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Theorem (Sylvester, 1882) g(a1,a2) = ajap — a1 — ap.

Proof (by Nijenhuis and Wilf). Since gcd(a1,a2) = 1 then any
integer p is representable as p = xa; + ya» with x,y € Z.

p can be represented in many different ways but the
representation becomes unique if ask for 0 < x < as. In this case,
p is representable if y > 0 and it is not representable if y < 0.
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Theorem (Sylvester, 1882) g(a1,a2) = ajap — a1 — ap.

Proof (by Nijenhuis and Wilf). Since gcd(a1,a2) = 1 then any
integer p is representable as p = xa; + ya» with x,y € Z.

p can be represented in many different ways but the
representation becomes unique if ask for 0 < x < as. In this case,
p is representable if y > 0 and it is not representable if y < 0.

Thus, the largest non representable value is when x = a — 1 and
y = —1. So,

g(al, 32) = (32 — 1)31 + (*1)32 = 31ap — a; — ao.
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A simplest lattice polygon.
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Theorem (Pick, 1899) Let S be a simplest lattice polygon. Then,

B(5)
2

where A(S) denotes the area of S, /(S) and B(S) are the number
of lattice points in the interior of S and in the boundary of S
respectively.

A(S) = I(S) + -1
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(O,p)

(—1p=1) px+qy=pq

PX+qy=pq—p—q (¢,0)

(g—1,-1)
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PX+qy=pq—p—q (¢.0)
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q 0 1
ATi) =3/ 0 p 1| =3(qg+p)
-1 p—-11

So, A(P) = A(T1) + A(T2) = p+ g and, by Pick’s theorem, we
have that /(P) = p+ g — 1.
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Claim. Line px + qy = pq — p — g + i contains exactly one point in
I(P) foreach i=1,...,p+q— 1.
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Claim. Line px + qy = pq — p — g + i contains exactly one point in
I(P) foreach i=1,...,p+q— 1.

(0,p)

(—1p=1) px+qy=pq

px+qy=pq-p—q (g,0)

px+qy=pq-p—q+1

pxX+qy=pq—-p—q+2

(g—1,-1)
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Question : does there exist a formula for g(az, ap, as)?

Theorem (Curtis, 1990) There is no finite set of polynomials
{h1,..., hm} such that for each choice of a1, a2, a3 there is some i
such that hj(a1, az, a3) = g(a1, az, a3).
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Question : does there exist a formula for g(az, ap, as)?

Theorem (Curtis, 1990) There is no finite set of polynomials
{h1,..., hm} such that for each choice of a1, a2, a3 there is some i
such that hj(a1, az, a3) = g(a1, az, a3).

Question : does there exists a semi-explicit formula for
g(a1, a2, a3)?
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Let Ly, Ly and L3 be the smallest positive integers such that there
exist integers x; > 0, 1 </,j <3, i # j with

Liai = x12a2 + x13a3,
Lrar = xp1a1 + x03a3,
Lzaz = x31a1 + x32a2.
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Let Ly, Ly and L3 be the smallest positive integers such that there
exist integers x; > 0, 1 </,j <3, i # j with

Liai = x12a2 + x13a3,
Lrar = xp1a1 + x03a3,
Lzaz = x31a1 + x32a2.

Theorem (Denham 2000, R.A. and Rgdseth 2009) Let a1, a2, a3
be pairwise relatively prime positive integers and
{i,j,k} ={1,2,3}. Then,

3
max{L;ja; + Xjkak, Ljaj + xikax} — > an if x; >0
n=1
g(a1, a0, a3) = for all 7,7,

3
Ljaj + L;a; — E an if Xij = 0.
n=1
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Theorem (Brauer and Shockley 1962) Let d = (a1,...,an—1)-
Then, g(a1,...,an) = dg(3,..., 25, a,) + (d — 1)ap.
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Theorem (Brauer and Shockley 1962) Let d = (a1,...,an—1)-
Then, g(a1,...,an) = dg(3,..., 25, a,) + (d — 1)ap.

Theorem (Schur 1942) g(a1,...,an) < (a1 —1)(ap—1) — 1.
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Theorem (Brauer and Shockley 1962) Let d = (a1,...,an—1)-
Then, g(a1,...,an) = dg(3,..., 25, a,) + (d — 1)ap.

