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Abstract. Let r(G,H) be the smallest integer N such that for any 2-coloring (say, red
and blue) of the edges of Kn, n > N , there is either a red copy of G or a blue copy of
H. Let Kn − K1,s be the complete graph on n vertices from which the edges of K1,s

are dropped. In this note we present exact values for r(Km −K1,1,Kn −K1,s) and new
upper bounds for r(Km,Kn−K1,s) in numerous cases. We also present some results for
the Ramsey number of Wheels versus Kn −K1,s.
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1. Introduction

Let G and H be two graphs. Let r(G,H) be the smallest integer N such that for any
2-coloring (say, red and blue) of the edges of Kn, n > N there is either a red copy of G
or a blue copy of H. Let Kn −K1,s be the complete graph on n vertices from which the
edges of K1,s are dropped. We notice that Kn −K1,1 = Kn − e (the complete graph on n
vertices from which an edge is dropped) and Kn −K1,2 = Kn − P3 (the complete graph
on n vertices from which a path on three vertices is dropped).

In this note we investigate r(Km − e,Kn − K1,s) and r(Km, Kn − K1,s) for a variety
of integers m,n and s. In the next section, we prove our main result (Theorem 1).
In Section 3, we will present exact values for r(Km − e,Kn − K1,s) when n = 3 or
4 and some values of m and s. In Section 4, new upper bounds for r(Km, Kn − P3)
for several integers m and n are given. In Section 5, we give new upper bounds for
r(Km, Kn −K1,s) when m, s > 3 and several values of n. In Section 6, we present some
equalities for r(K4, Kn−K1,s) extending the validity of some results given in [3]. Finally,
in Section 7, we will present results concerning the Ramsey number of the Wheel W5

versus Kn − K1,s. We present exact values for r(W5, K6 − K1,s) when s = 3 and 4 and
the equalities r(W5, Kn −K1,s) = r(W5, Kn−1) when n = 7 and 8 for some values of s.
Some known values/bounds for specific r(Km, Kn) needed for this paper are given in the
Appendix.

2. Main result

Let G be a graph and denote by Gv the graph obtained from G to which a new vertex v,
incident to all the vertices of G, is added. Our main result is the following

Theorem 1. Let n and s be positive integers. Let G1 be any graph and let N be an integer

such that N > r(Gv
1, Kn). If

⌈
(s+1)(N−n)

n

⌉
> r(G1, Kn+1−K1,s) then r(Gv

1, Kn+1−K1,s) 6

N .
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Proof. Let KN be a complete graph on N vertices and consider any 2-coloring of the edges
of KN (say, red and blue). We shall show that there is either a Gv

1 red or a Kn+1 −K1,s

blue. Since N > r(Gv
1, Kn) then KN has a red Gv

1 or a blue Kn. In the former case we
are done, so let us suppose that KN admit a blue Kn, that we will denote by H. We have
two cases.

Case 1) There exists a vertex u ∈ V (KN \H) such that |N r
H(u)| 6 s where N r

H(u) is the
set of vertices in H that are joined to u by a red edge. In this case, we may construct
the blue graph G′ = Kn+1 −K1,|Nr

H(u)|, this is done by taking H (containing n vertices)
and vertex u together with the blue edges between u and the vertices of H. Now, since
|N r

H(u)| 6 s then the graph Kn+1 − K1,s is contained in G′ (and thus we found a blue
Kn+1 −K1,s).

Case 2) |N r
H(u)| > s for every vertex u ∈ V (KN \ H). Then we have that the number

of red edges {x, y} with x ∈ V (H) and y ∈ V (KN \ H) is at least (N − n)(s + 1). So,
by the pigeon hole principle, we have that there exists at least one vertex v ∈ V (H) such

that drKN\H(v) >
⌈
(s+1)(N−n)

n

⌉
, where drKN\H(v) =

∣∣∣N r
KN\H(v)

∣∣∣ and N r
KN\H(v) denotes

the set of vertices in KN \ H incident to v with a red edge. But since
⌈
(s+1)(N−n)

n

⌉
>

r(G1, Kn+1 − K1,s) then the graph induced by N r
KN\H(v) has either a blue Kn+1 − K1,s

(and we are done) or a red G1 to which we add vertex v to find a red Gv as desired. �

3. Some exact values for r(Km − e,Kn −K1,s)

Let s > 1 be an integer. We clearly have that

r(K3 − e,Km) 6 r(K3 − e,Km+1 −K1,s).

