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Spatial graphs

A spatial representation of a graph G is an embedding of G in IR3

where the vertices of G are points and edges are represented by
simple Jordan curves.
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Spatial graphs

A spatial representation of a graph G is an embedding of G in IR3

where the vertices of G are points and edges are represented by
simple Jordan curves.
Spatial representation of K5.
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Let m(L) be the smallest integer such that any spatial
representation of Kn with n ≥ m(L) contains cycles isotopic to L.

Question (Bothe 1973) Is it true that m(22
1) = 6 ?

Theorem (Sachs, Conway and Gordon 1983) m(22
1) = 6.

J.L. Raḿırez Alfonśın Knots and the Cyclic Polytope



Spatial graphs
Oriented matroids

Cyclic polytope
Ropes and thickness

Let m(L) be the smallest integer such that any spatial
representation of Kn with n ≥ m(L) contains cycles isotopic to L.

Question (Bothe 1973) Is it true that m(22
1) = 6 ?

Theorem (Sachs, Conway and Gordon 1983) m(22
1) = 6.
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Theorem (Conway and Gordon 1983)
• For any spatial representation of K6, it holds∑

(λ1,λ2)

lk(λ1, λ2) ≡ 1 mod 2

where (λ1, λ2) is a 2-component link contained in K6

and lk denotes the linking number.
• For any spatial representation of K7, it holds∑

λ

Arf (λ) ≡ 1 mod 2

where λ is a 7-cycle of K7 and Arf denotes the Arf invariant.
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A spatial representation is linear if the curves are line segments.

Let m̄(L) be the smallest integer such that any spatial linear
representation of Kn with n ≥ m̄(L) contains cycles isotopic to L.

Let s(L) be the smallest number of segments needed to represent
link L.

m̄(L) ≥ s(L).
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Theorem (Negami 1991) m̄(L) exists and it is finite for any link L.
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Oriented matroids

Let E a finite set. An oriented matroid is a family C of signed
subsets of E verifying certain axioms (the family C is called the
circuits of the oriented matroid).

There is a natural way to obtain an oriented matroid from a
configuration of points in IRd .

If C ∈ C conv(pos. elements C ) ∩ conv(neg. elements C ) 6= ∅.
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J.L. Raḿırez Alfonśın Knots and the Cyclic Polytope



Spatial graphs
Oriented matroids

Cyclic polytope
Ropes and thickness

Example : d = 3.
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Theorem (R.A. 1998) m̄(T or T ∗) = 7.
Proof (idea) :
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J.L. Raḿırez Alfonśın Knots and the Cyclic Polytope



Spatial graphs
Oriented matroids

Cyclic polytope
Ropes and thickness

Theorem (R.A. 1998) m̄(T or T ∗) = 7.
Proof (idea) : Consider circuits (1+, 2+, 3+, 5−, 6−) and
(1+, 2+, 4+, 5−, 6−).
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Theorem (R.A. 1998) m̄(T or T ∗) = 7.
Proof (idea) : Give conditions on circuits in order to have the
desired knot.
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Verify that such conditions hold for any (representable) oriented
matroid on 7 elements.
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Cyclic Polytope

Let t1, . . . , tn ∈ IR. The cyclic polytope of dimension d with n
vertices is defined as

Cd(t1, . . . , tn) := conv(x(t1), . . . , x(tn))

where x(ti ) = (ti , t
2
i , . . . , td

i ) are points of the moment curve

Cd(t1, . . . , tn) → Cd(n)

Upper bound theorem (McMullen 1970) The number of j-faces of
a d-dimensional polytope with n vertices is maximal for Cd(n).
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Theorem (R.A. 2009) Let D(K ) be a diagram of a knot K on n
crossings. Then, there exists a cycle in C3(m) isotopic to K where
m ≤ 7n.
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Theorem (R.A. 2009) Let D(L) be a diagram of link L with n
crossings. Then,

m̄(L) ≤ 28c
where c = 418n−7.
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Knots physical models

For a given diameter, one needs certain minimum length of rope in
order to tie a (nontrivial) knot.

Moreover, the more complicated the knot you want to tie, the
more rope you need.

Question (Siebenmann 1985) Can you tie a knot in a one-foot
length of 1-inch rope ?
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A number r > 1 is nice if for any distinct points x and y on K we
have D(x , r) ∩ D(y , r) = ∅. The disk thickness of K is defined to
be t(K ) = sup{r |r is nice}.
A thick realization K0 of K is a knot of unit thickness which is of
the same type as K .

The rope length L(K ) of K is the infimum of the length of K0

taken over all thick realizations of K .

Theorem (Cantarella, Kusner and Sullivan 2002) L(K ) exists.
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Theorem (Diao, Ernst and Yu 2004) There exists a constant c
such that for any knot K

L(K ) ≤ c · (cr(K ))3/2

where cr(K ) is the crossing number of K .

The cubic lattice consists of all points in IR3 with integral
coordinates and all unit line segments joining these points.

A cubic lattice knot is a polygonal knot represented in the cubic
lattice.
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The trefoil represented in the cubic lattice.
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Theorem (Diao, Ernst and Yu 2004) Let K be a knot. Then, K can
be embedded into the cubic lattice with length at most

136 (cr(K ))3/2 + 84cr(K ) + 22
√

cr(K ) + 11

.
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Theorem (R.A. 2010) Let K be a knot. Then, K can be embedded
into the cubic lattice with length at most O(cr(K )).

Theorem (R.A. 2010) There exists a constant c such that for any
knot K

L(K ) ≤ c · (cr(K )) .
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