Theorem (Schur 1942) g(a1,...,an) < (a1 —1)(ap—1) — 1.
Theorem (Selmer 1977) g(a1,...,an) < 2a, | 2] — a1.
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Theorem (Brauer and Shockley 1962) Let d = (a1,...,an—1)-
Then, g(a1,...,an) = dg(3,..., 25, a,) + (d — 1)ap.

Theorem (Schur 1942) g(a1,...,an) < (a1 —1)(ap—1) — 1.
Theorem (Selmer 1977) g(a1,...,an) < 2a, | 2] — a1.

Theorem (Erd8s and Graham 1972)
glar,...,an) < 2ap1 | %] — an.
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Theorem (Davison 1994)
g(a, a2, a3) > V3y/a1ayaz — a1 — a — as.
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Theorem (Davison 1994)

g(a1, a2, a3) > V3 /a1a2a3 — a1 — ap — as.

Theorem (Hujter 1987) 2 > gf;‘o % > /2.

a3
Theorem (Hujter 1982)
1

glat,...,an) > (1) ((n—1)agap -~ ap) "1 — ana,-.
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Theorem (Davison 1994)
g(a, a2, a3) > V3y/a1ayaz — a1 — a — as.

Theorem (Hujter 1987) 2 > gf;‘o % > /2.

a3

Theorem (Hujter 1982)
1 n
glar,...,apn) > ("%1) ((n—1)lajap---ap)"1 — Z aj.

Theorem (Killingbergtrg 2000)
1 n
g(ar,...,ap) = ((n—10araz---an)"1 = 3 aj.
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Conjecture (Beihoffer,Hendry,Nijenhuis and Wagon) The expected
value of g(a1,...,an) is a small constant multiple of

1

n—

1 n 1 n
fn!Ha,- — E a;.
2

i—1 i=1
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Theorem (Brauer 1942)
gla,a+1,...,a+k—-1)= (Li:ﬂ +1)a—1.
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Theorem (Brauer 1942)
gla,a+1,...,a+k—-1)= (Li:ﬂ +1)a—1.

Theorem (Roberts 1956) Let a,d,s € N with gcd(a, d) = 1. Then,
gla,a+d,...,a+sd)= (|22 +1)a+(d—1)(a—1) 1.
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Theorem (Brauer 1942)

gla,a+1,...,a+k—-1)= (Li:ﬂ +1)a—1.

Theorem (Roberts 1956) Let a,d,s € N with gcd(a, d) = 1. Then,
gla,a+d,...,a+sd)= (|22 +1)a+(d—1)(a—1) 1.

Theorem (Selmer 1977) Let a, h,d, k € N with gcd(a, d) = 1.
Then,
g(a,ha+d, ha+2d,... ha+kd) = ha|22|+a(h—1)+d(a—1).
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Theorem (Brauer 1942)

gla,a+1,...,a+k—-1)= (Li:ﬂ +1)a—1.

Theorem (Roberts 1956) Let a,d,s € N with gcd(a, d) = 1. Then,
gla,a+d,...,a+sd)= (|22 +1)a+(d—1)(a—1) 1.

Theorem (Selmer 1977) Let a, h,d, k € NT with ged(a,d) =1
Then,
g(a,ha+d, ha+2d,... ha+kd) = ha|22|+a(h—1)+d(a—1).

Theorem (R.A. and Rgdseth 2009) Semi-explicit formula for
g(a,a+d,...,a+ kd,c) with gcd(a, d) = 1.
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A Fibonacci semigroup is a semigroup generated by Fibonacci
numbers Fi, ..., Fi, 3 <i <--- <, with gcd(Fj,...,F;,) = 1.
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A Fibonacci semigroup is a semigroup generated by Fibonacci
numbers Fi, ..., Fi, 3 <i <--- <, with gcd(Fj,...,F;,) = 1.

