Theory of matroids and applications II

J.L. Ramírez Alfonsín

Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, France

Curso : Introducción a la Teoría de Matroides, Valladolid, Spain, March, 2025

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Let $M = (\mathcal{B}, E)$ be a matroid. Then,

 $\mathcal{B}^* = \{ E \setminus B \mid B \in \mathcal{B} \}$

is the set of bases of a matroid on *E* [Exercise].

J.L. Ramírez Alfonsín Theory of matroids and applications II IMAG, Université de Montpellier

Let $M = (\mathcal{B}, E)$ be a matroid. Then,

 $\mathcal{B}^* = \{ E \setminus B \mid B \in \mathcal{B} \}$

is the set of bases of a matroid on *E* [Exercise]. The matroid on *E* having \mathcal{B}^* as set of bases, denoted by M^* , is called the dual of *M*.

A base of M^* is also called cobase of M.

Properties [Exercise]

• $r(M^*) = |E| - r(M)$ and $M^{**} = M$.

J.L. Ramírez Alfonsín

Properties [Exercise]

- $r(M^*) = |E| r(M)$ and $M^{**} = M$.
- The set \mathcal{I}^* of independents of M^* is given by

 $\mathcal{I}^* = \{X \mid X \subset E \text{ such that there exists } B \in \mathcal{B}(M) \text{ with } X \cap B = \emptyset\}.$

Properties [Exercise]

- $r(M^*) = |E| r(M)$ and $M^{**} = M$.
- The set \mathcal{I}^* of independents of M^* is given by

 $\mathcal{I}^* = \{X \mid X \subset E \text{ such that there exists } B \in \mathcal{B}(M) \text{ with } X \cap B = \emptyset\}.$

• The rank function of M^* is given by

$$r_{M^*}(X) = |X| + r_M(E \setminus X) - r(M),$$

for $X \subset E$.

Let G = (V, E) be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

J.L. Ramírez Alfonsín

Let G = (V, E) be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

Theorem Let $\mathcal{C}(G)^*$ be the set of minimal (by inclusion) cocycles of a graph G. Then, $\mathcal{C}(G)^*$ is the set of circuits of a matroid on E.

Let G = (V, E) be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

Theorem Let $\mathcal{C}(G)^*$ be the set of minimal (by inclusion) cocycles of a graph G. Then, $\mathcal{C}(G)^*$ is the set of circuits of a matroid on E.

The matroid obtained on this way is called **bond matroid**, denoted by B(G).

Theorem If G is planar then $M^*(G) = M(G^*)$.

J.L. Ramírez Alfonsín

Theorem If G is planar then $M^*(G) = M(G^*)$.

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Theorem If G is planar then $M^*(G) = M(G^*)$.

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Theorem If G is planar then $M^*(G) = M(G^*)$.

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Theorem If G is planar then $M^*(G) = M(G^*)$.

Remark The dual of a graphic matroid is not necessarily graphic $(M^*(K_5) \text{ is not graphic } [\text{Exercise}]).$

J.L. Ramírez Alfonsín

Theorem The dual of a \mathbb{F} -representable matroid is \mathbb{F} -representable.

J.L. Ramírez Alfonsín

Theorem The dual of a \mathbb{F} -representable matroid is \mathbb{F} -representable. Proof (idea). The matrix representing M can always be written as $(l_r \mid A)$

where I_r is the identity $r \times r$ and A is a matrix of size $r \times (n - r)$.

Theorem The dual of a \mathbb{F} -representable matroid is \mathbb{F} -representable. Proof (idea). The matrix representing M can always be written as

 $(I_r \mid A)$

where I_r is the identity $r \times r$ and A is a matrix of size $r \times (n - r)$.

 M^* can be obtained from the set of columns of the matrix

 $(-^{t}A \mid I_{n-r})$

where I_{n-r} is the identity $(n-r) \times (n-r)$ and ^tA is the transpose of A [Exercise].

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Theorem The dual of a \mathbb{F} -representable matroid is \mathbb{F} -representable. Proof (idea). The matrix representing M can always be written as

 $(I_r \mid A)$

where I_r is the identity $r \times r$ and A is a matrix of size $r \times (n - r)$.

 M^* can be obtained from the set of columns of the matrix

 $(-^{t}A \mid I_{n-r})$

where I_{n-r} is the identity $(n-r) \times (n-r)$ and ^tA is the transpose of A [Exercise].

Remark If the space V is generated by the columns of $(I \mid A)$ then the orthogonal space V^{\perp} is generated by the columns of $(-{}^{t}A \mid I_{n-r})$.

Operation : deletion

Let M be a matroid on the set E and let $A \subset E$. Then, $\{X \subset E \setminus A \mid X \in \mathcal{I}(M)\}$

is a set of independent of a matroid on $E \setminus A$.

