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Abstract

In this paper we investigate the behaviour of the gaps in numerical
semigroups. We will give an explicit formula for the ith gap of a
semigroup generated by k+1 consecutive integers (generalizing a result
due to Brauer) as well as for a special semigroup of three generators.
It is also proved that the number of gaps of the semigroup < p, q >
in the interval [pq − (k + 1)(p + q), . . . , pq − k(p + q)] is equals to

2(k+1)+
⌊

kq
p

⌋
+
⌊

kp
q

⌋
for each k = 1, . . . ,

⌊
pq

p+q

⌋
. We actually give two

proofs of the latter result, the first one uses the so-called Apery sets
and the second one is an application of the well-known Pick’s theorem.
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1 Introduction

Let s1, . . . , sn be positive integers such that their greatest common divisor,
denoted by (s1, . . . , sn), is one. Let S =< s1, . . . , sn > be the numerical
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semigroup1 generated by s1, . . . , sn. The genus of a numerical semigroup
S is the number N(S) = #(IN+ ∪ {0} \ S). The positive elements of S
(resp. elements of IN+ ∪ {0} \ S) are called the non-gaps (resp. gaps) of S.
One motivation to study gaps comes from the important role they play in
the concept of symmetry [3] as well as in the investigations of Weierstrass
semigroups [5, 6, 8] and its applications to algebraic codes [9].

In 1882, while investigating the partition number function, J.J. Sylvester [15,
page 134] (see also [14]) proved that if Spq =< p, q > with (p, q) = 1 then

N(Spq) =
1

2
(p− 1)(q − 1) (1)

The so-called Frobenius number2 denoted by g(S) = g(s1, . . . , sn), is the
largest integer not belonging to S (g(S) is also known as the conductor of
S). From equation (1) it can be deduced that

g(Spq) = pq − p− q. (2)

Finding g(S) is a difficult problem from the computational point of view,
in general [11]. There exist numerous bounds (and formulas for particular
semigroups S) for g(S) as well as generalizations and applications of it. We
refer the reader to [12] for a detailed discussion on the Frobenius number.

Let us enumerate the gaps of S by increasing order l1 < · · · < lN(S). So,
lN(S) = g(S) is both the largest gap of S as the N(S)th gap. Not surpris-
ingly, computing the ith gap of a semigroup is also difficult since it comes
down to calculate the Frobenius number. Indeed, for calculating the ith gap
of a semigroup S we may calculate gN(S)−i(S) = g(S ∪ {gN(S)(S)} ∪ · · · ∪
{gN(S)−i+1(S)}) where gN(S)(S) = g(S). There is not much known about the

1Recall that a semigroup (S, ∗) consists of a nonempty set S and an associative binary
operation ∗ on S. If, in addition, there exists an element, which is usually denoted by 0,
in S such that a ∗ 0 = 0 ∗ a = a for all a ∈ S, we say that (S, ∗) is a monoid. A numerical
semigroup is a submonoid of (IN,+) such that the greatest common divisor of its elements
is equal to one.

2In the introduction section of [1], A. Brauer stated that G. Frobenius mentioned,
occasionally in his lectures, the problem of finding the largest natural number that is not
representable as a nonnegative integer combination of s1, . . . , sn.
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behaviour of the gaps in semigroups. The main intention of this paper is to
investigate the distribution of gaps in some semigroups. In the next section,
we prove the following two theorems.

Theorem 1.1 Let a, k ≥ 1 be integers and let S =< a, a + 1, . . . , a + k > be
a semigroup with gaps l1 < · · · < lN(S). Let vm = (m+1)(a−1)−k

(
m(m+1)

2

)
,

v−1 = 0 and r =
⌊

a−2
k

⌋
. Then,

N(S) = vr and li = ti(a + k) + i− vti−1

for each i = 1, . . . , N(S) where ti is the smallest integer such that vti ≥ i.

In [1], Brauer found a formula for the Frobenius number of k +1 consecutive
positive integers, this is given by

g(a, a + 1, . . . , a + k) = a
(⌊

a− 2

k

⌋
+ 1

)
− 1.

