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Abstract

Let M be a matroid without loops or coloops and let T (M ;x, y) be its
Tutte polynomial. In 1999 Merino and Welsh conjectured that

max(T (M ; 2, 0), T (M ; 0, 2)) ≥ T (M ; 1, 1)

holds for graphic matroids. Ten years later, Conde and Merino proposed a
multiplicative version of the conjecture which implies the original one. In this
paper we prove the multiplicative conjecture for the family of lattice path
matroids (generalizing earlier results on uniform and Catalan matroids). In
order to do this, we introduce and study particular lattice path matroids,
called snakes, used as building bricks to indeed establish a strengthening of
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the multiplicative conjecture as well as a complete characterization of the
cases in which equality holds.

Keywords: lattice path matroids, Tutte polynomial, Merino-Welsh
conjecture

1. Introduction

An orientation of a graph G is an assignment of a direction to each edge.
An orientation of G is said to be acyclic if it has no directed cycles and totally
cyclic if each edge belongs to a directed cycle. Let τ(G) be the number of
spanning trees of G. Let α(G) be the number of acyclic orientations of G
and α∗(G) the number of totally cyclic orientations of G. The following
conjectures have been raised by Conde and Merino [10] and Merino and
Welsh [16]:

Conjecture 1.1 (Graphic Merino-Welsh conjectures). For any graph G with
no bridges and no loops we have:

1. max (α(G), α∗(G)) ≥ τ(G).

2. α(G) + α∗(G) ≥ 2 · τ(G). (Additive)

3. α(G) · α∗(G) ≥ τ(G)2. (Multiplicative)

Conjecture 1.1.3 is the strongest version. It is easy to verify that it im-
plies Conjecture 1.1.2, which in turn implies Conjecture 1.1.1. Nevertheless,
the multiplicative version turns out to be the most manageable. There are
partial results concerning these conjectures. For a graph G on n vertices
Thomassen [21] showed that τ(G) ≤ α(G) if G has at most 16n/5 edges or G
has maximum degree at most 3 and τ(G) ≤ α∗(G) if G has at least 4n edges
or G is a planar triangulation. Thus, establishing Conjecture 1.1.1 in these
cases. Chávez-Lomeĺı et al. [8] proved Conjecture 1.1.1 for several families of
graphs, including wheels, whirls and complete graphs. Noble and Royle [18]
established Conjecture 1.1.3 for the class of series-parallel graphs.

As noticed in [10] and [16], Conjecture 1.1 can be stated in terms of the
Tutte polynomial T (G;x, y) of G since

τ(G) = T (G; 1, 1), α(G) = T (G; 2, 0) and α∗(G) = T (G; 0, 2)

We thus have the following natural generalization to matroids.
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Conjecture 1.2 (Matroidal Merino-Welsh conjectures). Let M be a matroid
without loops or coloops and let T (M ;x, y) be its Tutte polynomial. Then:

1. max (T (M ; 2, 0), T (M ; 0, 2)) ≥ T (M ; 1, 1).
2. T (M ; 2, 0) + T (M ; 0, 2) ≥ 2 · T (M ; 1, 1). (Additive)
3. T (M ; 2, 0) · T (M ; 0, 2) ≥ T (M ; 1, 1)2. (Multiplicative)

Notice that not allowing loops and coloops in M is a fundamental hypoth-
esis for the multiplicative version since a loop would imply T (M ; 2, 0) = 0
and a coloop would imply T (M ; 0, 2) = 0.

An important result related to the multiplicative Merino-Welsh conjecture
due to Jackson [15] is that T (M ; b, 0) · T (M ; 0, b) ≥ T (M ; a, a)2 for any
loopless, coloopless matroid M provided that b ≥ a(a+ 2). Conjecture 1.2.1
for paving matroids and Catalan matroids is proved in [8]. By combining the
results from [8] and [15] it can be proved inductively that paving matroids
even satisfy Conjecture 1.2.3 (the base cases need a detailed treatment).

The main contribution of the present paper is to prove Conjecture 1.2.3 for
the class of lattice path matroids (which contains, in particular, the families
of Catalan matroids and uniform matroids).

Theorem 1.3. Let M be a lattice path matroid without loops or coloops that
is not a direct sum of trivial snakes. Then,

T (M ; 2, 0) · T (M ; 0, 2) ≥ 4

3
· T (M ; 1, 1)2.

Here, a trivial snake is a pair of parallel elements. We will see that direct
sums of trivial snakes do not satisfy the inequality with the factor 4

3
but they

do satisfy Conjecture 1.2.3.
Our theorem is an improvement by a multiplicative constant, and thus it

directly implies the multiplicative version of Conjecture 1.2. Furthermore, it
enables us to characterize the lattice path matroids in which Conjecture 1.2.3.
holds with equality as precisely being the direct sums of trivial snakes (Corol-
lary 4.4).