J.L. Ramírez Alfonsín Theory of matroids and applications II IMAG, Université de Montpellier

Let *M* be a matroid on the set *E* and let $A \subset E$. Then,

 $\{X \subset E \setminus A \mid X \in \mathcal{I}(M)\}$

is a set of independent of a matroid on $E \setminus A$. This matroid is obtained from M by deleting the elements of A and it is denoted by $M \setminus A$. Let *M* be a matroid on the set *E* and let $A \subset E$. Then,

 $\{X \subset E \setminus A \mid X \in \mathcal{I}(M)\}$

is a set of independent of a matroid on $E \setminus A$.

This matroid is obtained from M by deleting the elements of A and it is denoted by $M \setminus A$.

- Proposition [Exercise]
- The circuits of $M \setminus A$ are the circuits of M contained in $E \setminus A$.
- For $X \subset E \setminus A$ we have $r_{M \setminus A}(X) = r_M(X)$.

Operation : contraction

Let *M* be a matroid on the set *E* and for $A \subset E$ let $M|_A = \{X \subseteq A | X \in \mathcal{I}(M)\}$. Then,

 $\{X \subseteq E \setminus A | \text{there exists a base } B \text{ of } M|_A \text{ such that } X \cup B \in \mathcal{I}(M) \}$

is the set of independents of a matroid in $E \setminus A$.

Operation : contraction

Let *M* be a matroid on the set *E* and for $A \subset E$ let $M|_A = \{X \subseteq A | X \in \mathcal{I}(M)\}$. Then,

 $\{X \subseteq E \setminus A | \text{there exists a base } B \text{ of } M|_A \text{ such that } X \cup B \in \mathcal{I}(M) \}$

is the set of independents of a matroid in $E \setminus A$.

This matroid is obtained from M by contracting the elements of A and it is denoted by M/A.

Operation : contraction

Let *M* be a matroid on the set *E* and for $A \subset E$ let $M|_A = \{X \subseteq A | X \in \mathcal{I}(M)\}$. Then,

 $\{X \subseteq E \setminus A | \text{there exists a base } B \text{ of } M|_A \text{ such that } X \cup B \in \mathcal{I}(M) \}$

is the set of independents of a matroid in $E \setminus A$.

This matroid is obtained from M by contracting the elements of A and it is denoted by M/A.

Proposition [Exercise]

- The circuits of M/A are the non-empty minimal (by inclusion) sets of the form $C \setminus A$ where C is a circuit of M.

- For $X \subset E \setminus A$ we have $r_{M/A}(X) = r_M(X \cup A) - r_M(A)$.

Deletion and contraction

Properties [Exercise]

- $(M \setminus A) \setminus A' = M \setminus (A \cup A')$
- $(M/A)/A' = M/(A \cup A')$
- $(M \setminus A)/A' = (M/A') \setminus A$
- $M/A = (M^* \setminus A)^*$.

Deletion and contraction

Properties [Exercise]

- $(M \setminus A) \setminus A' = M \setminus (A \cup A')$
- $(M/A)/A' = M/(A \cup A')$
- $(M \setminus A)/A' = (M/A') \setminus A$
- $M/A = (M^* \setminus A)^*$.

A minor of a matroid of M is any matroid obtained by a sequence of deletions and contractions.

Deletion and contraction

Properties [Exercise]

- $(M \setminus A) \setminus A' = M \setminus (A \cup A')$
- $(M/A)/A' = M/(A \cup A')$
- $(M \setminus A)/A' = (M/A') \setminus A$
- $M/A = (M^* \setminus A)^*$.

A minor of a matroid of M is any matroid obtained by a sequence of deletions and contractions.

Question : Is it true that any family of matroids is closed under deletions/contractions operations?

Proposition Any minor of a uniform matroid is uniform.

J.L. Ramírez Alfonsín

Theory of matroids and applications II

IMAG, Université de Montpellier

Uniform matroids

Proposition Any minor of a uniform matroid is uniform. Proof <u>Deletion</u> : let $T \subseteq E$ with |T| = t. Then,

$$U_{n,r} \setminus T = \begin{cases} U_{n-t,n-t} & \text{if } n \ge t \ge n-r \\ U_{n-t,r} & \text{if } t < n-r. \end{cases}$$

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Uniform matroids

Proposition Any minor of a uniform matroid is uniform. Proof <u>Deletion</u> : let $T \subseteq E$ with |T| = t. Then,

$$U_{n,r} \setminus T = \begin{cases} U_{n-t,n-t} & \text{if } n \ge t \ge n-r \\ U_{n-t,r} & \text{if } t < n-r. \end{cases}$$

Contraction : it follows by using duality.

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Graphic matroids

Proposition The class of graphic matroids is closed under deletions and contractions.

Graphic matroids

Proposition The class of graphic matroids is closed under deletions and contractions.

Contracting element 6

IMAG, Université de Montpellier

Proposition The class of representable matroids over a field $\mathbb F$ is closed under deletions and contractions.

J.L. Ramírez Alfonsín

Proposition The class of representable matroids over a field $\mathbb F$ is closed under deletions and contractions.

Let *M* be a matroid obtained from the vectors $(v_e)_{e \in E}$ of \mathbb{F}^d .

Proposition The class of representable matroids over a field $\mathbb F$ is closed under deletions and contractions.