We remark that Theorem 1.1 contains Brauer’s result as a particular case.
Indeed, since vr = vr−1 + a− (rk + 1) and tN(S) = r then

lN(S) = r(a + k) + N(S) − vr−1 = r(a + k) + vr − (vr + rk + 1− a)

= r(a + k) + a− 1− kr = a(r + 1) − 1 = a
(⌊

a−2
k

⌋
+ 1

)
− 1.

Theorem 1.1 yields us to consider the following question.

Question: Let S =< a, a + d, . . . , a + kd > with d ≥ 1 and gcd(a, d) = 1.
Is there a formula that computes the ith gap of S for each 1 ≤ i ≤ N(S)?

A positive answer to the above question is obtained when i = N(S) since,
for any integer d, it is known [13] that
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lN(S) = g(a, a + d, . . . , a + kd) = a
(⌊

a− 2

k

⌋)
+ d(a− 1). (3)

The following Theorem answers this question when k = 2 and d = a− 1.

Theorem 1.2 Let a ≥ 1 be an integer and let S =< a, 2a − 1, 3a − 2 > be
a semigroup with gaps l1 < · · · < lN(S). Let

r = (r0, r1, . . . , r3n−2) = (0, 2n−1, 2n−2, 2n−3, 2n−3, 2n−4, 2n−5, 2n−5, 2n−6, . . . , 2, 1, 1)

and

r′ = (r′0, r
′
1, . . . , r

′
3n−1) = (0, 2n, 2n−1, 2n−2, 2n−2, 2n−3, 2n−4, 2n−4, 2n−5, . . . , 2, 2, 1).

We set vm =
m∑

i=0
ri and v′m =

m∑
i=0

r′i. Then,

N(S) =

{
3
4
n2 − 3

2
n + 1 if a = 2n, n ≥ 1,

3
4
(n2 − 2n + 1) if a = 2n + 1, n ≥ 1,

and

li =

{
(ti − 1)2n + i− vti−1 if a = 2n, n ≥ 1,
(ti − 1)(2n + 1) + i− v′ti−1 if a = 2n + 1, n ≥ 1,

where ti is the smallest integer such that vti ≥ i if a = 2n (or v′ti ≥ i if
a = 2n + 1).

We notice that Theorem 1.2 contains equality (3) when k = 2 and d = a− 1.
Indeed, equation (3) implies that if a = 2n, n ≥ 1 then
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g(a, 2a− 1, 3a− 2) = a
(⌊

a−2
2

⌋)
+ (a− 1)2

= 2n
(⌊

2n−2
2

⌋)
+ (2n− 1)2

= 2n(n− 1) + (2n− 1)2

= 6n2 − 6n + 1 = 6n(n− 1) + 1

and a = 2n + 1, n ≥ 1 then

g(a, 2a− 1, 3a− 2) = a
(⌊

a−2
2

⌋)
+ (a− 1)2

= (2n + 1)
(⌊

2n+1−2
2

⌋)
+ (2n)2

= (2n + 1)(n− 1) + 4n2

= 6n2 − n− 1 = n(6n− 1)− 1.

On other hand, by Theorem 1.2, we have that.
(a) If a = 2n, n ≥ 1 then tN(S) = 3n − 2, N(S) = v3n−2 and v3n−2 =
v3n−3 + r3n−1 = v3n−3 + 1. So,

lN(S) = (3n− 3)2n + N(S) − v3n−2−1

= (3n− 3)2n + v3n−2 − (v3n−2 − 1)
= 6n2 − 6n + 1 = 6n(n− 1) + 1.

(b) If a = 2n + 1, n ≥ 1 then tN(S) = 3n − 1, N(S) = v3n−1 and v′3n−1 =
v′3n−2 + r′3n−1 = v′3n−2 + 1. So,

lN(S) = (3n− 2)(2n + 1) + N(S) − v′3n−1−1

= (3n− 2)(2n + 1) + v3n−1 − (v′3n−1 − 1)
= 6n2 − 4n + 3n− 2 + 1 = n(6n + 1) − 1.

In this paper, we also study the gaps of semigroups with two generators.
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Theorem 1.3 Let p, q positive integers such that g.c.d.(p, q) = 1. Let gk(Spq)
be the number of gaps of Spq =< p, q > in the interval

[pq − (k + 1)(p + q), . . . , pq − k(p + q)],

for each 0 ≤ k ≤
⌊

pq
p+q

⌋
− 1. Then,

gk(Spq) =

{
1 if k = 0

2(k + 1) +
⌊

kq
p

⌋
+
⌊

kp
q

⌋
if 1 ≤ k ≤

⌊
pq

p+q

⌋
− 1.