In Section 2 we state some basic definitions and properties in matroid
theory needed for the rest of the paper. Afterwards, in Section 3, we introduce
lattice path matroids. We define snakes (which are matroids that can be
thought of as “thin” lattice path matroids) and prove that they are graphic
matroids. We provide explicit formulas for the number of bases and acyclic
orientations snakes, which is a crucial ingredient for the proof of our main
result (Theorem 1.3), that will be given in Section 4.
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2. Basic definitions and properties

There are several ways to define a matroid. We refer to [22] for a thorough
introduction into the topic. In this paper, we will define matroids in terms
of their bases. A matroid is a pair M = (E,B) consisting of a finite ground
set E and a collection B of subsets of E which satisfies:

(B0) B is non-empty.

(B1) If A and B are in B and there is an element a ∈ A\B, then there exists
an element b ∈ B \ A such that A \ {a} ∪ {b} is in B.

The elements of B are called bases. If E = ∅, then M is called empty.
It is a basic fact in matroid theory that all the bases of a matroid M have

the same cardinality. This number is the rank of the matroid. If an element
a ∈ E belongs to no base, it is called a loop. If a belongs to every base, it
is called a coloop. If a matroid has no loops and no coloops we will call it
loopless-coloopless, which we will abbreviate by LC.

If M is a matroid with base set B and ground set E then one constructs
another matroid M∗ called the dual of M with the same ground set but with
base set

B∗ := {E \B : B ∈ B}.
If M and N are matroids with disjoint ground sets E and F , respectively,

then the direct sum of M and N is the matroid whose ground set is the union
of E and F , and whose bases are those sets which can be written as the union
of a base of M and a base of N . If a matroid cannot be expressed as the
direct sum of two non-empty matroids it is said to be connected, otherwise it
is disconnected. Note that every connected matroid is LC, except for matroids
whose ground set consists of a single element.

Let M be a matroid with base set B and ground set E and let S ⊆ E.
The inclusion-maximal sets of {B\S : B ∈ B} are the bases of a new matroid
M \ S called the deletion of S. The dual construction is the contraction of
S. It can be defined as the matroid M/S := (M∗ \ S)∗. If S = {s}, then we
abbreviate the notations M \{s} and M/{s} by M \s and M/s, respectively.
The deletion allows us to extend the notion of rank to subsets of the ground
set: For a subset A ⊆ E we denote the rank of A by r(A) which is defined
as the rank of M \ (E \ A). Note that r(E) is thus the rank of M .

A very useful algebraic invariant for matroids is the Tutte polynomial.
Given a matroid M , this is a two-variable polynomial defined as follows:
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T (M ;x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A).

The Tutte polynomial contains important information about the matroid.
Most importantly in our context, T (M ; 1, 1) is the number of bases of M .
In the case of orientable and in particular graphic matroids, T (M ; 2, 0) and
T (M ; 0, 2) count the number of acyclic and totally cyclic orientations of the
underlying graph, respectively. It is also well known that the Tutte polyno-
mial satisfies the following recursive property [23]:

T (M ;x, y) =


T (M \ s;x, y) + T (M/s;x, y) if s is neither a loop

nor a coloop,
xT (M \ s;x, y) if s is a coloop,
yT (M/s;x, y) if s is a loop.

We point out that when s is a loop or a coloop, M \ s = M/s. Further-
more, we will make use of the facts that T (M ;x, y) = T (M∗; y, x) and that
if L is the direct sum of M and N , then T (L;x, y) = T (M ;x, y) · T (N ;x, y).

3. Lattice path matroids and snakes

In this section we address the class of lattice path matroids first intro-
duced by Bonin, de Mier, and Noy [5]. Many different aspects of lattice path
matroids have been studied: excluded minor results [3], algebraic geometry
notions [11, 19, 20], complexity of computing the Tutte polynomial [6, 17],
and results around the matroid base polytope [2, 7, 9].

In order to define lattice path matroids, we first introduce transversal
matroids. Let A = (Aj : j ∈ J) be a set system, that is, a multiset of subsets
of a finite set E. A transversal of A is a set {xj : j ∈ J} ⊆ E of |J | distinct
elements such that xj ∈ Aj for all j. A fundamental result of Edmonds [12]
states that the transversals of a set system A = (Aj : j ∈ J) constitute the
base set of a matroid on E. The collection A is a presentation of this matroid
and any matroid that arises in such a way from a set system is a transversal
matroid.