Let M be a matroid obtained from the vectors $(v_e)_{e \in E}$ of \mathbb{F}^d . Deleting : $M \setminus a$ is the matroid obtained from the vectors $(v_e)_{e \in E \setminus a}$

Proposition The class of representable matroids over a field $\mathbb F$ is closed under deletions and contractions.

Let *M* be a matroid obtained from the vectors $(v_e)_{e \in E}$ of \mathbb{F}^d .

Deleting : $M \setminus a$ is the matroid obtained from the vectors $(v_e)_{e \in E \setminus a}$

Remark : Lines sums and scalar multiplications do not change the associated matroid. So, if $v_a \neq \overline{0}$ then we suppose that v_a is the unit vector.
Representable matroids

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.

Let *M* be a matroid obtained from the vectors $(v_e)_{e \in E}$ of \mathbb{F}^d .

Deleting : $M \setminus a$ is the matroid obtained from the vectors $(v_e)_{e \in E \setminus a}$

Remark : Lines sums and scalar multiplications do not change the associated matroid. So, if $v_a \neq \overline{0}$ then we suppose that v_a is the unit vector.

Contracting : M/a is the matroid obtained from the vectors $(v'_e)_{e \in E \setminus a}$ where v'_e is the vector obtained from v_e by deleting the non zero entry of v_a .

Geometric interpretation of contraction

M/e is the matroid induced by the vectors a', b', c', d' obtained from the projection of a, b, c, d to the plane orthogonal to e passing through 0.

Transversal matroids

The class of transversal matroids is NOT closed under deletions and contractions.

J.L. Ramírez Alfonsín

Transversal matroids

The class of transversal matroids is **NOT** closed under deletions and contractions.

The matroid M(G) is transversal (with $A_1 = \{1, 2, 7\}$, $A_2 = \{3, 4, 7\}, A_3 = \{5, 6, 7\}$). However, M(G/7) is not transversal [Exercise].

Characterizing via Minors

Question : Can we characterize classes of matroids via minors?

J.L. Ramírez Alfonsín

Theory of matroids and applications II

IMAG, Université de Montpellier

Characterizing via Minors

Question : Can we characterize classes of matroids via minors? Theorem A matroid is graphic if and only if has neither $U_{2,4}, F_7, F_7^*, M^*(K_5)$ nor $M^*(K_{3,3})$ as minors.

J.L. Ramírez Alfonsín Theory of matroids and applications II Question : Can we characterize classes of matroids via minors? Theorem A matroid is graphic if and only if has neither $U_{2,4}, F_7, F_7^*, M^*(K_5)$ nor $M^*(K_{3,3})$ as minors. Theorem A matroid is cographic if and only if has neither $U_{2,4}, F_7, F_7^*, M(K_5)$ nor $M(K_{3,3})$ as minors.

Determining the list of excluded minors over \mathbb{F} gives a characterization of the matroids representabels over \mathbb{F} .

Determining the list of excluded minors over \mathbb{F} gives a characterization of the matroids representabels over \mathbb{F} .

• For $\mathbb{F} = \mathbb{R}$ it is known that the list of excluded minors is infinite (it seems out of reach to be able to determine it).

Determining the list of excluded minors over \mathbb{F} gives a characterization of the matroids representabels over \mathbb{F} .

• For $\mathbb{F} = \mathbb{R}$ it is known that the list of excluded minors is infinite (it seems out of reach to be able to determine it).

• For $\mathbb{F} = GF(2) = \mathbb{Z}_2$ (Binary matroids) the list has only one matroid $U_{2,4}$ (3 pages proof)

• For $\mathbb{F} = GF(3) = \mathbb{Z}_3$ (Ternary matroids) the list has four matroids F_7 , F_7^* , $U_{2,5}$, $U_{3,5}$ (10 pages proof)

J.L. Ramírez Alfonsín

Theory of matroids and applications II

IMAG, Université de Montpellier

- For $\mathbb{F} = GF(3) = \mathbb{Z}_3$ (Ternary matroids) the list has four matroids F_7 , F_7^* , $U_{2,5}$, $U_{3,5}$ (10 pages proof)
- For $\mathbb{F} = GF(4)$ the list has eight matroids explicitly given (50 pages proof)

- For $\mathbb{F} = GF(3) = \mathbb{Z}_3$ (Ternary matroids) the list has four matroids F_7 , F_7^* , $U_{2,5}$, $U_{3,5}$ (10 pages proof)
- For $\mathbb{F} = GF(4)$ the list has eight matroids explicitly given (50 pages proof)

Conjecture (Rota, 1970) Representability over any finite field is characterized by a finite list of excluded minors.

- For $\mathbb{F} = GF(3) = \mathbb{Z}_3$ (Ternary matroids) the list has four matroids F_7 , F_7^* , $U_{2,5}$, $U_{3,5}$ (10 pages proof)
- For $\mathbb{F} = GF(4)$ the list has eight matroids explicitly given (50 pages proof)

Conjecture (Rota, 1970) Representability over any finite field is characterized by a finite list of excluded minors.