Since

r(K3 − e,Km+1 −K1,s) 6 r(K3 − e,Km+1 − e)

and (see [10])

r(K3 − e,Km) = r(K3 − e,Km+1 − e) = 2m− 1

then

r(K3 − e,Km+1 −K1,s) = 2m− 1 for each s = 1, . . . ,m− 1.

3.1. Case m = 4.

Corollary 1.
(a) r(K4 − e,K5 −K1,3) = 11.
(b) r(K4 − e,K6 −K1,s) = 16 for any 3 6 s 6 4.
(c) r(K4 − e,K7 −K1,s) = 21 for any 4 6 s 6 5.

Proof. (a) It is clear that r(K4−e,K4) 6 r(K4−e,K5−K1,3). Since r(K4−e,K4) = 11 (see
[10]) then 11 6 r(K4 − e,K5 −K1,3). We will now show that r(K4 − e,K5 −K1,3) 6 11.

By taking N = 11, s = 3 and n = 4, we have that
⌈
(s+1)(N−n)

n

⌉
=
⌈
4×7
4

⌉
= 7 =

r(K3 − e,K5 −K1,3) and so, by Theorem 1, we have r(K4 − e,K5 −K1,3) 6 11, and the
result follows.

The proofs for (b) and (c) are analogues. We just need to check that conditions of
Theorem 1 are satisfied by taking : N = r(K4 − e,K5) = 16 for (b) and N = r(K4 −
e,K6) = 21 for (c). �
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We notice that Corollary 1(a) is claimed in [8] without a proof. Corollary 1(b) can also
be obtained by using that r(K4 − e,K6 − P3) = 16 [9] since 16 = r(K4 − e,K6 − P3) >
r(K4 − e,K6 −K1,s) > r(K4 − e,K5) = 16 for s ∈ {3, 4}. Corollary 1(c) was first posed
by Hoeth and Mengersen [9]. The best known upper bounds for r(K4− e,K7−K1,3) and
r(K4 − e,K7 − P3) are obtained by applying the following classical recursive formula :

(1) r(Km − e,Kn −K1,s) 6 r(Km−1 − e,Kn −K1,s) + r(Km − e,Kn−1 −K1,s).

Hence

r(K4 − e,K7 −K1,3) 6 r(K3 − e,K7 −K1,3) + r(K4 − e,K6 −K1,3) = 11 + 16 = 27

and

r(K4 − e,K7 − P3) 6 r(K3 − e,K7 − P3) + r(K4 − e,K6 − P3) = 11 + 16 = 27.

We are able to improve the above upper bounds.

Corollary 2. 21 6 r(K4 − e,K7 −K1,3) 6 22.

Proof. It is clear that r(K4− e,K6) 6 r(K4− e,K7−K1,3). Since r(K4− e,K6) = 21 (see
[10]), then 21 6 r(K4 − e,K7 −K1,3). We will now show that r(K4 − e,K7 −K1,3) 6 22.

By taking N = 22, s = 3 and n = 6, we have that
⌈
(s+1)(N−n)

n

⌉
=
⌈
4×16
6

⌉
= 11 =

r(K3 − e,K7 −K1,3) and so, by Theorem 1, we have that r(K4 − e,K7 −K1,3) 6 22, and
the result follows. �

The above upper bound improves the previously best known one, given by r(K4−e,K7−
K1,3) 6 27.

3.2. Case m = 5. The following equality is claimed in [8] without a proof.

Corollary 3. r(K5 − e,K5 −K1,3) = 19.