A path in the plane is a lattice path, if it starts at the origin and only
does steps of the form +(1, 0) and +(0, 1), called North (N) and East (E),
respectively. One way to encode a lattice path P is therefore to simply
identify it with a sequence P = (p1, . . . , pr+m), where pi ∈ {N,E} for all
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1 ≤ i ≤ r + m. Let {ps1 , . . . , psr} be the set of North steps of P with
s1 < · · · < sr. Clearly, if the total number of steps of P is known, we can
recover it from {s1, . . . , sr}, by setting pi = N if i ∈ {s1, . . . , sr} and pi = E,
otherwise, for all 1 ≤ i ≤ r + m. Let P = {s1, . . . , sr} and Q = {t1, . . . , tr}
be two lattice paths encoded that way, both ending at the point (m, r), such
that P never goes above Q. The latter condition is equivalent to ti ≤ si
for all 1 ≤ i ≤ r. The lattice path matroid (LPM) associated to P and Q
is the transversal matroid M [P,Q] on the ground set {1, . . . ,m + r} and
presentation (Ai : i ∈ {1, . . . , r}) where Ai denotes the interval of integers
between ti and si. In [5, Theorem 3.3] it was proved that a subset B of
{1, . . . ,m+ r} with |B| = r is a base of M [P,Q] if and only if the associated
path, which we will also denote by B, stays in the region bounded by P and
Q, see Figure 1. We call the part of the plane enclosed by P and Q, the
diagram of M [P,Q].

P

Q
B

(0,0)

(8,5) A

A
A
A
A

={1,2,3,4,5}

={4,5,6,7,8}
={5,6,7,8,9,10}
={9,10,11,12}
={11,12,13}

Q={1,4,5,9,11}
Q=NEENNEEENENEE

B={4,5,9,10,13}
B=EEENNEEENNEEN

P={5,8,10,12,13}
P=EEEENEENENENN

1

2

3

4

5

Figure 1: Left: Lattice paths P and Q from (0, 0) to (8, 5) and a path B staying between
P and Q in the diagram of M [P,Q]. Middle: The set system A1, . . . , A5 representing
M [P,Q]. Right: Representations of P , Q, and B as subsets of {1, . . . , 13} and as words
in the alphabet {E,N}.

The uniform matroid Ur,r+n is the LPM M [P,Q] with Q = {1, . . . , r} =
N · · ·N︸ ︷︷ ︸

r

E · · ·E︸ ︷︷ ︸
n

and P = {n + 1, n + 2, . . . , n + r} = E · · ·E︸ ︷︷ ︸
n

N · · ·N︸ ︷︷ ︸
r

. The

k-Catalan matroid is the LPM M [P,Q] with Q = {1, 3, . . . , 2k − 1} =
NENE · · ·NE︸ ︷︷ ︸

k−pairs

and P = {k + 1, k + 2, · · · , 2k} = E · · ·E︸ ︷︷ ︸
k

N · · ·N︸ ︷︷ ︸
k

.

It is known [5, Theorem 3.4] that the class of LPMs is closed under
matroid duality. Indeed, for an LPM M , the bases of the dual matroid M∗

correspond to the East steps of the lattice paths in the diagram of M . Thus,
reflecting the diagram of M along the diagonal x = y, yields a diagram for
M∗ and shows that M∗ is an LPM, as well. See Figure 2.
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Figure 2: Presentations of an LPM and its dual.

The direct sum of LPMs in terms of their diagrams is illustrated in Fig-
ure 3. In particular, we shall later use the fact ([5, Theorem 3.6]) that the
LPM M [P,Q] is connected if and only if the paths P and Q intersect only at
(0, 0) and (m, r). Moreover, we can detect loops and coloops in the diagram
the following way. If P and Q share a horizontal (respectively vertical) edge
at step e, then e is a loop (respectively a coloop). Therefore, LC LPMs are
those in which P and Q do not share vertical or horizontal edges.

Figure 3: Diagrams of two LPMs and their direct sum.

In this paper we define a special class of LPMs, whose members are
called snakes. An LPM is called snake if it has at least two elements, is
connected and has a diagram without interior lattice points. See Figure 4 for
an example. We represent a snake as S(a1, a2, . . . , an) if starting from the
origin its diagram encloses a1 ≥ 1 squares to the right, then a2 ≥ 2 squares
up, then a3 ≥ 2 squares to the right and so on up to an ≥ 2, where the last
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square counted by each ai coincides with the first square counted by ai+1 for
all i ≤ n− 1. We call S(1) the trivial snake (one square).

a1

a3

a4

a2

Figure 4: The diagram of a snake.