Theorem (Geelen, Gerards, Whittle, 2014) For each finite field \mathbb{F} , there are, up to isomorphism, only finitely many excluded minors for the class of \mathbb{F} -representable matroids.

A matroid is called regular if it is representable over ALL fileds.

J.L. Ramírez Alfonsín

A matroid is called regular if it is representable over ALL fileds.

Theorem Graphic matroids are regular.

Proof (idea) Let G = (V, E) be a graph. We orient the edges of G and let $A = (a_{i,j})$ be the matrix

 $a_{ie} = \begin{cases} 1 & \text{if } i \text{ is the initial vertex of } e \\ -1 & \text{if } i \text{ is the end vertex of } e \\ 0 & \text{if } i \text{ is not incident to } e \text{ or if } e \text{ is a loop} \end{cases}$

A matroid is called regular if it is representable over ALL fileds.

Theorem Graphic matroids are regular.

Proof (idea) Let G = (V, E) be a graph. We orient the edges of G and let $A = (a_{i,j})$ be the matrix

 $a_{ie} = \begin{cases} 1 & \text{if } i \text{ is the initial vertex of } e \\ -1 & \text{if } i \text{ is the end vertex of } e \\ 0 & \text{if } i \text{ is not incident to } e \text{ or if } e \text{ is a loop} \end{cases}$

It can be checked that M(G) is isomorphic to M(A) [Exercise].

A matroid is called regular if it is representable over ALL fileds.

Theorem Graphic matroids are regular.

Proof (idea) Let G = (V, E) be a graph. We orient the edges of G and let $A = (a_{i,j})$ be the matrix

 $a_{ie} = \begin{cases} 1 & \text{if } i \text{ is the initial vertex of } e \\ -1 & \text{if } i \text{ is the end vertex of } e \\ 0 & \text{if } i \text{ is not incident to } e \text{ or if } e \text{ is a loop} \end{cases}$

It can be checked that M(G) is isomorphic to M(A) [Exercise].

A matrix is totally unimodular if all its coefficients are 0, 1, -1 and the determinant of any square sub-matrix is equals to 0, 1 or -1.

A matroid is called regular if it is representable over ALL fileds.

Theorem Graphic matroids are regular.

Proof (idea) Let G = (V, E) be a graph. We orient the edges of G and let $A = (a_{i,j})$ be the matrix

 $a_{ie} = \begin{cases} 1 & \text{if } i \text{ is the initial vertex of } e \\ -1 & \text{if } i \text{ is the end vertex of } e \\ 0 & \text{if } i \text{ is not incident to } e \text{ or if } e \text{ is a loop} \end{cases}$

It can be checked that M(G) is isomorphic to M(A) [Exercise].

A matrix is totally unimodular if all its coefficients are 0, 1, -1 and the determinant of any square sub-matrix is equals to 0, 1 or -1.

Theorem [I|A] is a fundamental representation of a regular matroid if and only if A is totally unimodular.

A matroid is called regular if it is representable over ALL fileds.

Theorem Graphic matroids are regular.

Proof (idea) Let G = (V, E) be a graph. We orient the edges of G and let $A = (a_{i,j})$ be the matrix

 $a_{ie} = \left\{ \begin{array}{cc} 1 & \text{if } i \text{ is the initial vertex of } e \\ -1 & \text{if } i \text{ is the end vertex of } e \\ 0 & \text{if } i \text{ is not incident to } e \text{ or if } e \text{ is a loop} \end{array} \right.$

It can be checked that M(G) is isomorphic to M(A) [Exercise].

A matrix is totally unimodular if all its coefficients are 0, 1, -1 and the determinant of any square sub-matrix is equals to 0, 1 or -1.

Theorem [I|A] is a fundamental representation of a regular matroid if and only if A is totally unimodular.

Problem (H. Poincaré, beginning of the 20th century) How the unimodular matrices be constructed?

Theorem (Tutte 1958) A matroid is regular if and only if has neither $U_{2,4}$, F_7 nor F_7^* as minors.

J.L. Ramírez Alfonsín

Theorem (Tutte 1958) A matroid is regular if and only if has neither $U_{2,4}$, F_7 nor F_7^* as minors.

Theorem (Seymour) A matroid M is regular if and only if it can be built with graphic, cographic and R_{10} matroids where R_{10} is the matroid of the linear dependencies over \mathbb{Z}_2 of the 10 vectors of \mathbb{Z}_2^5 having 3 components equal to one and 2 equal to zero.

Theorem (Tutte 1958) A matroid is regular if and only if has neither $U_{2,4}$, F_7 nor F_7^* as minors.

Theorem (Seymour) A matroid M is regular if and only if it can be built with graphic, cographic and R_{10} matroids where R_{10} is the matroid of the linear dependencies over \mathbb{Z}_2 of the 10 vectors of \mathbb{Z}_2^5 having 3 components equal to one and 2 equal to zero.