g(Fi, Fiy1, Fivk) = g(Fi, Fiz1) since Fip = FiFip1 + Fr_1Fi.
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A Fibonacci semigroup is a semigroup generated by Fibonacci
numbers Fi, ..., Fi, 3 <i <--- <, with gcd(Fj,...,F;,) = 1.
g(Fi, Fit1, Fiyk) = g(Fi, Fiy1) since Fiy = FiFiy1 + Fi_1Fi.
Theorem (Marin, R.A. and Revuelta, 2007) Let i, k > 3 be integers
and let r = L%j Then,

(Fi — 1)Fiio — Fi(rFr—2+ 1) if r=0o0rr>1and
Fi_2Fi < (Fi — rFi)Fisa,
g(Fi, Fiva, Fiyk) = k—2Fi <(F; W)Fivz

(rFk — 1)Fiyo — Fi((r — 1)Fk—2 + 1)  otherwise.
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Let a1,...,an, m be positive integers. The denumerant denoted by
d(m; a1, ...,an) is the number of nonnegative integer
representations of m by ai,...,a,, that is, the number of solutions

of the form
n
m = ZX,'Q,‘
i=1

with integers x; > 0.
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Let a1,...,an, m be positive integers. The denumerant denoted by
d(m; a1, ...,an) is the number of nonnegative integer
representations of m by ai,...,a,, that is, the number of solutions

of the form
n
m = ZX,'Q,‘
i=1

with integers x; > 0.
Theorem The generating function of d(m; a1, ..., a,) is

1

@) =A==y a2
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[&.°]

Proof. Recall that ﬁ has expansion Z:()zir.
1=
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[&.°]

Proof. Recall that ﬁ has expansion Z:()zi’.
1=

By taking r = a1, ..., a, we have

s =@ +zt 4222 ) x oo x (T4 21 220 )

o0 oo 3 )
— Z ... Z Z’lal+"'+’nan
i1=0 in=0

0 .
= Z C,'Z'.
i=0
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[&.°]

Proof. Recall that ﬁ has expansion Z:()zi’.
1=

By taking r = a1, ..., a, we have

s =@ +zt 4222 ) x oo x (T4 21 220 )

o0 oo 3 )
— Z ... Z Z’lal+"'+’nan
i1=0 in=0

0 .
= Z C,'Z'.
i=0

where ¢, is the number of solutions i1a; + -+ + i,a, = min
nonnegative integers i1, ..., I, thatis, c;m = d(m; a1, ..., an).
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[&.°]

Proof. Recall that ﬁ has expansion Z:()zi’.
1=

By taking r = a1, ..., a, we have

s =@ +zt 4222 ) x oo x (T4 21 220 )

o0 oo 3 )
— Z ... Z Z’lal+"'+’nan
i1=0 in=0

0 .
= Z C,'Z'.
i=0

where ¢, is the number of solutions i1a; + -+ + i,a, = min
nonnegative integers i1, ..., I, thatis, c;m = d(m; a1, ..., an).

Remark : g(a1,...,an) is the greatest integer k with £<(0) = 0.
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Theorem (Shur, 1926) Let ay, ..., a, be relatively prime integers.
Then,

mn—l

(n=IIL, a

d(m;ai,...,an) ~ as m — oo.
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Theorem (Shur, 1926) Let ay, ..., a, be relatively prime integers.
Then,

mn—l

(n=IIL, a

d(m;ai,...,an) ~

as m — OQ.

Let p, g relatively prime integers. Then,

Oorl if0< m<pq,
d(m;p,q) =4 1 for all pg —p—q < m < pq,
0 ifm=pg—p—q.
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Theorem (Shur, 1926) Let ay, ..., a, be relatively prime integers.
Then,

mn—l

(n=IIL, a

d(m;ai,...,an) ~

as m — OQ.

Let p, g relatively prime integers. Then,

Oorl if0< m<pq,
d(m;p,q) =4 1 for all pg —p—q < m < pq,
0 ifm=pg—p—q.

Question : Is there a formula for the case n =27
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Theorem (Popoviciu 1953) Let p, g relatively prime integers. Then,

m + pp'(m) + qq'(m)
pq

-1

d(m;p,q) =

where p'(m)p=—m (mod q),1 < p/(m) < g and ¢'(m)g=—m
(mod p),1 < g'(m)<p
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Proof. Suppose 0 < m < pg—p—gq.