In Section 3, we give two proofs of Theorem 1.3, the first one uses the no-
tions of Apery set and the second one the well-known Pick’s theorem. These
algebraic and geometric proofs may motivate further investigations on the
study of gaps of semigroups with n ≥ 4. We remark that Theorem 1.3 can
be regarded as a generalization, to some extent, of equation (2) contained
when k = 0 (an arithmetical and an algebraic proofs of equation (2) are given
in [7] and [2] respectively).

2 Arithmetic sequences

We may now prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let Si = {i(a + k) + 1, . . . , (i + 1)a − 1} for each

i = 0, . . . , r =
⌊

a−2
k

⌋
. So, |Si| = a − (ik + 1). We shall prove, by induction

on i, that if s ∈ Si then s 6∈ S. It is clear for i = 0 since S0 = {1, . . . , a− 1}.
Let us suppose that it is true for i = m ≤ r − 1 and let s ∈ Sm+1. Notice
that s ∈ S if and only if s − (a + j) ∈ S for some 0 ≤ j ≤ k. So, if we show
that s − (a + j) ∈ Sm for all 0 ≤ j ≤ k then, by the inductive hypothesis,
s 6∈ S. To this end, it can be easily checked that

m(a + k) + 1 ≤ s− (a + j) = (m + 1)(a + k) + l − (a + j) ≤ (m + 1)a− 1
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for all 1 ≤ l ≤ a − (k(m + 1) + 1) and all 0 ≤ j ≤ k with equality on the
left-hand side when l = 1 and j = k and equality on the right-hand side
when l = a− (k(m + 1) + 1) and j = 0.

Now, we claim that if t 6∈ Si for all i = 0, . . . , r =
⌊

a−2
k

⌋
then t ∈ S.

For this, we consider the sets Ti = {(i + 1)a, . . . , (i + 1)(a + k)} for each

i = 0, . . . , r =
⌊

a−2
k

⌋
and Tr+1 = {x|x ≥ (r + 1)(a + k) + 1}. We show, by

induction on i, that if t ∈ Ti for some i then t ∈ S. This is clear for i = 0
since T0 = {a, . . . , a+k}. Now, suppose that it is true for i = m− 1 ≤ r− 1.
Then, by inductive hypothesis, all elements in

Tm−1 = {ma, . . . , ma + mk = m(a + k)}
belong to S. So, all elements in A = {x + a|x ∈ Tm−1} also belong to S.
Moreover, all elements in B = {m(a+k)+a+1, m(a+k)+a+2, . . . ,m(a+
k) + a + k} also belong to S since m(a + k) belong to Tm. Hence, all the
elements in

Tm = {(m + 1)a, . . . , (m + 1)(a + k)} = {ma + a, . . . ,m(a + k) + a + k}
= {ma + a, . . . ,ma + a + mk = m(a + k) + a, m(a + k) + a + 1, . . . ,m(a + k) + a + k}
= A ∪B

belong to S. Finally, note that

|Tr| = |Tba−2
k c| =

(⌊
a− 2

k

⌋
+ 1

)
k + 1 ≥ a.

So, Tr contains a consecutive elements forming a complete system modulo a,
that is, Tr contain elements t(0), . . . , t(a − 1) such that t(i) ≡ i mod a. It is
clear if t ∈ Tr+1 then t = t(i) + la with l ≥ 0 integer and where t ≡ i mod a.
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Thus, the set of all gaps in S is given by {Si}0≤i≤r. So,

N(S) =
r∑

i=0

|Si| = a− (ik + 1) = (r + 1)(a− 1)− k

(
r(r + 1)

2

)

and
li = ti(a + k) + i− vti−1

for each i = 1, . . . , N(S) where ti is the smallest integer such that vti ≥ i . ut

Example: Let S =< 8, 9, 10, 11 >. Then, k = 3 and r = 2. S0 =
{1, 2, 3, 4, 5, 6, 7}, S1 = {12, 13, 14, 15}, S2 = {23}, T0 = {8, 9, 10, 11}, T1 =
{16, 17, 19, 19, 20, 21, 22}, T2 = {24, . . . , 33} and T3 = {34, 35, . . .}.