Proof. It is clear that r(K5−e,K4) 6 r(K5−e,K5−K1,3). It is known that r(K5−e,K4) =
19 (see [10]), then 19 6 r(K5−e,K5−K1,3). We will now show that r(K5−e,K5−K1,3) 6
19. By Corollary 1, we have that r(K4 − e,K5 −K1,3) = 11. Then, by taking N = 19,

s = 3 and n = 4, we have that
⌈
(s+1)(N−n)

n

⌉
=
⌈
4×15
4

⌉
= 15 > r(K4 − e,K5 −K1,3) = 11

and so, by Theorem 1, we have r(K5 − e,K5 −K1,3) 6 19, and the result follows. �

Corollary 4. r(K5 − e,K6 −K1,s) = r(K5 − e,K5) for s = 3, 4.

Proof. It is clear that r(K5−e,K5) 6 r(K5−e,K6−K1,s) for all s > 1. Let us now prove
that r(K5−e,K5) > r(K5−e,K6−K1,s) for s = 3, 4. Since r(K5−e,K6−K1,4) 6 r(K5−
e,K6−K1,3) then it is sufficient to prove that r(K5− e,K6−K1,3) 6 r(K5− e,K5). For,
let N = r(K5−e,K5) > 30 (this lower bound was proved by Exoo [6]). Since N > 30 then

if s = 3 and n = 5 we obtain that
⌈
(s+1)(N−n)

n

⌉
>
⌈
4×25
5

⌉
= 20 > 17 > r(K4−e,K6−K1,3)

(see [10] or Corollary 1(b) for the last inequality). So, by Theorem 1, we obtain that
r(K5 − e,K6 −K1,3) 6 N = r(K5 − e,K5). �

We notice that in the case s = 2, if r(K5 − e,K5) > 32 then we may obtain that
r(K5 − e,K6 − K1,2) = r(K5 − e,K5) (by using the same arguments as above). It is
known that r(K5 − e,K5) > 30.
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4. New upper bounds for r(Km, Kn − P3)

In this section we will apply our main result to give new upper bounds for r(Km, Kn−P3)
in numerous cases. The value of r(Kn, Km−P3) have already been studied in some cases.
In [1, 4], it is proved that r(K5, K5−P3) = 25 and in [5] it is shown that r(K4, K5−P3) =
r(K4, K4) = 18.

Let us first notice that, by taking G1 = Km in Theorem 1, we obtain

Corollary 5. Let N be an integer such that N > r(Km+1, Kn). If
⌈
(s+1)(N−n)

n

⌉
>

r(Km, Kn+1 −K1,s) then r(Km+1, Kn+1 −K1,s) 6 N .

The case when m = 3 has already been studied in [2] where it is proved that

r(K3, Kn+1 −K1,s) = r(K3, Kn) if n > s + 1 > (n− 1)(n− 2)/(r(3, n)− n).

As a consequence, we have

(2)

r(K3, K6 − P3) = r(K3, K5) (with n = 5 and s = 2),
r(K3, K7 −K1,3) = r(K3, K6) (with n = 6 and s = 3),
r(K3, K10 −K1,s) = r(K3, K9) (with n = 9 for any 2 6 s 6 9),
r(K3, K11 −K1,s) = r(K3, K10) (with n = 10 for any 3 6 s 6 10).

4.1. Results on r(Km, K5−P3). In [3, Theorem 4], it was shown that if n > m > 3 and
m + n > 8, then

(3) r(Km+1 −K1,m−p, Kn+1 −K1,n−q) = r(Km, Kn) where p =
⌈

m
n−1

⌉
and q =

⌈
n

m−1

⌉
.

This result implies the following

Corollary 6. Let n > m > 3 and m + n > 8 and let p =
⌈

m
n−1

⌉
and q =

⌈
n

m−1

⌉
. Then,

r(Km, Kn+1 −K1,n−q) = r(Km+1 −K1,m−p, Kn) = r(Km, Kn).

