Knots and the Cyclic Polytope

J.L. Ram´ırez Alfons´ın

I3M, Université Montpellier 2

イロト イ押 トイモト イモト

哇

1 [Spatial graphs](#page-2-0)

- 2 [Oriented matroids](#page-17-0)
- 3 [Cyclic polytope](#page-27-0)
- 4 [Ropes and thickness](#page-42-0)

イロト イ団 トイ ミト イヨト

哇

Spatial graphs

A spatial representation of a graph G is an embedding of G in \mathbb{R}^3 where the vertices of G are points and edges are represented by simple Jordan curves.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 $2Q$

哇

Spatial graphs

A spatial representation of a graph G is an embedding of G in \mathbb{R}^3 where the vertices of G are points and edges are represented by simple Jordan curves.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 $2Q$

哇

Spatial graphs

A spatial representation of a graph G is an embedding of G in \mathbb{R}^3 where the vertices of G are points and edges are represented by simple Jordan curves.

Spatial representation of K_5 .

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Let $m(L)$ be the smallest integer such that any spatial representation of K_n with $n \ge m(L)$ contains cycles isotopic to L. Question (Bothe 1973) Is it true that $m(2^2_1) = 6$?

Theorem (Sachs, Conway and Gordon 1983) $m(2_1^2) = 6$.

メロメ メ御 メメ きょ メモメ

Let $m(L)$ be the smallest integer such that any spatial representation of K_n with $n \ge m(L)$ contains cycles isotopic to L. Question (Bothe 1973) Is it true that $m(2^2_1) = 6$? Theorem (Sachs, Conway and Gordon 1983) $m(2_1^2) = 6$.

メロメ メ御き メミメ メミメー

Let $m(L)$ be the smallest integer such that any spatial representation of K_n with $n \ge m(L)$ contains cycles isotopic to L. Question (Bothe 1973) Is it true that $m(2^2_1) = 6$? Theorem (Sachs, Conway and Gordon 1983) $m(2_1^2) = 6$.

メロメ メ御 メメ きょ メモメ

Theorem (Conway and Gordon 1983)

• For any spatial representation of K_6 , it holds

$$
\sum_{(\lambda_1,\lambda_2)} \textit{lk}(\lambda_1,\lambda_2) \equiv 1 \text{ mod } 2
$$

where (λ_1, λ_2) is a 2-component link contained in K_6 and *lk* denotes the linking number.

• For any spatial representation of K_7 , it holds

$$
\sum_{\lambda} Arf(\lambda) \equiv 1 \bmod 2
$$

where λ is a 7-cycle of K_7 and Arf denotes the Arf invariant.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Theorem (Conway and Gordon 1983)

• For any spatial representation of K_6 , it holds

$$
\sum_{(\lambda_1,\lambda_2)} \textit{lk}(\lambda_1,\lambda_2) \equiv 1 \text{ mod } 2
$$

where (λ_1, λ_2) is a 2-component link contained in K_6 and *lk* denotes the linking number.

• For any spatial representation of K_7 , it holds

$$
\sum_{\lambda} Arf(\lambda) \equiv 1 \bmod 2
$$

where λ is a 7-cycle of K_7 and Arf denotes the Arf invariant.

イロト イ団ト イラト イラト

A spatial representation is linear if the curves are line segments.

Let $\bar{m}(L)$ be the smallest integer such that any spatial linear representation of K_n with $n \geq \bar{m}(L)$ contains cycles isotopic to L.

Let $s(L)$ be the smallest number of segments needed to represent link L.

 $\bar{m}(L) \geq s(L)$.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 Ω

A spatial representation is linear if the curves are line segments. Let $\bar{m}(L)$ be the smallest integer such that any spatial linear representation of K_n with $n \geq \bar{m}(L)$ contains cycles isotopic to L.

Let $s(L)$ be the smallest number of segments needed to represent link L.

 $\bar{m}(L) \geq s(L)$.

メロメ メ御 メメ きょ メモメ

A spatial representation is linear if the curves are line segments. Let $\bar{m}(L)$ be the smallest integer such that any spatial linear representation of K_n with $n \geq \bar{m}(L)$ contains cycles isotopic to L. Let $s(L)$ be the smallest number of segments needed to represent link L.