Proof of Theorem 1.2. We consider two cases according with the parity of a.

Case A) If a = 2n, n ≥ 1 then S =< 2n, 4n − 1, 6n − 2 >. We consider the
sets Si = {(i − 1)2n + 1, . . . , (i − 1)2n + ri} for each i = 1, . . . , 3n − 2. We
shall show, by induction on i, that if s ∈ Si then s 6∈ S. This can be easily
checked for i = 1, 2 and 3. Let us suppose that it is true for i = m ≥ 4 and
let s ∈ Sm+1. Again, as in the above proof, we use the fact that s ∈ S if and
only if s − l ∈ S with either l = 2n or l = 4n − 1 or l = 6n − 2. We then
show that s − l ∈ Sj, for some 1 ≤ j ≤ m when either l = 2n or l = 4n − 1
or l = 6n− 2 and thus, by the inductive hypothesis, s− l 6∈ S (and therefore
s 6∈ S).

Remark 2.1 (a) If rm+1 = rm then rm−1 = rm+1 + 1 and rm−2 = rm+1 + 2.
(b) If rm+1 < rm then rm = rm+1 + 1 and either rm−1 = rm+1 + 1 and
rm−2 = rm+1 + 2 or rm−1 = rm+1 + 2 and rm−2 = rm+1 + 2.
From (a) and (b) we have that rm+1 ≤ rm, rm+1 + 1 ≤ rm−1 and rm+1 + 2 =
rm−2.

We now check three cases.

(1) If l = 2n then s− l = m(2n)+ j−2n = (m−1)2n+ j with 1 ≤ j ≤ rm+1.
So, s− l ∈ Sm since, by the above remark, 1 ≤ j ≤ rm+1 ≤ rm.
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(2) If l = 4n− 1 then s− l = m(2n) + j − (4n− 1) = (m− 2)2n + j + 1 with
1 ≤ j ≤ rm+1. So, s − l ∈ Sm−1 since, by the above remark, 1 ≤ j + 1 ≤
rm+1 + 1 ≤ rm−1.

(3) If l = 6n− 2 then s− l = m(2n) + j − (6n− 2) = (m− 3)2n + j + 2 with
1 ≤ j ≤ rm+1. So, s − l ∈ Sm−2 since, by the above remark, 1 ≤ j + 2 ≤
rm+1 + 2 = rm−2.

Now, we claim that if t 6∈ Si for all i = 1, . . . , 3n− 2 then t ∈ S. For this, we
consider the set Ti = {(i− 1)2n + ri + 1, . . . , i2n}) for each i = 1, . . . , 3n− 2
and T3n−1 = {(3n − 2)2n + 1, . . . , (3n − 2)2n + 2n}. We show, by induction
on i, that if t ∈ Ti for some i then s ∈ S. This is clear for i = 1, 2 and
3. Indeed, the elements in T1 = {2n}, T2 = {4n − 1, 4n = 2(2n)} and
T3 = {6n − 2, 6n − 1 = 4n − 1 + 2n, 6n = 3(2n)} all belong to S. Now,
we suppose that it is true for i = m with 4 ≤ m ≤ 3n − 3 and notice
that Tj = (j − 1)2n + s where rj + 1 ≤ s ≤ 2n for each 1 ≤ j ≤ 3n − 2.
Let t ∈ Tm+1. If s = 2n then t = (m + 1 − 1)2n + 2n = (m + 1)2n
that clearly belongs to S (t is a multiple of 2n) and if s = 2n − 1 then
t = (m + 1− 1)2n + 2n− 1 = (m + 1)2n− 1 = 4n− 1 + (m− 1)2n that also
belongs to S (t is a combination of elements 4n− 1 and 2n). Let us suppose
now that rm+1 + 1 ≤ s < 2n − 1. We have three subcases according to the
above remark (we recall that t ∈ S if and only if tl ∈ S where l = 2n or
4n− 1 or 6n− 2).

(1) If rm+1 = rm then t − l = m(2n) + s − 2n = (m − 1)2n + s with
rm+1 +1 ≤ s ≤ 2n. But, t− l ∈ Sm since rm +1 = rm+1 +1 ≤ s ≤ 2n. Thus,
by the inductive hypothesis, t− l ∈ S and therefore t ∈ S.