Proof. We clearly have

r(Km, Kn) 6 r(Km, Kn+1 −K1,n−q) 6 r(Km+1 −K1,m−p, Kn+1 −K1,n−q)
(3)
= r(Km, Kn)

and thus r(Km, Kn+1 − K1,n−q) = r(Km, Kn) (the proof for r(Km+1 − K1,m−p, Kn) =
r(Km, Kn) is similar). �

By taking m = n = 4 (and thus q = 2) in Corollary 6 we have that

r(K4, K5 − P3) = r(K4, K4) = 18.

It is also known [1] that

r(K5, K5 − P3) = r(K5, K4) = 25,

and, by Corollary 6, we have

(4)

r(K6, K4 − P3) = r(K6, K3) = 18 (with m = 5 and n = 3),
r(K7, K4 − P3) = r(K7, K3) = 23 (with m = 6 and n = 3),
r(K8, K4 − P3) = r(K8, K3) = 28 (with m = 7 and n = 3),
r(K9, K4 − P3) = r(K9, K3) = 36 (with m = 8 and n = 3),
r(K10, K4 − P3) = r(K10, K3) 6 43 (with m = 9 and n = 3).

The best known upper bounds of r(Kn, K5 − P3) for n > 6 are obtained by applying the
following classical recursive formula :

(5) r(Km, Kn −K1,s) 6 r(Km−1, Kn −K1,s) + r(Km, Kn−1 −K1,s).
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By using (4), we obtain

r(K6, K5 − P3) 6 r(K5, K5 − P3) + r(K6, K4 − P3) = 25 + r(K6, K3) = 25 + 18 = 43,
r(K7, K5 − P3) 6 r(K6, K5 − P3) + r(K7, K4 − P3) = 43 + 23 = 66,
r(K8, K5 − P3) 6 r(K7, K5 − P3) + r(K8, K4 − P3)

6 r(K6, K5 − P3) + r(K7, K4 − P3) + 28 = 43 + 23 + 28 = 94,
r(K9, K5 − P3) 6 r(K8, K5 − P3) + r(K9, K4 − P3) = 94 + 36 = 130,
r(K10, K5 − P3) 6 r(K9, K5 − P3) + r(K10, K4 − P3)

6 r(K8, K5 − P3) + r(K9, K4 − P3) + 43 = 94 + 36 + 43 = 173.

We are able to improve all the above upper bounds.

Corollary 7.
(a) r(K6, K5 − P3) 6 41.
(b) r(K7, K5 − P3) 6 61.
(c) r(K8, K5 − P3) 6 85.
(d) r(K9, K5 − P3) 6 117.
(e) r(K10, K5 − P3) 6 159.

Proof. (a) It is known that r(K6, K4) 6 41. Then, by taking N = 41, s = 2 and n = 4,

we have that
⌈
(s+1)(N−n)

n

⌉
=
⌈
3×37
4

⌉
= 28 > r(K5, K5 − P3) = 25 and so, by Corollary 5,

the result follows.

The proofs for the rest of the cases are analogues. We just need to check that conditions
are satisfied by taking: N = 61 > r(K7, K4) for (b), N = 85 > 84 > r(K8, K4) for (c),
N = 117 > 115 > r(K9, K4) for (d) and N = 159 > 149 > r(K10, K4) for (e). �

By applying recursion (5) to r(K11, K5−P3) one may obtain that r(K11, K5−P3) 6 224 if
the old known values are used in the recursion, and it can be improved to r(K11, K5−P3) 6
210 by using the new values given in Corollary 7. The latter beats the upper bound
r(K11, K5 − P3) 6 215 obtained via Corollary 5.

We can also use Corollary 5 to give the following equality.

Corollary 8. If 37 6 r(K6, K4) then r(K6, K5 − P3) = r(K6, K4).