Ramirez Alfonsin Université Montpellier 2

Frobenius problem: bounds, formulas related problems



Symmetry Vector generalization

Formulas Denumerant

Proof. Suppose 0 < m < pg—p—gq.
We have that pq divides m + pp’(m) + gq’(m) and that
0 < m+ pp'(m) + qq’'(m) < 3pg then either

m + pp'(m) + qq'(m) = pq or 2pq.
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Proof. Suppose 0 < m < pg—p—gq.

We have that pq divides m + pp’(m) + gq’(m) and that

0 < m+ pp'(m) + qq’'(m) < 3pg then either

m + pp'(m) + qq'(m) = pq or 2pq.

e If m+ pp’(m)+ qq’(m) = pq then we claim that d(m; p, q) =0,
Otherwise, if d(m; p, q) > 0 then there are integers s, t > 0 such
that ps + gt = m. So

pp'(m)+qq'(m)+ps+qt = pg — p(p'(m)+s)+q(q'(m)+t) = pq
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Proof. Suppose 0 < m < pg—p—gq.

We have that pq divides m + pp’(m) + gq’(m) and that

0 < m+ pp'(m) + qq’'(m) < 3pg then either

m + pp'(m) + qq'(m) = pq or 2pq.

e If m+ pp’(m)+ qq’(m) = pq then we claim that d(m; p, q) =0,
Otherwise, if d(m; p, q) > 0 then there are integers s, t > 0 such
that ps + gt = m. So

pp'(m)+qq'(m)+ps+qt = pg — p(p'(m)+s)+q(q'(m)+t) = pq

So, p divides ¢'(m) + t and q divides p'(m) + s but
0<qg(m+t<pand0<p(m)+s<gqandthus p=gqg'(m)+t
and g = p’(m) + s obtaining that 2gp = pqg contadiction !
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Proof. Suppose 0 < m < pg—p—gq.

We have that pq divides m + pp’(m) + gq’(m) and that

0 < m+ pp'(m) + qq’'(m) < 3pg then either

m + pp'(m) + qq'(m) = pq or 2pq.

e If m+ pp’(m)+ qq’(m) = pq then we claim that d(m; p, q) =0,
Otherwise, if d(m; p, q) > 0 then there are integers s, t > 0 such
that ps + gt = m. So

pp'(m)+qq'(m)+ps+qt = pg — p(p'(m)+s)+q(q'(m)+t) = pq

So, p divides ¢'(m) + t and q divides p'(m) + s but
0<qg(m+t<pand0<p(m)+s<gqandthus p=gqg'(m)+t
and g = p’(m) + s obtaining that 2gp = pqg contadiction !

e if m+ pp’(m) + qq’'(m) = pq then just notice that

m = p(q — p'(m)) + q(p — ¢'(m))
and thus d(m; p,q) = 1.
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Symmetry Vector generalization

A polytope is called integral (resp. rational) if all its vertices have
integer (resp. rational) coordinates. Let t be a positive integer and
let i(P,t) be the number of lattices points in a d-dimensional
polytope P dilated by a factor of t, that is

i(P,t) = #(tP NZ9)

where tP = {(tx1, ..., tx,)|(x1,...,xn) € P}.
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A polytope is called integral (resp. rational) if all its vertices have
integer (resp. rational) coordinates. Let t be a positive integer and
let i(P,t) be the number of lattices points in a d-dimensional
polytope P dilated by a factor of t, that is

i(P,t) = #(tP NZ9)

where tP = {(tx1, ..., tx,)|(x1,...,xn) € P}.

Theorem (Ehrhart 1962) Let P be an integral polytope of
dimension d. Then, i(P, t) is always a polynomial, that is

i(P,t) = eq(P)t? + - + eg(P)

i(P,t) is called the Ehrhart polynomial.
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Some facts :
(a) eo =1, eq = vol(P), eq—1 volume of the (d — 1)-dimensional
facets of P all other coefficients remain a mystery.
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Some facts :
(a) eo =1, eq = vol(P), eq—1 volume of the (d — 1)-dimensional
facets of P all other coefficients remain a mystery.

