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Tutte Polynomial - generating function

The Tutte polynomial of a matroid M is the generating function
defined as follows

t(M; x , y) =
∑
X⊆E

(x − 1)r(E)−r(X )(y − 1)|X |−r(X ).

Let U2,3 be the uniform matroid of rank 2 on 3 elements

t(U2,3; x , y) =
∑

X⊆E , |X |=0

(x − 1)2−0(y − 1)0−0 +
∑

X⊆E , |X |=1

(x − 1)2−1(y − 1)1−1

+
∑

X⊆E , |X |=2

(x − 1)2−2(y − 1)2−2 +
∑

X⊆E , |X |=3

(x − 1)2−2(y − 1)3−2

= (x − 1)2 + 3(x − 1) + 3(1) + y − 1
= x2 − 2x + 1 + 3x − 3 + 3 + y − 1 = x2 + x + y .
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Tutte Polynomial - recursively

A loop of a matroid M is a circuit of cardinality one.
An isthmus of M is an element that is contained in all the bases.

The Tutte polynomial can be expressed recursively as follows

t(M; x , y) =


t(M \ e; x , y) + t(M/e; x , y) if e 6= isthmus, loop,
x · t(M \ e; x , y) if e is an isthmus,
y · t(M/e; x , y) if e is a loop.
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t(U2,3, x , y)

Computation of t(U2,3; x , y) recursively

Element 3 is neither a loop nor an isthme of U2,3 then

t(U2,3; x , y) = t(U2,3 \ 3; x , y) + t(U2,3/3; x , y)
= t(U2,2; x , y) + t(U1,2; x , y).

Since Uk,k , k ≥ 1 has only one base then all its elements are isthmes.

t(U2,2; x , y) = t(U2,2(2); x , y)t(U2,2 \ 2; x , y)
= t(I ; x , y)t(U1,1; x , y)
= xt(U1,1; x , y)
= xt(I ; x , y) = x2

t(U1,2; x , y) = t(U1,2 \ 2; x , y) + t(U1,2/2; x , y)
= t(U1,1; x , y) + t(U1,0; x , y)
= t(I ; x , y) + t(B; x , y)
= x + y .

Therefore, t(U2,3; x , y) = x2 + x + y .
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Properties

Properties [Exercise]

• t(M; x , y) = t(M∗; y , x).

• t(M1 ⊕M2; x , y) = t(M1; x , y) · t(M2; x , y).

• t(M; 2, 2) = 2|E |.

• t(M; 1, 1) = |B(M)|.
• t(M; 2, 1) = |I(M)|.
• t(M; 1, 2) = number of generators sets of M.

Computing Tutte polynomials is very hard in general ! !

t(M(Kn); x , y) =
n∑

k=1

((n−1)
(k−1)

)(
x +

k−1∑
i=1

y i

)
t(Kk−1; 1, y) · t(Kn−k ; x , y)

(due to Gessel and Pak)
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Application 7 : acyclic orientations

Let G = (V ,E ) be a connected graph. An orientation of G is an
orientation of the edges of G .

We say that the orientation is acyclic if the oriented graph do not
contain an oriented cycle (i.e., a cycle where all its edges are
oriented clockwise or anti-clockwise).

Theorem The number of acyclic orientations of G is equals to

t(M(G ); 2, 0).
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Example : acyclic orientations

There are 6 acyclic orientations of C3

Notice that M(C3) is isomorphic to U2,3.

Since t(U2,3; x , y) = x2 + x + y then the number of acyclic
orientations of C3 is t(U2,3; 2, 0) = 22 + 2 + 0 = 6.
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Application 8 : totally cyclic orientations

An orientation is called totally cyclic if every directed arc lies in at least
one directed cycle.

Theorem The number of totally cyclic orientations of G is equals to

t(M(G ); 0, 2).

Conjectures (Conde, Merino, Welsh)
• max{t(M; 2, 0), t(M; 0, 2)} ≥ t(M; 1, 1)

• t(M; 2, 0) + t(M; 0, 2) ≥ 2t(M; 1, 1) (additive version)

• t(M; 2, 0) · t(M; 0, 2) ≥ t2(M; 1, 1) (multiplicative version)

Theorem (Knauer, Mart́ınez-Sandoval, R.A., 2018) Let M be a lattice

path matroid. Then, t(M; 2, 0) · t(M; 0, 2) ≥ 4
3 t

2(M; 1, 1)
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Chromatic polynomial

Let G = (V ,E ) be a graph and let λ be a positive integer.

A λ-coloring of G is a map φ : V −→ {1, . . . , λ}.

The coloring is called good if for any edge {u, v} ∈ E (G ),
φ(u) 6= φ(v).
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Chromatic polynomial

Let χ(G , λ) be the number of good λ-colorings of G .