The duality of LPMs depicted in Figure 2 restricts to snakes, i.e., the
class of snakes is closed under duality. An example is illustrated in Figure 5.
More precisely, the following is easy to see:

Observation 3.1. Let n be a positive integer and a1, . . . , an be integers with
a1 ≥ 1 and ai ≥ 2 for all 2 ≤ i ≤ n. For the dual of S(a1, . . . , an) we have

S∗(a1, . . . , an) =


S(1, a1, . . . , an) if a1 > 1,

S(a2, . . . , an) if a1 = 1 < n,

S(1) if a1 = 1 = n.

Observation 3.1 is useful since in some of our results it allows to assume
a1 ≥ 2 because (except for the trivial snake) the case S(1, a2, . . . , an) can be
treated via its dual S∗(1, a2, . . . , an) = S(a2, a3, . . . , an).

The rest of this section is devoted to finding exact formulas for some val-
ues of the Tutte polynomial for snakes: T (S; 2, 0), T (S; 0, 2) and T (S; 1, 1).
These formulas will be crucial to prove our main result in Section 4. For
obtaining them, it will turn out to be useful to view snakes as graphic ma-
troids.

To this end we introduce a special family of graphs, whose family of
associated graphic matroids will turn out to coincide with the class of snakes.
Let ` be a positive integer and c = (c1, c2, . . . , c`) and d = (d1, d2, . . . , d`−1) be
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Figure 5: The snake S(1, 5, 3, 4) and its dual S∗(1, 5, 3, 4) = S(5, 3, 4).

vectors of positive integers. The multi-fan F (c, d) is the graph consisting of

a path (v1, v
2
1, . . . , v

d1
1 , v2, v

2
2, . . . , v

d2
2 , . . . , v`−1, v

2
`−1, . . . , v

d`−1

`−1 , v`) plus a single
vertex x that is connected by a bundle of ci ≥ 1 parallel edges to vi for every
1 ≤ i ≤ `, see Figure 6. If ` = 1, then the multi-fan F (c1) consists of a single
bundle of c1 parallel edges.

c

cc c c

d d d

x

v v v v v
1 2 3 l-1 l

1

2 3 l-1
l

l-11 2

Figure 6: A multi-fan F (c, d).

Note that the ordinary fan coincides with the multi-fan with parameters
c = (1, 1, . . . , 1) and d = (1, 1, . . . , 1). Also, a multi-fan is a series parallel
graph created by alternately adding parallel edges from x to the vi’s and
adding series edges from each vi to vi+1.
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We are now ready to prove our correspondence between snakes and multi-
fans.

Theorem 3.2. Let a1, . . . , an be integers with a1 ≥ 1 and ai ≥ 2 for each
i = 2, . . . , n. The snake S(a1, a2, . . . , an) is isomorphic to the graphic matroid
associated to the multi-fan F (c, d), where

c =

{
(a1, a3 − 1, . . . , a2k−1 − 1, a2k+1) if n = 2k + 1,

(a1, a3 − 1, . . . , a2k−1 − 1, 1) if n = 2k.

and
d = (a2 − 1, a4 − 1, . . . , a2k − 1)

in both cases.

Proof. Given the intervals A1, . . . Ar(M) representing M = S(a1, a2, . . . , an)
as a transversal matroid, we associate a fan F to M , such that the vertices
v1, . . . vr(M) on the path of F correspond to A1, . . . Ar(M) in this order. More-
over, the number of parallel edges of a vertex vi to the special vertex x of F
is the number of elements of Ai, that are not contained in any other Aj. See
Figure 7 for an illustration. Note that the parameters of F depend on those
of the snake M exactly as claimed in the statement of the theorem. Fur-
thermore, note that by the definition of snakes, any two consecutive intervals
Ai, Ai+1 share precisely one element. This gives that the edges incident to
vertex vi of F correspond to the elements of M contained in Ai.

A1

A2

A3

A4 v1 v2 v3 v4

x1 2 3 4

4 5

5 6 7

7 8

1 2 3
6 8

4 5 7

Figure 7: A snake and its associated multi-fan.

To show that both matroids are isomorphic, we give a correspondence
between their bases. That is, we prove that the spanning trees of F are in
bijection with the transversals of A1, . . . , Ar(M). Let T be a spanning tree of
G. We root T at x and orient all its edges away from x. Now, every edge e
of T corresponds to an element of the ground set of M . We associate e to
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the vertex vi it is oriented to, which in turn corresponds to an Ai containing
e. Since every vertex except x has indegree 1, this mapping proves that the
edges of T form a transversal of A1, . . . , Ar(M).