(b) For n = 2 Ehrhart polynomial correspond to Pick’s theorem.
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Some facts :

(a) eo =1, eq = vol(P), eq—1 volume of the (d — 1)-dimensional
facets of P all other coefficients remain a mystery.

(b) For n = 2 Ehrhart polynomial correspond to Pick’s theorem.
(c) When P is a unimodular zonotope (a polytope that tiles the
space) there is a nice interpretation of the coefficients in terms of
the Tutte polynomial associated to P.
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Some facts :

(a) eo =1, eq = vol(P), eq—1 volume of the (d — 1)-dimensional
facets of P all other coefficients remain a mystery.

(b) For n = 2 Ehrhart polynomial correspond to Pick’s theorem.

(c) When P is a unimodular zonotope (a polytope that tiles the
space) there is a nice interpretation of the coefficients in terms of
the Tutte polynomial associated to P.

(d) If P is rational then i(P,t) is not a polynomial but a
quasipolynomial (a function f : N — C of the form

f = cq(t)t? + --- + co(t) where each c;(t) is a perodic function -
with integer period - and c4(t) not the zero function).
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Let a1,..., a, relatively prime integers. Consider the following
rational polytope

P={(x1,...,xn) € R": x; ZO,Z&,‘X,‘ <1}
i=1
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Let a1,..., a, relatively prime integers. Consider the following
rational polytope

P={(x1,...,xn) € R": x; ZO,Z&,‘X,‘ <1}
i=1

P has vertices (O,...,0),(},0,...,0),...,(0,...,0,i). Thus
. 1 . an .
geometrically, d(m; a1, ..., an) enumerates the lattices points on

n
the skewed facet () ajx; = 1) of P
1

1=
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Let a1,..., a, relatively prime integers. Consider the following
rational polytope

P={(x1,...,xn) € R": x; ZO,Z&,‘X,‘ <1}
i=1

P has vertices (O,...,0),(},0,...,0),...,(0,...,0,i). Thus
. 1 . an .
geometrically, d(m; a1, ..., an) enumerates the lattices points on

n
the skewed facet () ajx; = 1) of P
1

=
g(a1,...,an) is the largest integer t such that the skewed facet of
the dilated polytope tP contains no lattice point, that is, the
largest integer t such that d(t; a1,...,a,) = 0.
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Example : Let a3 =3 and a = 4. Then P = {(x,y)|3x + 4y < 1}
and the hypothenuse of the t-dilated triangle is given by

3x 4+ 4y =t . This line has no integer points if t =5 but it always
does for any integer t > 6
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Example : Let a1 = 3 and ap = 4. Then P = {(x,y)|3x + 4y < 1}
and the hypothenuse of the t-dilated triangle is given by
3x + 4y =t . This line has no integer points if t =5 but it always
does for any integer t > 6

y
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Let S = (a1,...,an). The positive elements of N\ S are called the
gaps of S. Let N(S) = #(N\ S).
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Let S = (a1,...,an). The positive elements of N\ S are called the
gaps of S. Let N(S) = #(N\ S).

Theorem (R.A., 2007) Let a, k > 1 be integers and let
S=<(a,a+1,...,a+ k) be a semigroup with gaps

h<- - < /N(S)- Let v, = (m+1)(a—1)—k (%), v_1 =0
and r = [22|. Then,

N(S) =v,and [; = t,-(a+ k) +i— Vi—1

for each i =1,..., N(S) where t; is the smallest integer such that
Vt; 2 I.
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Theorem (R.A., 2007) Let p, g be positive integers with

ged(p, q) = 1. Let gk({p, q)) the number of gaps of (p, q) in the
interval [pg — (k+1)(p+q),...,pq — k(p + q)], for each

0§k§{£%J7LTmm

1 if k=0
&«“®)2{2w+1)+Vﬂ+L?J Fl<k<|pL]-1
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Theorem (Sylvester 1882) N((a1, ) = (a1 — 1)(a2 — 1).
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Theorem (Sylvester 1882) N((a1, a2))
Theorem (Brauer and Shockley 1962)
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Theorem (Brown and Shiue, 1993) Let
S(a,b) =) {nlne N\ (a,b)}. Then,

