (Labrousse and R.A., 2010) $R(a, a)$ can be tiled with $R(2, 2), R(3, 3)$ and $R(5, 5)$ if and only if $a \neq 1, 7$ and with $R(2, 2), R(3, 3)$ and $R(7, 7)$ if and only if $a \neq 1, 5, 11$.

つひひ

Tiling $R(13, 13)$ with $R(2, 2), R(3, 3)$ and $R(5, 5)$

J.L. Ramírez Alfonsín a compositor a compositor a compositor and compositor and compositor U Université Montpellier 2 [Frobenius problem: Applications](#page-0-0)

K ロ ▶ K 御 ▶ K 君

Tiling $R(17, 17)$ with $R(2, 2), R(3, 3)$ and $R(7, 7)$

J.L. Ramírez Alfonsín († 1888)
2. marec 2007 – Maria Charles Company, americký filozof († 1898)
2. marec 2007 – Maria Charles Company, americký filozof († 1898) [Frobenius problem: Applications](#page-0-0)

K ロ ▶ K 御 ▶ K 君

Tiling Tori

Let $T(a, b)$ be the 2-dimensional torus. We say that T can be tiled with *bricks* R_1, \ldots, R_n if T can be filled entirely with copies

 Ω

K ロ ⊁ K 倒 ≯ K 差 ≯ K

J.L. Ramírez Alfonsín National Alfonso a Maria Alfonso a Christian Alfonso a Christian Université Montpellier 2 [Frobenius problem: Applications](#page-0-0)

Tiling Tori

Let $T(a, b)$ be the 2-dimensional torus. We say that T can be tiled with *bricks* R_1, \ldots, R_n if T can be filled entirely with copies

 Ω

K ロ ト K 何 ト K 手

J.L. Ramírez Alfonsín National Alfonso a Maria Alfonso a Christian Alfonso a Christian Université Montpellier 2 [Frobenius problem: Applications](#page-0-0)

We say that T can be tiled with *bricks* R_1, \ldots, R_n if T can be

J.L. Ramírez Alfonsín National Alfonso a Maria Alfonso a Christian Alfonso a Christian Université Montpellier 2 [Frobenius problem: Applications](#page-0-0)

 Ω

← ロ → → + 何 →

We say that T can be tiled with bricks R_1, \ldots, R_n if T can be filled entirely with copies of R*ⁱ* (rotations are allowed).

 Ω

 \leftarrow \Box \rightarrow \leftarrow \Box

Question : Does there exist a function $C_T = C_T(x, y, u, v)$ such that for all integers $a, b \ge C_T$ $T(a, b)$ can be tiled with copies of the rectangles $R(x, y)$ and $R(u, v)$ for given positive integers x, y, u and v ?

つひひ

J.L. Ramírez Alfonsín a composition a composition of the Montpellier 2 and [Frobenius problem: Applications](#page-0-0)

Theorem (Klarner - Bruijn, 1969) $R(a, b)$ can be tiled with $R(x, y)$ if and only if either x divides one side of R and y divides the other or xy divides one side of R and the other side can be expressed as a nonnegative integer combination of x and y .

Theorem (Klarner - Bruijn, 1969) $R(a, b)$ can be tiled with $R(x, y)$ if and only if either x divides one side of R and y divides the other or xy divides one side of R and the other side can be expressed as a nonnegative integer combination of x and y .

Corollary $R(a, b)$ can be tiled with $R(1, n)$ if and only n divides either a or b.

つひひ

Example : Tiling $T(15, 10)$ with $R(1, 6)$

J.L. Ramírez Alfonsín († 1888)
2. marec 2007 – Maria Charles Company, americký filozof († 1898)
2. marec 2007 – Maria Charles Company, americký filozof († 1898) [Frobenius problem: Applications](#page-0-0)

K ロ ト K 伊 ト K

 299

Theorem (Fricke, 1995) $R(a, b)$ can be tiled with $R(x, x)$ and $R(y, y)$ if and only if either a and b are both multiple of x or a and b are both multiple of y or one of the numbers a, b is a multiple of xy and the other can be expressed as a nonnegative integer combination of x and y .

Theorem (Fricke, 1995) $R(a, b)$ can be tiled with $R(x, x)$ and $R(y, y)$ if and only if either a and b are both multiple of x or a and b are both multiple of y or one of the numbers a, b is a multiple of xy and the other can be expressed as a nonnegative integer combination of x and y .

Example : Tiling $T(13, 13)$ with $R(2, 2)$ and $R(3, 3)$

Theorem (Fricke, 1995) $R(a, b)$ can be tiled with $R(x, x)$ and $R(y, y)$ if and only if either a and b are both multiple of x or a and b are both multiple of y or one of the numbers a, b is a multiple of xy and the other can be expressed as a nonnegative integer combination of x and y .