 $\bar{m}(L) \geq s(L)$.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

メロメ メ都 メメ きょくきょう

佳

メロメメ 倒す メモメメモメー 塩

メロメメ 倒す メモメメモメー 塩

Theorem (Negami 1991) $\bar{m}(L)$ exists and it is finite for any link L.

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

重

Oriented matroids

Let E a finite set. An oriented matroid is a family C of signed subsets of E verifying certain axioms (the family $\mathcal C$ is called the circuits of the oriented matroid).

There is a natural way to obtain an oriented matroid from a configuration of points in \mathbb{R}^d .

If $C \in \mathcal{C}$ conv(pos. elements C) \cap conv(neg. elements C) $\neq \emptyset$.

メロメ メタメ メミメ メミ

つQへ

Oriented matroids

Let E a finite set. An oriented matroid is a family C of signed subsets of E verifying certain axioms (the family $\mathcal C$ is called the circuits of the oriented matroid).

There is a natural way to obtain an oriented matroid from a configuration of points in \mathbb{R}^d .

If $C \in \mathcal{C}$ conv(pos. elements C) \cap conv(neg. elements C) $\neq \emptyset$.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Oriented matroids

Let E a finite set. An oriented matroid is a family C of signed subsets of E verifying certain axioms (the family $\mathcal C$ is called the circuits of the oriented matroid).

There is a natural way to obtain an oriented matroid from a configuration of points in \mathbb{R}^d .

If $C \in \mathcal{C}$ conv(pos. elements C) \cap conv(neg. elements C) $\neq \emptyset$.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Oriented matroids

Let E a finite set. An oriented matroid is a family C of signed subsets of E verifying certain axioms (the family $\mathcal C$ is called the circuits of the oriented matroid).

There is a natural way to obtain an oriented matroid from a configuration of points in \mathbb{R}^d .

If $C \in \mathcal{C}$ conv(pos. elements C) \cap conv(neg. elements C) $\neq \emptyset$.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Example : $d = 3$.

メロメ メ都 メメ きょくきょう

佳

Theorem (R.A. 1998) $\bar{m}(T \text{ or } T^*) = 7$.

J.L. Ramírez Alfonsín [Knots and the Cyclic Polytope](#page-0-0)

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

佳

Theorem (R.A. 1998) $\bar{m}(T \text{ or } T^*) = 7$. Proof (idea) :

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

佳

Theorem (R.A. 1998) $\bar{m}(T \text{ or } T^*) = 7$. Proof (idea): Consider circuits $(1^+, 2^+, 3^+, 5^-, 6^-)$ and $(1^+, 2^+, 4^+, 5^-, 6^-.$

メロメ メ御き メミメ メミメー

注

Theorem (R.A. 1998) $\bar{m}(T \text{ or } T^*) = 7$. Proof (idea) : Give conditions on circuits in order to have the desired knot.

Verify that such conditions hold for any (representable) oriented matroid on 7 elements.

メロメ メ御 メメ ミメ メミメ

 Ω

Theorem (R.A. 1998) $\bar{m}(T \text{ or } T^*) = 7$. Proof (idea) : Give conditions on circuits in order to have the desired knot.

Verify that such conditions hold for any (representable) oriented matroid on 7 elements.

(□) (*曰*)

 \leftarrow \equiv \rightarrow

K 로)

Let $t_1, \ldots, t_n \in \mathbb{R}$. The cyclic polytope of dimension d with n vertices is defined as

$$
C_d(t_1,\ldots,t_n):=conv(x(t_1),\ldots,x(t_n))
$$

where $x(t_i)=(t_i,t_i^2,\ldots,t_i^d)$ are points of the moment curve

$$
C_d(t_1,\ldots,t_n)\to C_d(n)
$$

Upper bound theorem (McMullen 1970) The number of j-faces of a d-dimensional polytope with *n* vertices is maximal for $C_d(n)$.