• *M* is built with bricks (graphic, cographic and R_{10}) via 3 operations :

1-sum : direct sum of two matroids

2-sum : patching two matroids on one common element

3-sum : patching two binary matroids on 3 common elements forming a 3-circuit in each matroid.

Seymour's characterization gives a polynomial time algorithm that determines if a matrix is totally unimodular.

Seymour's characterization gives a polynomial time algorithm that determines if a matrix is totally unimodular.

Theorem (Heller) The linear programming

maximize $c^t x$

such that $Ax \leq b, x \geq 0$

admit an integer solution x for any integer vector b if and only if A is totally unimodular.

J.L. Ramírez Alfonsín

Seymour's characterization gives a polynomial time algorithm that determines if a matrix is totally unimodular.

Theorem (Heller) The linear programming

maximize $c^t x$

such that $Ax \leq b, x \geq 0$

admit an integer solution x for any integer vector b if and only if A is totally unimodular.

Remark Most of the combinatorial optimization problems can be realized as a unimodular linear programming.

J.L. Ramírez Alfonsín

Minkowski's sum

The Minkowski's sum of two sets A and B of \mathbb{R}^d is $A + B = \{a + b \mid a \in A, b \in B\}.$

J.L. Ramírez Alfonsín

Minkowski's sum

The Minkowski's sum of two sets A and B of \mathbb{R}^d is $A + B = \{a + b \mid a \in A, b \in B\}.$

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Minkowski's sum

The Minkowski's sum of two sets A and B of \mathbb{R}^d is $A + B = \{a + b \mid a \in A, b \in B\}.$

Let $A = \{v_1, \ldots, v_k\}$ be a finite set of elements of \mathbb{R}^d .

A zonotope, generated by A and denoted by Z(A), is a polytope formed by the Minkowski's sum of line segments

$$Z(A) = \{\alpha_1 + \cdots + \alpha_k | \alpha_i \in [-v_i, v_i]\}.$$

Permutahedron

Permutahedron

Permutahedron

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Permutahedron tiling the space

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Theorem (Voronoï - end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations.

Theorem (Voronoï - end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations. Theorem (McMullen) A zonotope tile the space if and only if its 2-faces have all 4 or 6 edges. Theorem (Voronoï - end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations.

Theorem (McMullen) A zonotope tile the space if and only if its 2-faces have all 4 or 6 edges.

• This property is equivalent to say that the matroid associated to the vectors v_i is binary
Theorem (Voronoï - end of the 19th century) There exist exactly 5 types of zonotopes of \mathbb{R}^3 tiling the space by translations.

Theorem (McMullen) A zonotope tile the space if and only if its 2-faces have all 4 or 6 edges.

• This property is equivalent to say that the matroid associated to the vectors v_i is binary

Theorem A zonotope tiles the space by translations if and only if the associated matroid is regular. The five Fedorov's solid

Consequence : there exist exactly 5 regular matroids of rank 3.

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Non Representable Matroids

There exists matroids that are not representable in ANY field.

J.L. Ramírez Alfonsín

Non Representable Matroids

There exists matroids that are not representable in ANY field. Example (classic) : the rank 3 matroid on 9 elements obtained from the Non-Pappus configuration

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Matroid representability : Venn diagram

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

Let $k[x_1, \ldots, x_n]$ be a polynomial ring over an arbitrary field k.

J.L. Ramírez Alfonsín

Let $k[x_1, ..., x_n]$ be a polynomial ring over an arbitrary field k. For each base $B \in \mathcal{B}$, we introduce a variable y_B and we denote by R the polynomial ring in the variables y_B , i.e., $R := k[y_B | B \in \mathcal{B}]$.

J.L. Ramírez Alfonsín

Let $k[x_1, \ldots, x_n]$ be a polynomial ring over an arbitrary field k.

For each base $B \in \mathcal{B}$, we introduce a variable y_B and we denote by R the polynomial ring in the variables y_B , i.e., $R := k[y_B | B \in \mathcal{B}]$.

We consider the homomorphism of k-algebras $\varphi : R \longrightarrow k[x_1, \ldots, x_n]$ induced by

$$y_B\mapsto \prod_{i\in B} x_i.$$

The image of φ is a standard graded *k*-algebra, which is called the bases monomial ring of the matroid *M* and it is denoted by S_M .

Let $k[x_1, \ldots, x_n]$ be a polynomial ring over an arbitrary field k.

For each base $B \in \mathcal{B}$, we introduce a variable y_B and we denote by R the polynomial ring in the variables y_B , i.e., $R := k[y_B | B \in \mathcal{B}]$.

We consider the homomorphism of k-algebras $\varphi : R \longrightarrow k[x_1, \ldots, x_n]$ induced by

$$y_B\mapsto \prod_{i\in B} x_i.$$

The image of φ is a standard graded *k*-algebra, which is called the bases monomial ring of the matroid *M* and it is denoted by S_M .

The kernel of φ , which is the presentation ideal of S_M , is called the toric ideal of M and is denoted by I_M .

Let $k[x_1, \ldots, x_n]$ be a polynomial ring over an arbitrary field k.