Conversely, suppose that we are given a transversal T = {x1, . . . xr(M)}
of A1, . . . , Ar(M). Since both the sequence of left endpoints and the sequence
of right endpoints of A1, . . . , Ar(M) are increasing, we can assign elements
of the transversal in increasing order, i.e., x1 ≤ . . . ≤ xr(M). Thus, an edge
corresponding to an element xi of the transversal can be oriented towards the
vertex vi representing the Ai to which xi is assigned. Since T is a transversal,
every vertex on the path of F has indegree one. This implies, that x has
outdegree at least 1. Moreover, vertex x has indegree 0. Consequently, the
obtained graph is spanning and contains no cycles. We have obtained a tree
rooted in x and oriented away from x. This gives the desired bijection.

We remark that an alternative way of proving that snakes correspond to
multi-fans is to use [4, Theorem 6.7] where the structure of LPMs is described
in terms of principal extensions. The following corollary will be useful later
on, when treating matroid duality with respect to snakes.

Corollary 3.3. Let n > 1 and a1, . . . , an be integers with a1 ≥ 1 and ai ≥ 2
for each i = 2, . . . , n. Then, the dual matroid S∗(a1, . . . , an) is isomorphic to
the graphic matroid associated to the multi-fan F (c′, d′) with

c′ =


(1, a2 − 1, a4 − 1, . . . , a2k − 1, 1) if n = 2k + 1 and a1 > 1,

(1, a2 − 1, a4 − 1, . . . , a2k−2 − 1, a2k) if n = 2k and a1 > 1,

(a2 − 1, a4 − 1, . . . , a2k − 1, 1) if n = 2k + 1 and a1 = 1,

(a2 − 1, a4 − 1, . . . , a2k−2 − 1, a2k) if n = 2k and a1 = 1,

and

d′ =


(a1 − 1, a3 − 1, . . . , a2k+1 − 1) if n = 2k + 1 and a1 > 1,

(a1 − 1, a3 − 1, . . . , a2k−1 − 1) if n = 2k and a1 > 1,

(a3 − 1, a5 − 1, . . . , a2k+1 − 1) if n = 2k + 1 and a1 = 1,

(a3 − 1, a5 − 1, . . . , a2k−1 − 1) if n = 2k and a1 = 1.

Proof. Observation 3.1 yields a snake representation of S∗(a1, . . . , an). The-
orem 3.2 applied to this snake yields the multi-fan as claimed above.
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The following lemma provides a formula for the number of acyclic orien-
tations of a multi-fan.

Lemma 3.4. Let c = (c1, . . . , c`) and d = (d1, . . . , d`−1) be vectors of positive
integers. Then

α(F (c, d)) = 2
`−1∏
j=1

(
2dj+1 − 1

)
.

Proof. First observe that parallel edges must be oriented in the same direc-
tion. Start by orienting the first bundle of c1 parallel edges in one of the
two possible ways. Then the d1 edges between v1 and v2 together with the
second bundle of c2 parallel edges can be oriented in a total of 2d1+1 ways, all
of which but exactly one are acyclic. Then the d2 edges between v2 and v3
plus the third bundle of c3 parallel edges can be oriented in 2d2+1− 1 acyclic
ways, and so on, obtaining

2
`−1∏
j=1

(
2dj+1 − 1

)
acyclic orientations, as desired.

Proposition 3.5. For any positive integer n and a1, . . . , an integers with
a1 ≥ 1 and ai ≥ 2 for each i = 2, . . . , n, we have

T (S(a1, . . . , an); 0, 2) · T (S(a1, . . . , an); 2, 0)) = 22

n∏
i=1

(2ai − 1). (1)

Proof. Considering the snake or its dual we can suppose that a1 ≥ 2 by
Observation 3.1. By Theorem 3.2, we can express T (S(a1, . . . , an); 2, 0) as
α(F (c, d)). Note that the vector d does not depend on the parity of n and is
the only one taken into account by Lemma 3.4. We can thus conclude:

T (S(a1, . . . , an); 2, 0) = α(F (c, d))

= 2
n∏

i = 2
i− even

(2ai−1+1 − 1)

= 2
n∏

i = 2
i− even

(2ai − 1).
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Now, we use T (S(a1, . . . , an); 0, 2) = T (S∗(a1, . . . , an); 2, 0), which we can
express as α(F (c′, d′)) by Corollary 3.3. Furthermore since a1 ≥ 2 the vector
d′ in the corresponding multi-fan F (c′, d′) does not depend on the parity of
n, i.e., in both cases comprises all ai with odd index, and is the only part
of the parameters of F (c′, d′) that is taken into account by Lemma 3.4. We
conclude:

T (S(a1, . . . , an); 2, 0) = T (S∗(a1, . . . , an); 0, 2)
= α(F (c′, d′))

= 2
n∏

i = 1
i− odd

(2ai−1+1 − 1)

= 2
n∏

i = 1
i− odd

(2ai − 1).