メロメ メ御 メメ ミメ メミメ

Let $t_1, \ldots, t_n \in \mathbb{R}$. The cyclic polytope of dimension d with n vertices is defined as

$$
C_d(t_1,\ldots,t_n):=conv(x(t_1),\ldots,x(t_n))
$$

where $x(t_i)=(t_i,t_i^2,\ldots,t_i^d)$ are points of the moment curve

$$
C_d(t_1,\ldots,t_n)\to C_d(n)
$$

Upper bound theorem (McMullen 1970) The number of j-faces of a d-dimensional polytope with *n* vertices is maximal for $C_d(n)$.

メロメ メ御き メミメ メミメー

Let $t_1, \ldots, t_n \in \mathbb{R}$. The cyclic polytope of dimension d with n vertices is defined as

$$
C_d(t_1,\ldots,t_n):=conv(x(t_1),\ldots,x(t_n))
$$

where $x(t_i)=(t_i,t_i^2,\ldots,t_i^d)$ are points of the moment curve

$$
C_d(t_1,\ldots,t_n)\to C_d(n)
$$

Upper bound theorem (McMullen 1970) The number of j-faces of a d-dimensional polytope with *n* vertices is maximal for $C_d(n)$.

メロメ メ御き メミメ メミメー

Let $t_1, \ldots, t_n \in \mathbb{R}$. The cyclic polytope of dimension d with n vertices is defined as

$$
C_d(t_1,\ldots,t_n):=conv(x(t_1),\ldots,x(t_n))
$$

where $x(t_i)=(t_i,t_i^2,\ldots,t_i^d)$ are points of the moment curve

$$
C_d(t_1,\ldots,t_n)\to C_d(n)
$$

Upper bound theorem (McMullen 1970) The number of j-faces of a d-dimensional polytope with *n* vertices is maximal for $C_d(n)$.

イロメ イ押 トラ ミトラ ミト

メロメ メ団 メメ ミメ メ ミメー

 299

佳

メロメメ 倒す メモメメモメー 塩

Theorem (R.A. 2009) Let $D(K)$ be a diagram of a knot K on n crossings. Then, there exists a cycle in $C_3(m)$ isotopic to K where $m < 7n$.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

哇

Theorem (R.A. 2009) Let $D(K)$ be a diagram of a knot K on n crossings. Then, there exists a cycle in $C_3(m)$ isotopic to K where $m \leq 7n$.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

哇

メロメ メ団 メメ きょくきょう

 $\bar{=}$

メロメ メ団 メメ ミメ メミメー

 299

佳

メロメ メ団 メメ きょくきょう

佳

メロメ メ団 メメ ミメ メミメー

佳

Theorem (R.A. 2009) Let $D(L)$ be a diagram of link L with n crossings. Then,

$$
\bar{m}(L) \le 2^{8^c}
$$
 where $c = 4^{18n-7}$.

イロメ イ部メ イヨメ イヨメー

 \equiv

Theorem (R.A. 2009) Let $D(L)$ be a diagram of link L with n crossings. Then,

 $\bar{m}(L) \leq 2^{8^c}$ where $c = 4^{18n-7}$.

メロメ メ御き メミメ メミメー

哇

Knots physical models

For a given diameter, one needs certain minimum length of rope in order to tie a (nontrivial) knot.

Moreover, the more complicated the knot you want to tie, the more rope you need.

Question (Siebenmann 1985) Can you tie a knot in a one-foot length of 1-inch rope ?

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Knots physical models

For a given diameter, one needs certain minimum length of rope in order to tie a (nontrivial) knot.

Moreover, the more complicated the knot you want to tie, the more rope you need.

Question (Siebenmann 1985) Can you tie a knot in a one-foot length of 1-inch rope ?

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 Ω

Knots physical models

For a given diameter, one needs certain minimum length of rope in order to tie a (nontrivial) knot.

Moreover, the more complicated the knot you want to tie, the more rope you need.

Question (Siebenmann 1985) Can you tie a knot in a one-foot length of 1-inch rope ?