Proof. It is clear that r(K6, K4) 6 r(K6, K5 − P3). We show that r(K6, K5 − P3) 6
r(K6, K4). Let N = r(K6, K4) > 37. Since N > 37 and by taking s = 2 and n = 4 we have⌈
(s+1)(N−n)

n

⌉
>
⌈
3×33
4

⌉
= 25 = r(K5, K5 − P3), and so, by Corollary 5, r(K6, K5 − P3) 6

N = r(K6, K4). �

It is known that 36 6 r(K6, K4). In the case when r(K6, K4) = 36 the above result might
not hold.

4.2. Results on r(Km, K6−P3). Since r(K3, K5) = 14 then, by (2) we have r(K3, K6−
P3) = 14 [7]. So, by (5), we have

r(K4, K6 − P3) 6 r(K3, K6 − P3) + r(K4, K5 − P3) = 14 + 18 = 32.

Moreover, it is known that the upper bound is strict if the terms of the right side are
even, which is our case, and so, r(K4, K6 − P3) 6 31.

Corollary 9.
(a) 25 6 r(K4, K6 − P3) 6 27.
(b) r(K5, K6 − P3) 6 49.
(c) r(K6, K6 − P3) 6 87.
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Proof. (a) We clearly have that 25 = r(K4, K5) 6 r(K4, K6 − P3). It is known that

r(K4, K5) = 25. We take N = 27 > r(K4, K5), s = 2 and n = 5. So,
⌈
(s+1)(N−n)

n

⌉
=⌈

3×22
5

⌉
= 14 = r(K3, K6 − P3) and so, by Corollary 5, r(K4, K6 − P3) 6 27.

The proofs for (b) and (c) are analogues. We just need to check that conditions of
Corollary 5 are satisfied by taking: N = 49 > r(K5, K5) for (b) and N = 87 > r(K6, K5)
for (c). �

The recursive formula (5) gives now (by using the new above values) r(K7, K6−P3) 6 148
(before, by using the old values, it gave 158). This new upper bound beats the upper
bound r(K7, K6 − P3) 6 149 obtained by Corollary 5.

4.3. Results on r(Km, Kn − P3) for a variety of m and n.

Corollary 10. For each 3 6 m 6 5 and each 7 6 n 6 16, we have that r(Km, Kn−P3) 6
u(m,n), where the value of u(m,n) is given in the (m,n) entry of the below table (the
value between parentheses is the best previously known upper bound).

m \ n 7 8 9 10 11 12 13 14 15 16

3 44(47) 52(59) 61(72) 70(86) 80(101) 91(117)

4 41(49) 61(72) 115(136) 154(183) 199(242) 253(319) 313(405) 383(506) 466(623)

5 87(105) 143(177) 222(277)

Proof. We just need to check that conditions of Corollary 5 are satisfied by taking: N =
41 > r(K4, K6) for u(4, 7), N = 87 > r(K5, K6) for u(5, 7), N = 61 > r(K4, K7) for
u(4, 8), N = 143 > r(K5, K7) for u(5, 8), N = 222 > 216 > r(K5, K8) for u(5, 9),
N = 115 > r(K4, K9) for u(4, 10), N = 47 > 42 > r(K3, K10) for u(3, 11), N = 154 >
149 > r(K4, K10) for u(4, 11), N = 52 > 51 > r(K3, K11) for u(3, 12), N = 199 >
191 > r(K4, K11) for u(4, 12), N = 61 > 59 > r(K3, K12) for u(3, 13), N = 253 >
238 > r(K4, K12) for u(4, 13), N = 70 > 69 > r(K3, K13) for u(3, 14), N = 313 >
291 > r(K4, K13) for u(4, 14), N = 80 > 78 > r(K3, K14) for u(3, 15), N = 383 >
349 > r(K4, K14) for u(4, 15), N = 91 > 88 > r(K3, K15) for u(3, 16), N = 466 > 417 >
r(K4, K15) for u(4, 16). �

5. Some bounds for r(Km, Kn −K1,s) when s > 3

Here, we will focus our attention to upper bounds for r(Km, Kn − K1,3) that yields to
upper bounds for r(Km, Kn −K1,s) when s > 4 since

r(Km, Kn −K1,s) 6 r(Km, Kn −K1,3) for all s > 4.