For each base $B \in \mathcal{B}$, we introduce a variable y_B and we denote by R the polynomial ring in the variables y_B , i.e., $R := k[y_B | B \in \mathcal{B}]$.

We consider the homomorphism of k-algebras $\varphi : R \longrightarrow k[x_1, \ldots, x_n]$ induced by

$$y_B\mapsto \prod_{i\in B} x_i.$$

The image of φ is a standard graded *k*-algebra, which is called the bases monomial ring of the matroid *M* and it is denoted by S_M .

The kernel of φ , which is the presentation ideal of S_M , is called the toric ideal of M and is denoted by I_M .

 I_M is a prime, binomial and homogeneous ideal.

Observation Let *b* be the number of bases of a matroid *M* on *n* elements. Then, I_M is generated by the kernel of the integer $n \times b$ matrix whose columns are the zero-one incidence vectors of the bases of *M*.

Observation Let b be the number of bases of a matroid M on n elements. Then, I_M is generated by the kernel of the integer $n \times b$ matrix whose columns are the zero-one incidence vectors of the bases of M. Matroid M(G) associated to graph G. We have r(M(G)) = 3.

Observation Let b be the number of bases of a matroid M on n elements. Then, I_M is generated by the kernel of the integer $n \times b$ matrix whose columns are the zero-one incidence vectors of the bases of M. Matroid M(G) associated to graph G. We have r(M(G)) = 3.

 $\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}$

J.L. Ramírez Alfonsín

 $\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}$

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

 $\mathcal{B}(M(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}$

	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8
1	1	1	1	1	1	0	0	0 \
	1	1	0	0	0	1	1	0
	1	0	1	1	0	1	0	1
	0	0	1	0	1	1	1	1
	0	1	0	1	1	0	1	1 /

By considering $\varphi : k[y_{B_1}, \dots, y_{B_8}] \longrightarrow k[x_1, \dots, x_5]$ we have that $y_{B_1} \mapsto x_1 x_2 x_3, y_{B_2} \mapsto x_1 x_2 x_5, y_{B_3} \mapsto x_1 x_3 x_4, \dots$

J.L. Ramírez Alfonsín

 $\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}$

	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8
1	1	1	1	1	1	0	0	0 \
	1	1	0	0	0	1	1	0
	1	0	1	1	0	1	0	1
	0	0	1	0	1	1	1	1
	0	1	0	1	1	0	1	1 /

By considering $\varphi : k[y_{B_1}, \dots, y_{B_8}] \longrightarrow k[x_1, \dots, x_5]$ we have that $y_{B_1} \mapsto x_1 x_2 x_3, \quad y_{B_2} \mapsto x_1 x_2 x_5, \quad y_{B_3} \mapsto x_1 x_3 x_4, \quad \dots$ An element of the kernel of φ (i.e., $I_{M(G)}$) is : $y_{B_7} y_{B_4} - y_{B_2} y_{B_8} = 0.$

J.L. Ramírez Alfonsín

Symmetric exchange axiom

Let \mathcal{B} denote the set of bases of M.

J.L. Ramírez Alfonsín

Symmetric exchange axiom

Let \mathcal{B} denote the set of bases of \mathcal{M} .

Theorem (Brualdi) The exchange axiom :

for every $B_1, B_2 \in \mathcal{B}$ and for every $e \in B_1 \setminus B_2$, there exists $f \in B_2 \setminus B_1$ such that $(B_1 \cup \{f\}) \setminus \{e\} \in \mathcal{B}$.

is equivalent to

the symmetric exchange axiom :

for every $B_1, B_2 \in \mathcal{B}$ and for every $e \in B_1 \setminus B_2$, there exists $f \in B_2 \setminus B_1$ such that both $(B_1 \cup \{f\}) \setminus \{e\} \in \mathcal{B}$ and $(B_2 \cup \{e\}) \setminus \{f\} \in \mathcal{B}$.

We say that the quadratic binomial $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ correspond to a symmetric exchange.

We say that the quadratic binomial $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ correspond to a symmetric exchange.

It is clear that such binomial belong to the ideal I_M .

We say that the quadratic binomial $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ correspond to a symmetric exchange.

It is clear that such binomial belong to the ideal I_M .

Conjecture (White 1980) For every matroid M its toric ideal I_M is generated by quadratic binomials corresponding to symmetric exchanges.

Remark for $B_1, \ldots, B_s, D_1, \ldots, D_s \in \mathcal{B}$, the homogeneous binomial $y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s}$ belongs to I_M if and only if $B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s$ (as multisets).