Theorem χ(G , λ) is a polynomial on λ. Moreover

χ(G , λ) =
∑
X⊆E

(−1)|X |λω(G [X ])

where ω(G [X ]) denote the number of connected components of
the subgraph generated by X .

Proof (idea) By using the inclusion-exclusion formula [Exercise]
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Theory of matroids and applications III



Chromatic polynomial

Let χ(G , λ) be the number of good λ-colorings of G .

Theorem χ(G , λ) is a polynomial on λ. Moreover

χ(G , λ) =
∑
X⊆E

(−1)|X |λω(G [X ])

where ω(G [X ]) denote the number of connected components of
the subgraph generated by X .

Proof (idea) By using the inclusion-exclusion formula [Exercise]
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Application 9 : chromatic polynomial

The chromatic polynomial χ(G , λ) has been introduced by Birkhoff
as a tool to attack the 4-color problem.

Indeed, if for a planar graph G we have χ(G , 4) > 0 then G admits
a good 4-coloring.

Theorem If G is a graph with ω(G ) connected components. Then,

χ(G , λ) = λω(G)(−1)|V (G)|−ω(G)t(M(G ); 1− λ, 0).

Example :

χ(C3, 3) = 31(−1)3−1t(M(C3); 1− 3, 0)
= 3 · 1 · t(U2,3;−2, 0)
= 3((−2)2 − 2 + 0)
= 6.
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Ehrhart Polynomial

A polytope is called integer if all its vertices have integer
coordinates.
The theory of Ehrhart focuses in counting the number of points
with integer coordinates lying in an integer polytope.

Ehrhart studied the function iP that counts the number of integer
points in the integer polytope P dilated by a factor of t

iP : N −→ N∗
t 7→ |tP ∩ Zd |
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Ehrhart Polynomial

Theorem (Ehrhart 1962) iP is a polynomial on t of degree d ,

iP(t) = cd t
d + cd−1t

d−1 + · · ·+ c1t + c0.

• cd is equals to Vol(P) (the volume of P),

• cd−1 is equals to Vol(∂(P)/2) where ∂(P) is the surface of P,

• c0 = 1 is the Euler’s characteristic of P.

All others coefficients remain a mystery ! !
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Application 10 : Ehrhart Polynomial

Let A = {v1, . . . , vk} be a finite set of elements of Rd .

Let Z (A) be the zonotope formed by the following Minkowski’s sum of
line segments

Z (A) = {α1 + · · ·+ αk |αi ∈ [−vi , vi ]}.

Theorem Let M be a regular matroid and let A be one representation of

M by an unimodular matrix. Then,

iZ(A)(q) = qr(M)t

(
M(A); 1 +

1

q
, 1

)
.

Moreover by the Reciprocity Law, we have

iint(Z(A))(q) = (−1)d iZ(A)(−q) = (−1)dqr(M)t

(
M(A); 1− 1

q
, 1

)
and (−1)r(M)t(M(A); 0, 1) counts the number of integer points in the

interior of Z (A).
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Knots

Knot diagram
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Reidemeister

Reidemeister moves

I

I !1

!1II

II

III

III !1
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Reidemeister

I

III II

II

IIII
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Reidemeister

III

I

II

I
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Reidemeister
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I

I
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Bracket polynomial

For any link diagram D define a Laurent polynomial 〈D〉 in one
variable A which obeys the following three rules where U denotes
the unknot :

!!" # $% " $

% &'#

''#

'''# ( "

!)*)(

( !&

! (
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Bracket polynomial

Theorem For any link L the bracket polynomial is independent of
the order in which rules (i)− (iii) are applied to the crossings.
Further, it is invariant under the Reidemeister moves II and III

but it is NOT invariant under Reidemeister move I ! !

The writhe of an oriented link diagram D is the sum of the signs
at the crossings of D (denoted by ω(D)).
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Writhe

(D)=1

! !"

!

!

!"

!
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Jones’ polynomial

Theorem For any link L define the Laurent polynomial

fD(A) = (−A3)ω(D)〈L〉

Then, fD(A) is an invariant of ambient isotopy.

It is known that the so-called Jones’ polynomial of an oriented link
L is given by

VL(z) = fD(z−1/4)

where D is any diagram representing L.
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Tait’s graph
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Tait’s graph

C
A

B
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Tait’s graph

+
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Tait’s graph
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Application 11 : Jones’ polynomial

A link diagram is alternating if the crossings alternate
under-over-under-over ... as the link is traversed.

A link is alternating if there is an alternating link diagram
representing L.

Theorem (Thistlethwaite 1987) If D is an oriented alternating link
diagram then

VL(z) = (z−1/4)3ω(D)−2t(M(G );−z ,−z−1)

where G is the graph associated to the knot diagram.
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Application 12 : Codes

Let C be the linear code over field Fq with q = pn, p-prime generated by
a matrix A.