Obtaining,

T (S(a1, . . . , an); 0, 2) · T (S(a1, . . . , an); 2, 0)) = 22

n∏
i=1

(2ai − 1).

Now we turn our attention to T (S; 1, 1). We will count the number of
bases of a snake directly from its diagram. Let Fib(n) be the set of all binary
sequences b = (b1, . . . , bn) of length n such that there are no two adjacent
1’s.

Proposition 3.6. For any positive integer n and a1, . . . , an integers with
a1 ≥ 1 and ai ≥ 2 for each i = 2, . . . , n we have

T (S(a1, . . . , an), 1, 1) =
∑

b∈Fib(n+1)

n∏
i=1

(ai − 1)1−|bi+1−bi| (2)

Furthermore, for n > 1 the following recursion holds:

T (S(a1, . . . , an), 1, 1) =T (S(a1, . . . , an−1), 1, 1)+

(an − 1) · T (S(a1, . . . , an−1 − 1), 1, 1).
(3)
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Proof. Consider the snake S(a1, . . . , an). If n = 1 and a1 = 1, on both sides
of the equation we have 2. In any other case, the snake has at least two
squares. By duality, we may suppose that the snake starts with two adjacent
horizontal squares, that is a1 ≥ 2.

Let S(a1, . . . , an) = M [P,Q]. We will label some points on the paths P
and Q with 0’s and 1’s. As we explain the labeling, Figure 8 may be used as
a reference for the case n = 4. We label as follows. On the snake consider
C1 the first square, Cn+1 the last square and for each i ∈ {2, . . . , n} let Ci be
the (i− 1)-th square in which the snakes changes direction. For each square
Ci let ui be its upper left vertex and vi its lower right vertex. We label each
ui with 1 if i is odd and with 0 if i is even. We label each vi with the label
opposite to the one in ui.

C1

C3 C

C2

C5

4

1

0

0

1

1

0

0

1

1

0

Figure 8: Labeling of S(a1, a2, a3, a4) with zeros and ones.

Consider a lattice path within the diagram of S(a1, . . . , an). For every
1 ≤ i ≤ n+ 1 this lattice path has to go through exactly one of the vertices
ui, vi. Therefore, for each lattice path we can assign a binary sequence of
length n+ 1. We claim that the formula in Equation (2) counts the number
of lattice paths according to their corresponding binary sequence.

First, it is impossible to go consecutively from a vertex labeled 1 to an-
other vertex labeled 1. Therefore all the possible binary sequences are in
Fib(n+ 1). Now we take a binary sequence B = (b1, . . . , bn+1) and we count
to how many lattice paths it corresponds. Consider the segment of the path
that goes from the vertices in square Ci to the vertices in square Ci+1.

14



• If we go from the vertex with label 0 to the vertex with label 1 or vice
versa, there is exactly one way in which we can do it.

• There are exactly ai− 1 ways to go from the vertex with label 0 to the
vertex with label 0, corresponding to the choice of the unique N -step,
respectively E-step.

Thus if the binary sequence is B, we can go from the vertices in Ci to the
vertices in Ci+1 in (ai − 1)1−|bi+1−bi| ways, and therefore there are

n∏
i=1

(ai − 1)1−|bi+1−bi|

lattice paths with corresponding sequence equal to B. This shows that
the formula is correct.

The recursive formula can be proved using Equation (2), but we provide
a combinatorial proof. To do so we verify whether the lattice path has
gone through the upper right vertex of Cn or not. If it did, by definition
there are T (S(a1, . . . , an−1); 1, 1) ways of getting to that vertex and then the
path to the end is completely determined. If it did not, then in square Cn

the path has to go through the vertex with label 0, which can be done in
T (S(a1, . . . , an−1−1), 1, 1) ways. This has to be multiplied by the an−1 ways
to complete the path avoiding the upper right vertex of Cn. This completes
the argument.

Notice that when a1 = a2 = . . . = an = 2 we are summing only 1’s over
all the sequences of Fib(n + 1). It is a folklore result that the number of
such sequences is the (n+ 3)-rd Fibonacci number, and thus Proposition 3.6
can be regarded as a lattice path generalization of this. Indeed, the fact that
the number of spanning trees of ordinary fans is counted by the Fibonacci
numbers has been observed several times, see [1, 13, 14].