White's conjecture

Remark for $B_1, \ldots, B_s, D_1, \ldots, D_s \in \mathcal{B}$, the homogeneous binomial $y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s}$ belongs to I_M if and only if $B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s$ (as multisets). Since I_M is a homogeneous binomial ideal, it follows that

 $I_{M} = (\{y_{B_{1}} \cdots y_{B_{s}} - y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s} = D_{1} \cup \cdots \cup D_{s} \text{ (as multisets)}\})$

White's conjecture

Remark for $B_1, \ldots, B_s, D_1, \ldots, D_s \in \mathcal{B}$, the homogeneous binomial $y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s}$ belongs to I_M if and only if $B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s$ (as multisets). Since I_M is a homogeneous binomial ideal, it follows that

$$I_{M} = (\{y_{B_{1}} \cdots y_{B_{s}} - y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s} = D_{1} \cup \cdots \cup D_{s} \text{ (as multisets)}\})$$

White's original formulation Two sets of bases of a matroid have equal union (as multiset), then one can pass between them by a sequence of symmetric exchanges.

White's conjecture

Remark for $B_1, \ldots, B_s, D_1, \ldots, D_s \in \mathcal{B}$, the homogeneous binomial $y_{B_1} \cdots y_{B_s} - y_{D_1} \cdots y_{D_s}$ belongs to I_M if and only if $B_1 \cup \cdots \cup B_s = D_1 \cup \cdots \cup D_s$ (as multisets). Since I_M is a homogeneous binomial ideal, it follows that

$$I_{M} = (\{y_{B_{1}} \cdots y_{B_{s}} - y_{D_{1}} \cdots y_{D_{s}} \mid B_{1} \cup \cdots \cup B_{s} = D_{1} \cup \cdots \cup D_{s} \text{ (as multisets)}\})$$

White's original formulation Two sets of bases of a matroid have equal union (as multiset), then one can pass between them by a sequence of symmetric exchanges.

Observation White's conjecture does not depend on the field k.

Example (continued) and known results

Recall $\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}.$ We had that $y_{B_7}y_{B_4} - y_{B_2}y_{B_8} \in I_{\mathcal{M}(G)}.$ Indeed, $B_7 \cup B_4 = \{2, 4, 5, 1, 3, 5\} = B_2 \cup B_8.$

Example (continued) and known results

Recall $\mathcal{B}(\mathcal{M}(G)) = \{B_1 = \{123\}, B_2 = \{125\}, B_3 = \{134\}, B_4 = \{135\}, B_5 = \{145\}, B_6 = \{234\}, B_7 = \{245\}, B_8 = \{345\}\}.$ We had that $y_{B_7}y_{B_4} - y_{B_2}y_{B_8} \in I_{\mathcal{M}(G)}.$ Indeed, $B_7 \cup B_4 = \{2, 4, 5, 1, 3, 5\} = B_2 \cup B_8.$

• Blasiak (2008) has confirmed the conjecture for graphical matroids.

- Kashiwaba (2010) checked the case of matroids of rank \leq 3.
- Schweig (2011) proved the case of lattice path matroids.
- Bonin (2013) confirmed the conjecture for sparse paving matroids
- Lasoń, Michałek (2014) proved for strongly base orderables matroids.

We consider the following binary equivalence relation \sim on the set of pairs of bases :

 $\{B_1, B_2\} \sim \{B_3, B_4\} \iff B_1 \cup B_2 = B_3 \cup B_4$ (as multisets),

and we denote by $\Delta_{\{B_1,B_2\}}$ the cardinality of the equivalence class of $\{B_1,B_2\}.$

We consider the following binary equivalence relation \sim on the set of pairs of bases :

 $\{B_1, B_2\} \sim \{B_3, B_4\} \iff B_1 \cup B_2 = B_3 \cup B_4$ (as multisets),

and we denote by $\Delta_{\{B_1,B_2\}}$ the cardinality of the equivalence class of $\{B_1,B_2\}.$

Example Consider the graph G

We consider the following binary equivalence relation \sim on the set of pairs of bases :

 $\{B_1, B_2\} \sim \{B_3, B_4\} \iff B_1 \cup B_2 = B_3 \cup B_4$ (as multisets),

and we denote by $\Delta_{\{B_1,B_2\}}$ the cardinality of the equivalence class of $\{B_1,B_2\}.$

Example Consider the graph G

 $\mathcal{B}(M(G)) = \{B_1 = \{123\}, B_2 = \{124\}, B_3 = \{134\}, B_4 = \{234\}\}.$

We consider the following binary equivalence relation \sim on the set of pairs of bases :

 $\{B_1, B_2\} \sim \{B_3, B_4\} \iff B_1 \cup B_2 = B_3 \cup B_4$ (as multisets),

and we denote by $\Delta_{\{B_1,B_2\}}$ the cardinality of the equivalence class of $\{B_1,B_2\}.$

Example Consider the graph G

 $\mathcal{B}(M(G)) = \{B_1 = \{123\}, B_2 = \{124\}, B_3 = \{134\}, B_4 = \{234\}\}.$

It can be checked that $\Delta_{\{B_i,B_i\}} = 1$ for any pair $1 \le i \ne j \le 4$ [Exercise]

Lemma For every $B_1, B_2 \in \mathcal{B}$ we have $2^{d-1} \leq \Delta_{\{B_1, B_2\}} \leq \binom{2d-1}{d}$ where $d := |B_1 \setminus B_2|$.