5.1. Results on r(Km, K6−K1,3). In [3] it was proved that r(K5, K6−K1,3) = r(K5, K5) 6
49. So by (5) we have

r(K6, K6 −K1,3) 6 r(K5, K6 −K1,3) + r(K6, K5 −K1,3) = 49 + 41 = 90.

Corollary 11. For each 6 6 m 6 15, we have that r(Km, K6 − K1,3) 6 u(m), where
the value of u(m) is given in the below table (the value between parentheses is the best
previously known upper bound).
m 6 7 8 9 10 11 12 13 14 15

bu 87(90) 143(151) 216(235) 316(350) 442(499) 633(690) 848(928) 1139(1219) 1461(1568) 1878(1568)

Proof. It follows by Corollary 5 and by taking N as the best known upper bound of
r(Kn, K5) for each n = 6, . . . , 15. �

We notice that in case (1), by using similar arguments as above, we could prove that
r(K6, K6 −K1,3) = r(K6, K5) if 66 6 r(K6, K5) .
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5.2. Results on r(Km, K7−K1,3). In [2] it was proved that r(K3, K7−K1,3) = 18. Since
r(K3, K6) = 18 then, by (2) we have r(K3, K7 −K1,3) = 18. So, by (5), we have

r(K4, K7 −K1,3) 6 r(K3, K7 −K1,3) + r(K4, K6 −K1,3) = 18 + 25 = 43.

Corollary 12. For each 4 6 m 6 11, we have that r(Km, K7 − K1,3) 6 u(m), where
the value of u(m) is given in the below table (the value between parentheses is the best
previously known upper bound).

m 4 5 6 7 8 9 10 11
bu 41(43) 87(90) 165(180) 298(331) 495(566) 780(916) 1175(1415) 1804(2105)

Proof. It follows by Corollary 5, by taking s = 3 and N equals to the best known up-
per bound for r(Kn, K6) when n = 5, 6, 7, 8, 9, 11 and N = 1175 > 1171 > r(K10, K6)
when n = 10. For instance, for (1) we take N = 41 > r(K4, K6), s = 3 and n = 6.

Then,
⌈
(s+1)(N−n)

n

⌉
=
⌈
4×35
6

⌉
= 24 > r(K3, K7 − K1,3) and, by Corollary 5, r(K4, K7 −

K1,3) 6 41. �

6. More equalities

From (3) we have that r(K4, Kn+1 −K1,s) = r(K4, Kn) if s > n−
⌈
n
3

⌉
. The latter yields

to the following equalities.

r(K4, K7 −K1,s) = r(K4, K6) if s > 4, r(K4, K8 −K1,s) = r(K4, K7) if s > 5,
r(K4, K9 −K1,s) = r(K4, K8) if s > 5, r(K4, K10 −K1,s) = r(K4, K9) if s > 6,
r(K4, K11 −K1,s) = r(K4, K10) if s > 6, r(K4, K12 −K1,s) = r(K4, K11) if s > 7,
r(K4, K13 −K1,s) = r(K4, K12) if s > 8, r(K4, K14 −K1,s) = r(K4, K13) if s > 8,
r(K4, K15 −K1,s) = r(K4, K14) if s > 9, r(K4, K16 −K1,s) = r(K4, K15) if s > 10.

We are able to extend all these equalities for further values of s.

Corollary 13.
(a) r(K4,K7 −K1,s) = r(K4,K6) for s = 3.
(c) r(K4,K9 −K1,s) = r(K4,K8) for s = 4.
(e) r(K4,K11 −K1,s) = r(K4,K10) for s = 5.
(g) r(K4,K13−K1,s) = r(K4,K12) for s = 6, 7.
(i) r(K4,K15 −K1,s) = r(K4,K14) for s = 8.