4. The multiplicative Merino-Welsh conjecture for LPMs

We will now prove that the strongest version of Conjecture 1.2 is true for
LPMs. Notice that equality may hold. An easy example is the trivial snake.
Since the Tutte polynomial of a direct sum is the product of the polynomials
of the components of the direct sum, a direct sum of trivial snakes also yields
equality.
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More specifically, in this section we prove Theorem 1.3 which is an im-
provement on the desired inequality by a constant factor except in the trivial
cases mentioned above.

We provide an inductive proof. The strategy is as follows:

• We prove the theorem for snakes.

• We show that any connected LPM M either is a snake, or it has an
element e such that both M \ e and M/e are connected LPMs with
fewer elements.

• We state a straightforward lemma for proving the inequality for M
from the veracity of the inequality for M \ e and M/e.

• We extend the result to disconnected but LC LPM.

Before starting with the first step in the strategy, let us make a remark.
In Section 3 we have shown that snakes are series parallel graphic matroids.
Therefore, Conjecture 1.2.3 can be proved for snakes using the result in [18].
However, for the whole strategy to work we will need to prove first the sharper
inequality for snakes. Thus we will need the precise results on the Tutte
polynomial provided by Proposition 3.5 and Proposition 3.6.

Proposition 4.1. If M is a non-trivial snake, then

T (M ; 2, 0) · T (M ; 0, 2) ≥ 4

3
· T (M ; 1, 1)2.

Proof. Let M = S(a1, . . . , an) be a non-trivial snake. We proceed by induc-
tion on n. If n = 1, then M = S(a) and since the snake is non-trivial we
have a ≥ 2. Now, T (S(a); 1, 1) is the number of lattice paths in its diagram
which is clearly a+ 1. By Equation (1), we have to prove that

4 · (2a − 1) ≥ 4

3
· (a+ 1)2

Since a ≥ 2, we have a2 ≥ a+ 2. Using the binomial formula we get

4 · ((1 + 1)a − 1) ≥ 4 ·
(

1 + a+
a(a− 1)

2
− 1

)
= 2a2 + 2a =

4

3
· a2 +

2

3
· a2 + 2a ≥ 4

3
· a2 +

2

3
· (a+ 2) + 2a

=
4

3
· (a2 + 2a+ 1) =

4

3
· (a+ 1)2.
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We need another induction base: the snakes S(2, a). By using Equations
(1) and (2), we need to prove that

4 · 3 · (2a − 1) ≥ 4

3
· (2a+ 1)2.

Recall that a ≥ 2. By using the binomial formula again we have

4 · 3 · (2a − 1) ≥ 12 ·
(

1 + a+
a(a− 1)

2
− 1

)
= 6a2 + 6a =

4

3
· (4a2 + 4a) +

2

3
(a2 + a) ≥ 4

3
· (4a2 + 4a+ 1)

=
4

3
· (2a+ 1)2.

This proves our induction bases. We now suppose that the conclusion
is true for 1, 2, . . . , n − 1 and we consider the snake S(a1, . . . , an−1, b) with
n, b ≥ 2 and if n = 2, then a1 ≥ 3. By using Equation (3), we have that:

T (S(a1, . . . , b), 1, 1) = T (S(a1, . . . , an−1), 1, 1) +

(b− 1) · T (S(a1, . . . , an−1 − 1), 1, 1).

We may now use the induction hypothesis. Notice that an−1−1 may become
1, but only if n > 2. In this case we consider S(a1, . . . , an−2). Thus, we can
always conclude that T (S(a1, . . . , b), 1, 1) is less than or equal to

√
3

2
· 2 ·

n−1∏
i=1

(2ai − 1)1/2 +

√
3

2
· (b− 1) · 2 · (2an−1−1 − 1)1/2 ·

n−2∏
i=1

(2ai − 1)1/2

which can be factorized as

√
3

2
· 2 ·

(
n−2∏
i=1

(2ai − 1)1/2

)
·
(
(2an−1 − 1)1/2 + (b− 1) · (2an−1−1 − 1)1/2

)
.

Therefore, to get the two extra factors that we need it will be enough to
prove that for any an−1 ≥ 2 and b ≥ 2 we have
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(2an−1 − 1)1/2 + (b− 1) · (2an−1−1 − 1)1/2 ≤ (2an−1 − 1)1/2 · (2b − 1)1/2

Dividing both sides by (2an−1 − 1)1/2 this becomes

1 +
b− 1√

2
·
(

1− 1

2an−1 − 1

)1/2

≤ (2b − 1)1/2.

We will prove that for b ≥ 2 the following stronger inequality holds

1 +
b− 1√

2
≤ (2b − 1)1/2.