J.L. Ramírez Alfonsín

Lemma For every $B_1, B_2 \in \mathcal{B}$ we have $2^{d-1} \leq \Delta_{\{B_1, B_2\}} \leq \binom{2d-1}{d}$ where $d := |B_1 \setminus B_2|$.

Theorem (Garcia-Marco, R.A, 2014) If M has $U_{d,2d}$ as minor for some $d \ge 2$, then there exist $B_1, B_2 \in \mathcal{B}$ such that $\Delta_{\{B_1, B_2\}} = \binom{2d-1}{d}$.

Lemma For every $B_1, B_2 \in \mathcal{B}$ we have $2^{d-1} \leq \Delta_{\{B_1, B_2\}} \leq \binom{2d-1}{d}$ where $d := |B_1 \setminus B_2|$.

Theorem (Garcia-Marco, R.A, 2014) If M has $U_{d,2d}$ as minor for some $d \ge 2$, then there exist $B_1, B_2 \in \mathcal{B}$ such that $\Delta_{\{B_1, B_2\}} = \binom{2d-1}{d}$.

Theorem (Garcia-Marco, R.A, 2014) *M* has $U_{2,4}$ as minor if and only if $\Delta_{\{B_1,B_2\}} = 3$ for some $B_1, B_2 \in \mathcal{B}$.

Lemma For every $B_1, B_2 \in \mathcal{B}$ we have $2^{d-1} \leq \Delta_{\{B_1, B_2\}} \leq \binom{2d-1}{d}$ where $d := |B_1 \setminus B_2|$.

Theorem (Garcia-Marco, R.A, 2014) If M has $U_{d,2d}$ as minor for some $d \ge 2$, then there exist $B_1, B_2 \in \mathcal{B}$ such that $\Delta_{\{B_1, B_2\}} = \binom{2d-1}{d}$.

Theorem (Garcia-Marco, R.A, 2014) *M* has $U_{2,4}$ as minor if and only if $\Delta_{\{B_1,B_2\}} = 3$ for some $B_1, B_2 \in \mathcal{B}$.

Theorem (Garcia-Marco, R.A, 2014) *M* has $U_{3,6}$ as minor if and only if $\Delta_{\{B_1,B_2\}} = 10$ for some $B_1, B_2 \in \mathcal{B}$.
Detecting minors

Lemma For every $B_1, B_2 \in \mathcal{B}$ we have $2^{d-1} \leq \Delta_{\{B_1, B_2\}} \leq \binom{2d-1}{d}$ where $d := |B_1 \setminus B_2|$.

Theorem (Garcia-Marco, R.A, 2014) If M has $U_{d,2d}$ as minor for some $d \ge 2$, then there exist $B_1, B_2 \in \mathcal{B}$ such that $\Delta_{\{B_1, B_2\}} = \binom{2d-1}{d}$.

Theorem (Garcia-Marco, R.A, 2014) *M* has $U_{2,4}$ as minor if and only if $\Delta_{\{B_1,B_2\}} = 3$ for some $B_1, B_2 \in \mathcal{B}$.

Theorem (Garcia-Marco, R.A, 2014) *M* has $U_{3,6}$ as minor if and only if $\Delta_{\{B_1,B_2\}} = 10$ for some $B_1, B_2 \in \mathcal{B}$.

Proposition Let $\{g_1, \ldots, g_s\}$ be a minimal set of binomial generators of I_M . Then,

$$\Delta_{\{B_1,B_2\}} = 1 + |\{g_i = y_{B_{i_1}}y_{B_{i_2}} - y_{B_1}y_{B_2} | B_{i_1} \cup B_{i_2} = B_1 \cup B_2\}|$$

for every $B_1, B_2 \in \mathcal{B}$.

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials.

J.L. Ramírez Alfonsín

Theory of matroids and applications II

IMAG, Université de Montpellier

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials. Theorem (Sturmfels 1996) Conjecture 1 holds for uniform matroids.

Theory of matroids and applications II

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials.

Theorem (Sturmfels 1996) Conjecture 1 holds for uniform matroids.

Conjecture 2 For any matroid M, the toric ideal I_M is generated by quadratics binomials.

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials.

Theorem (Sturmfels 1996) Conjecture 1 holds for uniform matroids.

Conjecture 2 For any matroid M, the toric ideal I_M is generated by quadratics binomials.

Conjecture 3 For any matroid M, the quadratic binomials of I_M are in the ideal generated by the binomials $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ such that the pair of bases D_1 , D_2 can be obtained from the pair B_1 , B_2 by a symmetric exchange.

Conjecture 1 For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratics binomials.

Theorem (Sturmfels 1996) Conjecture 1 holds for uniform matroids.

Conjecture 2 For any matroid M, the toric ideal I_M is generated by quadratics binomials.

Conjecture 3 For any matroid M, the quadratic binomials of I_M are in the ideal generated by the binomials $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ such that the pair of bases D_1, D_2 can be obtained from the pair B_1, B_2 by a symmetric exchange.

Remark : Conjectures 2 and 3 together imply White's conjecture.