The enumerator polynomial of C is defined as

WC (x , y) =
∑
c∈C

xn−w(c)yw(c) =
n∑

i=0

aix
n−iy i

where ai is the number of words of C of weight i .

Theorem WC (x , y) = yn−dim(C)(x − y)dim(C)t
(
M(A); x+(q−1)y

x−y , xy

)
.

Useful to give a combinatorial proof of the following

Theorem (MacWilliams 1963)

WC⊥(x , y) =
1

|C |
WC (x + (q − 1)y , x − y).
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Simplicial complex

Let V = {v1, . . . , vn} be a set of distincts elements. A collection ∆ of
subsets of V is called a simplicial complex if for every F ∈ ∆ and
G ⊆ F ,G ∈ ∆.

• The dimension of ∆ is defined to be dim(∆) = max{dim(F )|F ∈ ∆}.
• The complex ∆ is said to be pure if all its facets have the same
dimension.

• If W ⊆ V then the restriction of ∆ to W is ∆|W = {F ∈ ∆|F ⊆W }.
• If W ⊆ V then the link of ∆ with respect to W is
link∆(W ) = {F ∈ ∆|W ∩ F = ∅,W ∪ F ∈ ∆}.
• If v 6∈ V then the cone over ∆ is C∆ = ∆ ∪ {F ∪ {v}|F ∈ ∆}.
v is called the apex of C∆.

• Let dim(∆) = d − 1. The f -vector of ∆ is f (∆) := (f−1, f0, . . . , fd−1),

where fi = |{F ∈ ∆|dim(F ) = i}|.
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Example

Simplicial complexe ∆ of dimension 2.
1 2

3

5 4

• ∆ is not pure as it has facets of dimension 1 (12 and 45) and of
dimension 2 (234 and 135).

• f (∆) = (1, 5, 8, 2).

• The link∆(3) is the complex with facets 15 and 24
the link∆(5) has facets 13 and 4.

• The deletion of 3 has facets 12, 24, 45 and 15.
The deletion of 5 has facets 234, 13 and 12.
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Matroid complex

Recall that axioms (I1), (I2) for the independent set I(M) of a
matroid M on a set E are equivalent to I being an abstract
simplicial complex on E .

The independent sets of M form a simplicial complex, called the
independence complex of M.

Axiom (I3) can be replaced by the following one
(I3)′ for every A ⊂ E the restriction

I|A = {I ∈ I : I ⊂ A}

is a pure simplicial complex.

A simplicial complex ∆ over the vertices E is called matroid
complex if axiom (I3)′ is verified.
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Theory of matroids and applications III



Examples

Two 1-dimensional simplicial complexes.

1

2

3

4

5

6

1

2

3

4

5

6

(a) (b)

(a) Matroid complex (check that every A ⊆ {1, . . . , 6},∆A is pure)
[Exercise].

(b) It is not a matroid complex (check that the restriction ∆{1,3,4}
is not pure) [Exercise].
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Standard constructions

Let ∆ be a matroid complex with vertex set V . Then, the
following complexes are also matroid complexes

• ∆|W for every W ⊆ V (correspond to deletion operation).

• link∆(F ) for every F ∈ ∆ (correspond to contraction operation).

A matroid complex ∆M is a cone if and only if M has a coloop (or
an isthmus), which corresponds to the apex (defined above).
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Stanley-Reisner ideal

Let k be a field. We can associate to a simplicial complex ∆, the
following square free monomial ideal in S = k[x1, . . . , xn],

I∆ =

(
xF =

∏
i∈F

xi | F 6∈ ∆

)
⊆ S .

The ideal I∆ is called the Stanley-Reisner ideal of ∆ and S/I∆ the
Stanley-Reisner ring of ∆.
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Stanley-Reisner ring

• Hilbert function

hS/I∆(h) = dimk [S/I∆]h

where [S/I∆]h is the vector space of degree h homogeneous
polynomial outside of I∆.

• Hilbert series

HS/I∆(t) =
∞∑
i=1

hS/I∆(i)t i =
h0 + h1t + · · ·+ hd t

d

(1− t)d

where d = dim(I∆).

h(∆) = (h0, . . . , hd) is known as the h-vector of ∆.
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h-vector of simplicial complexes

Assume that dim(∆) = d − 1.

The h-vector of a simplicial complex h(∆) = (h0, . . . , hd) can be
studied from its f -vector f (∆) via the relation

d∑
i=0

fi−1t
i (1− t)d−i =

d∑
i=0

hi t
i

In particular, for any j = 0, . . . , d , we have

fj−1 =
j∑

i=0

(d−i
j−1

)
hi

hj =
j∑

i=0
(−1)j−i

(d−i
j−1

)
fi−1.
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Internally and externally passive

The h-number of a matroid M may be interpreted combinatorially
in terms of certain invariants of M.