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

メロメメ 倒す メモメメモメー 塩

イロト イ団 トメ ミト メ ミト

 \equiv

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

佳

A number $r > 1$ is nice if for any distinct points x and y on K we have $D(x, r) \cap D(y, r) = \emptyset$. The disk thickness of K is defined to be $t(K) = \sup\{r|r \text{ is nice}\}.$

A thick realization K_0 of K is a knot of unit thickness which is of the same type as K .

The rope length $L(K)$ of K is the infimum of the length of K_0 taken over all thick realizations of K .

Theorem (Cantarella, Kusner and Sullivan 2002) $L(K)$ exists.

イロト イ団ト イミト イミト

∽≏ດ

A number $r > 1$ is nice if for any distinct points x and y on K we have $D(x, r) \cap D(y, r) = \emptyset$. The disk thickness of K is defined to be $t(K) = \sup\{r|r \text{ is nice}\}.$

A thick realization K_0 of K is a knot of unit thickness which is of the same type as K .

The rope length $L(K)$ of K is the infimum of the length of K_0 taken over all thick realizations of K.

Theorem (Cantarella, Kusner and Sullivan 2002) $L(K)$ exists.

イロト イ団ト イラト イラト

A number $r > 1$ is nice if for any distinct points x and y on K we have $D(x, r) \cap D(y, r) = \emptyset$. The disk thickness of K is defined to be $t(K) = \sup\{r|r \text{ is nice}\}.$

A thick realization K_0 of K is a knot of unit thickness which is of the same type as K .

The rope length $L(K)$ of K is the infimum of the length of K_0 taken over all thick realizations of K.

Theorem (Cantarella, Kusner and Sullivan 2002) $L(K)$ exists.

イロト イ団ト イラト イラト

Theorem (Diao, Ernst and Yu 2004) There exists a constant c such that for any knot K

 $L(K) \leq c \cdot (cr(K))^{3/2}$

where $cr(K)$ is the crossing number of K.

The cubic lattice consists of all points in \mathbb{R}^3 with integral coordinates and all unit line segments joining these points. A cubic lattice knot is a polygonal knot represented in the cubic lattice.

メロメ メタメ メモメ メモメ

Theorem (Diao, Ernst and Yu 2004) There exists a constant c such that for any knot K

 $L(K) \leq c \cdot (cr(K))^{3/2}$

where $cr(K)$ is the crossing number of K. The cubic lattice consists of all points in \mathbb{R}^3 with integral coordinates and all unit line segments joining these points. A cubic lattice knot is a polygonal knot represented in the cubic lattice.

メロメ メタメ メモメ メモメ

Theorem (Diao, Ernst and Yu 2004) There exists a constant c such that for any knot K

 $L(K) \leq c \cdot (cr(K))^{3/2}$

where $cr(K)$ is the crossing number of K. The cubic lattice consists of all points in \mathbb{R}^3 with integral coordinates and all unit line segments joining these points.

A cubic lattice knot is a polygonal knot represented in the cubic lattice.

メロメ メタメ メモメ メモメ

The trefoil represented in the cubic lattice.

メロメ メ団 メイ きょくきょう

佳

.

Theorem (Diao, Ernst and Yu 2004) Let K be a knot. Then, K can be embedded into the cubic lattice with length at most

136 $\left(cr(K) \right)^{3/2} + 84cr(K) + 22\sqrt{cr(K)} + 11$

メロメ メ御き メミメ メミメー

 $2Q$

哇

J.L. Ramírez Alfonsín [Knots and the Cyclic Polytope](#page-0-0)

メロメ メ団 メメ ミメ メ きょう 違う

Theorem (R.A. 2010) Let K be a knot. Then, K can be embedded into the cubic lattice with length at most $O(cr(K))$.

Theorem (R.A. 2010) There exists a constant c such that for any knot K

 $L(K) \leq c \cdot (cr(K))$.

メロメ メ御 メメ きょくきょう

 $2Q$

哇

Theorem (R.A. 2010) Let K be a knot. Then, K can be embedded into the cubic lattice with length at most $O(cr(K))$.

Theorem $(R.A. 2010)$ There exists a constant c such that for any knot K

 $L(K) \leq c \cdot (cr(K))$.

メロメ メ御 メメ きょ メモメ

 $2Q$

哇