By the binomial formula, 2b ≥ 1 + b+ b(b−1)
2

. Therefore,

2b − 1 ≥ b2 + b

2
≥ b2

2
+
(√

2− 1
)
b+

3

2
−
√

2 =

(
1 +

b− 1√
2

)2

.

This proves the desired inequality and thus the proposition follows by
induction.

Proposition 4.2. Let M be a connected LPM. Then either M is a snake
or M has an element e such that both M \ e and M/e are connected LPMs
different from the trivial snake.

Proof. Suppose that M = M [P,Q] is a connected LPM that is not a snake.
Let us consider the interior lattice point of M that is highest and rightmost,
say p = (x, y). We claim that e = x + y + 1 is the desired element of
M , see Figure 9. Indeed, [3, Corollary 2.17] states that for any element e
of a connected LPM that is not the first or the last, the contraction M/e
is connected if and only if e is in at least two sets in the presentation as
transversal matroid. Since this is the case for the above e, M/e is connected.
The connectivity of M \ e follows by duality.

The following result is valid for general matroids. A version without the
4
3

factor is given in [15]; see also [18, Lemma 2.2]. The following proof is
slightly different, and we include it for completeness.
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O

Q

P

e

e

p=(x,y)

Figure 9: An LPM with an interior point p.

Lemma 4.3. Let M be a loopless and coloopless matroid and let e be an
element of its ground set. Suppose that the inequality in Theorem 1.3 holds
for M \ e and for M/e. Then, the inequality also holds for M .

Proof. We define p, q, r, s, t, u as follows:

p = T (M \ e; 2, 0), q = T (M \ e; 0, 2), r = T (M \ e; 1, 1)

s = T (M/e; 2, 0), t = T (M/e; 0, 2), u = T (M/e; 1, 1)

Since M is loopless and coloopless, we have that T (M ;x, y) = T (M \
e;x, y) + T (M/e;x, y). Therefore, we have to prove that

(p+ s)(q + t) ≥ 4

3
· (r + u)2

By hypothesis, we know that p·q ≥ 4
3
·r2 and that s·t ≥ 4

3
·u2. Combining

this and the Cauchy-Schwartz inequality we conclude as follows:

(p+ s)(q + t) ≥
(√

pq +
√
st
)2
≥ 4

3
· (r + u)2.
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Notice that there is nothing special about 4/3 in the lemma above in the
sense that if p · q ≥ k · r2 and s · t ≥ k · u2 then (p + s)(q + t) ≥ k(r + u)2.
The value k = 4/3 is the one that gives equality for the snake S(2).

We are now ready to prove our main result.

Proof of Theorem 1.3. First we prove the theorem for connected LPMs. In
this proof we will only refer to LPMs different from the trivial snake. We
proceed by induction on the number of elements. If the matroid has three
elements, then a connected LPM with 3 elements is either S(2) or its dual,
for which we know that the theorem is true.

Now suppose that the theorem is true for connected LPMs of less than n
elements. Let M be a connected LPM with n elements. If M is a snake, then
by Proposition 4.1 the inequality holds. Otherwise, by Proposition 4.2 we can
find an element e such that both M \ e and M/e are connected LPMs. Each
of these has fewer elements than M , and thus by the inductive hypothesis the
inequality holds for both of them. Therefore using Lemma 4.3 we conclude
that the inequality also holds for M . This completes the proof for connected
LPMs.

We are left with the case in which M is LC but not connected. In this
case we express M as direct sum of connected LPMs M1, M2, . . ., Mn. By
our assumption at least one of them, say M1, is not the trivial snake. For
each 1 ≤ i ≤ n let

pi = T (Mi; 2, 0), qi = T (Mi; 0, 2), ri = T (Mi; 1, 1).

We know that p1 · q1 ≥ 4
3
· r21 and that for each 2 ≤ i ≤ n we have

pi · qi ≥ r2i . Using that the Tutte polynomial of a direct sum is the product
of the Tutte polynomials of the components we get:

T (M ; 2, 0) · T (M ; 0, 2) =
n∏

i=1

pi ·
n∏

i=1

qi =
n∏

i=1

(pi · qi)

≥ 4

3
·

n∏
i=1

r2i =
4

3
·

(∏
i=1

ri

)2

=
4

3
· T (M ; 1, 1)2.

Therefore, the inequality is true for every LC LPM that is not a direct
sum of trivial snakes.
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Theorem 1.3 immediately yields the following corollary which confirms
the multiplicative Merino-Welsh conjecture for LPMs.

Corollary 4.4. Let M be a lattice path matroid with no lops and no coloops.
Then we have

T (M ; 2, 0) · T (M ; 0, 2) ≥ T (M ; 1, 1)2

and equality holds if and only if M is a direct sum of trivial snakes.
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