Fix a total ordering {v1, < v2 < · · · < vn} on E (M).

Given a bases B, an element vj ∈ B is internally passive in B if
there is some vi ∈ E \ B such that vi < vj and (B \ vj) ∪ vi is a
bases of M.

Dually, vj ∈ E \ B is externally passive in B if there is some vi ∈ B
such that vi < vj and (B \ vi ) ∪ vj is a bases of M.

Remark vj is externally passive in B if it is internally passive in
E \ B in M∗.
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Application 13 : h-vector

Theorem t(M; x , y) =
∑

B∈B(M)

x i(B)y e(B)

where i(B) (resp. e(B)) counts the number of internally (resp.
externally) passive elements in B.

Theorem (Björner)

h(∆M) = h0z
d + h1z

d1 + · · ·+ hd = t(M; z , 1) =
∑

B∈B(M)

z i(B)

where (h0, · · · , hd) is the h-vector of a matroid complex ∆M .

Remark Since the f -numbers (and thus h-numbers) of a matroid depend
only on its independent sets, then the above equations hold for any
ordering of the ground set of M.

Consequence The h-numbers of a matroid complex are nonnegative.
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Example

We consider the matroid complex ∆U2,3 . We have that
f (∆) = (1, 3, 3).

Therefore

2∑
i=0

fi−1z
i (1− z)2−i = f−1z

0(1− z)2 + f0z(1− z) + f1z
2(1− t)0

= (1− z)2 + 3z(1− z) + 3z2

= 1− 2z + z2 + 3z − 3z − 3z2 + 3z2

= z2 + z + 1 =
2∑

i=0
hiz

i .

Obtaining that h(∆U2,3) = (1, 1, 1).
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Example continuation ...

Let B(U2,3) = {B1 = {1, 2},B2 = {1, 3},B3 = {2, 3}}.

We can check that [Exercise]

- there is not internally passive element in B1

- 3 is internally passive element of B2

- 2 and 3 are internally passive elements of B3

Therefore

2∑
i=0

hiz
i =

∑
B∈B(U2,3)

t i(B) = t(U2,3; z , 1) = z2 + z + 1

Obtaining that h(∆U2,3 ) = (1, 1, 1).
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Order ideal

An order ideal O is a family of monomials (say of degree at most
r) with the property that if µ ∈ O and ν|µ then ν ∈ O.

Let Oi denote the collection of monomials in O of degree i .
Let Fi (O) := |Oi | and F (O) = (F0(O),F1(O), . . . ,Fr (O)).

We say that O is pure if all its maximal monomials (under
divisibility) have the same degree.

A vector h = (h0, . . . , hd) is a pure O-sequence if there is a pure
ideal O such that h = F (O).
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Example

The pure monomial order ideal (inside k[x , y , z ] with maximal
monomials xy3z and x2z3 is :

X = {xy3z , x2z3;

y3z , xy2z , xy3, xz3, x2z2, y2z , y3, xyz ,
xy2, xz2, z3, x2z , yz , y2, xz , xy , z2, x2, z , y , x , 1}.

Hence the h-vector of X is the pure O-sequence
h = (1, 3, 6, 7, 5, 2).
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Stanley’s conjecture

A longstanding conjecture of Stanley suggest that matroid h-vectors are
highly structured

Conjecture (Stanley, 1976) For any matroid M, h(∆M) is a pure
O-sequence.

True for several families of matroid complexes.

(Merino, Noble, Ramirez-Ibañez, Villarroel, 2010) Paving matroids

(Oh, 2010) Cotranversal matroids

(Schweig, 2010) Lattice path matroids

(Stokes, 2009) Matroids of rank at most three

(De Loera, Kemper, Klee, 2012) for all matroids on at most nine

elements all matroids of corank two.
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Example

We consider the matroid complexe ∆M(G) associated to the rank 2
matroid induced by the graph G

1

2

3

4

We have that dim(∆) = 1 and f−1 = 1, f0 = 3 and f1 = 4.
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Example

B(M(G )) = {B1 = {1, 3},B2 = {1, 4},B3 = {2, 3},B4 = {2, 4}}.

- there is not internally passive element in B1

- 4 is internally passive element of B2

- 2 is internally passive element of B3

- 2 and 4 are internally passive elements of B4

Thus,
2∑

i=0
hiz

i =
∑

B∈B(M(G))

z i(B) = 1 + z + z + z2 = 1 + 2z + z2.

Obtaining the h-vector h(1, 2, 1). Since O = (1, x1, x2, x1x2) is an
order ideal then h(1, 2, 1) is pure O-sequence.
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