(b) r(K4,K8 −K1,s) = r(K4,K7) for s = 3, 4.
(d) r(K4,K10−K1,s) = r(K4,K9) for s = 4, 5.
(f) r(K4,K12 −K1,s) = r(K4,K11) for s = 6.
(h) r(K4,K14 −K1,s) = r(K4,K13) for s = 7.
(j) r(K4,K16 −K1,s) = r(K4,K15) for s = 9.

Proof. (1) Since r(K4, K6) > 36 it follows that r(K4, K7 − K1,3) > 36 and by (2), we
have r(K3, K7 − K1,3) = r(K3, K6) = 18. Let us take N = r(K4, K6) > 36, s = 3 and

n = 6. So,
⌈
(s+1)(N−n)

n

⌉
>
⌈
4×30
6

⌉
= 20 > r(K3, K7 −K1,3) = 18 and the result follows by

Corollary 5.

The proofs for the rest of the cases are analogues. We just need to check that conditions
of Corollary 13 are satisfied by taking: N = r(K4, K7) > 49 and checking that r(K3, K8−
K1,3) = r(K3, K7) = 23 for (2), N = r(K4, K8) > 58 and checking that r(K3, K9−K1,4) =
r(K3, K8) = 28 for (3) and so on. �

We notice that, by using the same arguments as above, we could improve cases (5) and (7)
by showing that r(K4, K11 −K1,4) = r(K4, K10) when r(K4, K10) 6= 92 and r(K4, K13 −
K1,5) = r(K4, K12) when r(K4, K12) 6= 128.

In view of Corollary 13, we may pose the following question,

Question 1. Let n > 7 be an integer. For which integer s the equality r(K4, Kn−K1,s) =
r(K4, Kn−1) holds?

Or more ambitious, in view of [3, Theorem 4], we may pose the following,
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Question 2. Let m > 4 and n > 7 be integers. For which integer s 6 n− 1 the equality
r(Km, Kn −K1,s) = r(Km, Kn−1) holds?

7. Wheels versus Kn −K1,s

In this section we obtain further relating results by applying Theorem 1 to other graphs.
Indeed, we may consider G1 as the cycle on n− 1 vertices Cn−1, and thus Gv

1 will be the
wheel Wn by taking the new vertex v incident to all the vertices of Cn−1.

Corollary 14.
(a) r(W5, K6 −K1,s) = 27 for s = 3, 4, 5.
(b) r(W5, K7 −K1,s) = r(W5, K6) for s = 4, 5, 6.
(c) r(W5, K8 −K1,s) = r(W5, K7) for s = 4, 5, 6, 7.

Proof. (a) It is clear that r(W5, K5) 6 r(W5, K6 − K1,s) for any 1 6 s 6 5. Since
r(W5, K5) = 27 (see [10]), then 27 6 r(W5, K6−K1,s). We will now show that r(W5, K6−
K1,s) 6 27 for 3 6 s 6 5. By taking N = 27, s > 3 and n = 5, we have that⌈
(s+1)(N−n)

n

⌉
>
⌈
4×22
5

⌉
= 18 = r(C4, K6) > r(C4, K6 − K1,s) and so, by Theorem 1, we

have r(W5, K6 −K1,s) 6 27, and the result follows.

The proofs for (b) and (c) are analogues. We just need to check that conditions of
Theorem 1 are satisfied by taking: N = r(W5, K6) > 33 for (b) and N = r(W5, K7) > 43
for (c) (see [10] for the lower bounds of r(W5, K6) and r(W5, K7)). �
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8. Appendix

The following table was obtained from [10].
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K3 K4 K5 K6 K7 K8 K9 K10

K3 6 9 14 18 23 28 36 [40,42]
K4 18 25 [36,41] [49, 61] [58,84] 73,115] [92,149]
K5 [43,49] [58,87] [80,143] [101,216] [126,316] [144,442]
K6 [102,165] [113,298] [132,495] [169,780] [179,1171]

Table 1. Some known bounds and values of r(Km, Kn).