S(a, b) = %(a —1)(b—1)(2ab—a—b—1).
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Theorem (Brown and Shiue, 1993) Let
S(a,b) =) {nlne N\ (a,b)}. Then,

1
S(a, b) = E(a —1)(b—1)(2ab—a—b—1).
Theorem (Rgdseth 1994) Let Sy(a, b) = > {m"Im e N\ (a, b)}.
Then,
TS a1\ (n+1l—i S|
Sn-1(a, ) LN\ g b La,
n+1 i=0 i=1 J n

where B; are Bernoulli numbers.
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Let g be a positive integer and let n, be the number of numerical
semigroups with minimal set of generators containing exactly g

gaps.
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Let g be a positive integer and let n, be the number of numerical
semigroups with minimal set of generators containing exactly g
gaps.

Theorem (Bras-Amorés 2007) ng > ng—1 + ng—» for all g < 50.
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Let g be a positive integer and let n, be the number of numerical
semigroups with minimal set of generators containing exactly g

gaps.
Theorem (Bras-Amorés 2007) ng > ng—1 + ng—» for all g < 50.

Let n(g, r) be the number of numerical semigroups with g gaps
and with minimal generating set of cardinality r.
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Let g be a positive integer and let n, be the number of numerical
semigroups with minimal set of generators containing exactly g

gaps.
Theorem (Bras-Amorés 2007) ng > ng—1 + ng—» for all g < 50.

Let n(g, r) be the number of numerical semigroups with g gaps
and with minimal generating set of cardinality r.

Proposition (Eliahou and R.A. 2011) n(g,2) > 1 for all g.
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Theorem (Eliahou and R.A. 2011) Let g = 2%, k € N. Write
k+1=2%,tecNands odd. Then,

n(2K,2) = (s + 1)/2.
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Theorem (Eliahou and R.A. 2011) Let g = 2%, k € N. Write
k+1=2%,tecNands odd. Then,

n(2K,2) = (s + 1)/2.

Question : what about n(p*,2) for odd primes p?

J.L. Ramirez Alfonsin Université Montpellier 2

Frobenius problem: bounds, formulas and related problems



Formulas Denumerant Symmetry Vector generalization

Theorem (Eliahou and R.A. 2011) Let g = 2%, k € N. Write
k+1=2%,tecNands odd. Then,

n(2K,2) = (s + 1)/2.

Question : what about n(p*,2) for odd primes p?

Theorem (Eliahou and R.A. 2011) There is a formula for n(pk,2)
fork=1,...,8.
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Remark :
n(g,2) = #{(u,v) e N’[1 < u < v,uv =2g,gcd(u+1,v+1) = 1}
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Remark :

n(g,2) = #{(u,v) e N’[1 < u < v,uv =2g,gcd(u+1,v+1) = 1}
So, we focus on factorizations 2p¥ = uv with u = p¥~! and

v = 2p and this factorization contributes 1 to n(p*,?2) if
ged(pF—t+1,2p+1) =1.

J.L. Ramirez Alfonsin Université Montpellier 2

Frobenius problem: bounds, formulas and related problems



Formulas Denumerant Symmetry Vector generalization

Remark :

n(g,2) = #{(u,v) e N’[1 < u < v,uv =2g,gcd(u+1,v+1) = 1}
So, we focus on factorizations 2p¥ = uv with u = p¥~! and

v = 2p and this factorization contributes 1 to n(p*,?2) if
ged(pF—t+1,2p+1) =1.

For, we need to know the prime factors of 2™ + 1 for m odd.
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Remark :

n(g,2) = #{(u,v) e N’[1 < u < v,uv =2g,gcd(u+1,v+1) = 1}
So, we focus on factorizations 2p¥ = uv with u = p¥~! and

v = 2p and this factorization contributes 1 to n(p*,?2) if
ged(pF—t+1,2p+1) =1.

For, we need to know the prime factors of 2™ + 1 for m odd.

This is an ancient open problem. It is not even known whether
there are finitly or infinitely many Fermat or Marsenne primes, i.e.,
primes of the form 22° + 1 or 29 — 1 with t > 1 and g prime.
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Let gs = {g(s1,--.,50) — s|s € S}.
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Let gs = {g(s1,--.,50) — s|s € S}.