Example : Tiling $T(13, 13)$ with $R(2, 2)$ and $R(3, 3)$

つひひ

Theorem (Labrousse and R.A., 2010) Let u, v, x and v be positive integers. Then, there exists $C_T(x, y, u, v)$ such that $T(a, b)$ can be tiled with $R(x, y)$ and $R(u, v)$ if and only if gcd(xy, uv) = 1.

つひひ

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶

Theorem (Labrousse and R.A., 2010) Let u, v, x and v be positive integers. Then, there exists $C_T(x, y, u, v)$ such that $T(a, b)$ can be tiled with $R(x, y)$ and $R(u, v)$ if and only if gcd(xy, uv) = 1.

Theorem (Labrousse and R.A., 2010) Let u, v, x and y be positive integers such that $gcd(xy, uv) = 1$. Then, $T(a, b)$ can be tiled with $R(x, y)$ and $R(y, u)$ if

 $a, b > min\{n_1(uv + xy) + 1, n_2(uv + xy) + 1\}$

where $n_1 = \max\{vx, uy\}$ and $n_2 = \max\{ux, vy\}$.

つひひ

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶

Frobenius problem: Applications

Universite iviontpellier Z

J.L. Ramírez Alfonsín († 1888)
20. marec 20. marec Alfonsón († 1898) [Frobenius problem: Applications](#page-0-0)

唐

÷,

 299

メロトメ 倒り メミトメミト

J.L. Ramírez Alfonsín

Frobenius problem: Applications

J.L. Ramírez Alfonsín

ă Université Montpellier 2

 299

Frobenius problem: Applications

Sylver coinage game (invented by J.C. Conway)

- イ母 ト イヨ ト

Sylver coinage game (invented by J.C. Conway)

In this game the players alternatively name different numbers, but are not allowed to name any number that is a sum of previously named ones. The winner is the palyer who name the last number. Of course, as soon as 1 has been played, every other number is illegal $(i.e.,$ representable as a sum of ones) and the game ends. Because the player who names 1 is declared the loser.

Sylver coinage game (invented by J.C. Conway)

In this game the players alternatively name different numbers, but are not allowed to name any number that is a sum of previously named ones. The winner is the palyer who name the last number. Of course, as soon as 1 has been played, every other number is illegal $(i.e.,$ representable as a sum of ones) and the game ends. Because the player who names 1 is declared the loser.

Question : Is there a winning strategy ?

The jugs problem

There are three jugs with integral capacities B , M , S respectively where $B = M + S$ and $M > S > 1$. Any jug may be poured into

B and M and jug S is empty, and we want to do so with as few

K ロ ⊁ K 倒 ≯ K ミ ≯ K

The jugs problem

There are three jugs with integral capacities B , M , S respectively where $B = M + S$ and $M > S > 1$. Any jug may be poured into any other jug until either the first one is empty or the second is full. Initially jug B is full and the other two are empty (we use B as the name of the jug with capacity B , etc.

B and M and jug S is empty, and we want to do so with as few

イロト イ母ト イヨト イ

The jugs problem

There are three jugs with integral capacities B , M , S respectively where $B = M + S$ and $M > S > 1$. Any jug may be poured into any other jug until either the first one is empty or the second is full. Initially jug B is full and the other two are empty (we use B as the name of the jug with capacity B , etc.

We want to divide the wine equally, so that $\frac{1}{2}B$ gallons are in jugs B and M and jug S is empty, and we want to do so with as few pourings as possible. We ask three questions. Can we share equally ? If so, what is the least number of pourings possible ; and how do we achieve this least number ?

K ロ ⊁ K 倒 ⊁ K ミ ⊁ ×

Theorem (R.A., 1991) It is possible to share equally if and only if B is divisible by 2r, where $r = \gcd(M, S)$. If this is the case, then the least number of pourings is $\frac{1}{r}B - 1$, and the unique optimal sequence of pourings is given by the first $\frac{1}{r}B - 1$ steps (pourings). Pour jug B into jug M Repeat if $m < S$ then Pour jug B into jug M

つひひ

Theorem (R.A., 1991) It is possible to share equally if and only if B is divisible by 2r, where $r = \gcd(M, S)$. If this is the case, then the least number of pourings is $\frac{1}{r}B - 1$, and the unique optimal sequence of pourings is given by the first $\frac{1}{r}B - 1$ steps (pourings). Jug Algorithm

Pour jug B into jug M

Repeat

Pour jug M into jug S Pour jug S into jug B

if $m < S$ then

Pour jug M into jug S Pour jug B into jug M

つひひ

[Frobenius problem: Applications](#page-0-0)