Remark : S and gs are disjoint sets
(otherwise, x = g(S5) — s for some s € S and since x € S then
g(S)—s+s=g(5)e S

J.L. Ramirez Alfonsin Université Montpellier 2

Frobenius problem: bounds, formulas and related problems



Formulas Denumerant Symmetry Vector generali

Let gs = {g(s1,--.,50) — s|s € S}.

Remark : S and gs are disjoint sets
(otherwise, x = g(S5) — s for some s € S and since x € S then

g(S)—s+s=g(5)e S
A semigroup S is called symmetric if SU gs = Z.
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Let gs = {g(s1,--.,50) — s|s € S}.

Remark : S and gs are disjoint sets
(otherwise, x = g(S5) — s for some s € S and since x € S then

g(S)—s+s=g(5)e S
A semigroup S is called symmetric if SU gs = Z.

Theorem Semigroup (p, q) is always symmetric.
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Theorem (R.A. and Rgdseth 2009) Complete characterization of
symmetry for (a,a+d,...,a+ kd, c) with gcd(a, d) = 1.
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Theorem (R.A. and Rgdseth 2009) Complete characterization of
symmetry for (a,a+d,...,a+ kd, c) with gcd(a, d) = 1.

Theorem (R.A. and Rgdseth 2009) Complete characterization of
symmetry for (a, b, c).
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Theorem (R.A. and Rgdseth 2009) Complete characterization of
symmetry for (a,a+d,...,a+ kd, c) with gcd(a, d) = 1.

Theorem (R.A. and Rgdseth 2009) Complete characterization of
symmetry for (a, b, c).

Let S = (a1,...,an) and let d; = ged(a1,...,3/-1,3i+1,---,an)-
The derived semigroup of S is defined as the semigroup generated
by {31/ H dj’ - '7an/ H dJ}

j#1 j#n
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Vector generalizatio

Theorem (R.A. and Rgdseth 2009) Complete characterization of
symmetry for (a,a+d,...,a+ kd, c) with gcd(a, d) = 1.

Theorem (R.A. and Rgdseth 2009) Complete characterization of
symmetry for (a, b, c).

Let S = <31, R a,,> and let d; = gcd(al, ey @i=1,8i41, -+ - a,,).
The derived semigroup of S is defined as the semigroup generated
by {31/ H dj’ - '7an/ H dJ}

j#1 j#n

Theorem (Frdberg, Gottlieb and Haggkvist 1987, R.A. and
Rgdseth 2009) (a1, a2, a3) is symmetric if and only if its derived is
generated by two elements.
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Let x1,...,x, be d-dimensional integer vectors and let
A= (x1,...,Xp) be a (d x n)-matrix containing a basis. A
pseudo-conductor of vectors xi,..., X, is a vector

h € {Ax|x € Z1 } such that any integral vector of the set
h+ {Ax|x € Q>0} is a nonnegative integer combination of
X1ye-yXn.
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Let x1,...,x, be d-dimensional integer vectors and let
A= (x1,...,Xp) be a (d x n)-matrix containing a basis. A
pseudo-conductor of vectors xi,..., X, is a vector

h € {Ax|x € Z1 } such that any integral vector of the set
h+ {Ax|x € Q>0} is a nonnegative integer combination of
X1ye-yXn.

Theorem Let {Q1,...,9Q,} be the set of all (d x d)-matrices with
columns choosen from A. Then,

ged(|det(Q1)], ..., |det(Q2,)]) =1

if and only if a pseudo-conductor exists.
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Theorem Let xi,..., X, be d-dimensional integer vectors and let
xo € {Ax|x € Q>o} such that xg, x1, ..., X, generated Z". Then,

p =|det(A)lxo — > x;
i=0

is a pseudo-conductor.
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Theorem Let xi,..., X, be d-dimensional integer vectors and let
xo € {Ax|x € Q>o} such that xg, x1, ..., X, generated Z". Then,

p =|det(A)lxo — > x;
i=0

is a pseudo-conductor.

Exemple : For n =1, x; = a and A = (a) in this case we take
xo = b > a (which is in the cone generated by a).

Therefore, det(A) = a and
p=lalb—(a+b)=ab—a—b=g(a,b).
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