(2) If rm = rm+1 + 1, rm−1 = rm+1 + 1 and rm−2 = rm+1 + 2 then t − l =
m(2n) + s− (4n− 1) = (m− 2)2n + s + 1 with rm+1 + 1 ≤ s < 2n− 1. But,
t− l ∈ Sm−1 since rm−1 + 1 = rm+1 + 2 ≤ s + 1 ≤ 2n. Thus, by the inductive
hypothesis, t− l ∈ S and therefore t ∈ S.

(3) If rm = rm+1 + 1, rm−1 = rm+1 + 2 and rm−2 = rm+1 + 2 then t − l =
m(2n) + j − (6n− 2) = (m− 3)2n + s + 2 with with rm+1 + 1 ≤ s < 2n− 1.
But, t − l ∈ Sm−2 since rm−1 + 1 = rm+1 + 3 ≤ s + 2 ≤ 2n. Thus, by the
inductive hypothesis, t− l ∈ S and therefore t ∈ S.

For the case i = 3n−1 we have that T3n−1 = (3n−2)2n+j with j = 1, . . . , 2n.
So, if t ∈ T3n−1 then t = (3n − 2)2n + j = (3n − 3)2n + j + 2n and since
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(3n − 2)2n + j belongs to T3n−2 then t ∈ S. Since the elements in T3n−1 are
consecutive and |T3n−1| = a then they form a complete system modulo a,
that is, T3n−1 contain elements t(0), . . . , t(a − 1) such that t(i) ≡ i mod a.
From this, it is clear that if t > max{T3n−1} then t = t(i) + la with l ≥ 0
integer and where t ≡ i mod a.

Thus, the sets Si are the gaps in S (increasingly ordered) and

N(S) = v3n−2 =
3n−2∑
i=0

ri =
3

4
n2 − 3

2
n + 1.

In order to find the ith-gap of S we first find out to which set Sj the gap li
belongs to. The latter is done by computing the smallest integer ti such that
vti ≥ i obtaining that li ∈ Sti . And thus, li is given by (ti − 1)2n + j with
j = i− vti−1.

Case B) If a = 2n + 1, n ≥ 1 then S =< 2n + 1, 4n + 1, 6n + 1 >. This case
is analogous as the first one by considering the sets S ′

i = {(i − 1)(2n + 1) +
1, . . . , (i− 1)(2n + 1) + r′i} for each i = 1, . . . , 3n− 1 and T ′

j = {(j − 1)(2n +
1) + r′j + 1, . . . , j(2n + 1)} with j = 1, . . . , 3n− 2.

Again, in this case, the sets S ′
i are the gaps in S (increasingly ordered). So,

N(S) = v′3n−1 =
3n−1∑
i=0

r′i = 3
4
(n2 − 2n + 1) and li = (i− 1)(2n + 1) + i− v′ti−1.

ut

Example: Let S =< 7, 13, 19 >. Then, n = 3 and r′ = (0, 6, 5, 4, 4, 3, 2, 2, 1).
S1 = {1, 2, 3, 4, 5, 6}, S2 = {8, 9, 10, 11, 12}, S3 = {15, 16, 17, 18}, S4 =
{22, 23, 24, 25}, S5 = {29, 30, 31}, S6 = {36, 37}, S7 = {43, 44}, S8 =
{50}, T1 = {7}, T2 = {13, 14}, T3 = {19, 20, 21}, T4 = {26, 27, 28}, T5 =
{32, 33, 34, 35}, T6 = {38, 39, 40, 41, 42} and T7 = {45, 46, 47, 48, 49}.
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3 Gaps in < p, q >

The Apéry set of element a, a ∈ S \ {0} is defined as Ap(S, a) = {s ∈
S|s− a 6∈ S}. It is known that the set Ap(S, a) is a complete system modulo
a, that is, Ap(S, a) = {0 = w(0), . . . , w(a − 1)} where w(i) is the least
element in S congruent with i modulo a. Let p, q positive integers such that
g.c.d.(p, q) = 1. The semigroup Spq =< p, q > is symmetric, that is, for any
integer x ∈ [0, . . . , g(Spq)], x ∈ Spq if and only if g(Spq) − x 6∈ Spq.

Proof of Theorem 1.3. As Spq is symmetric then for each k = 0, . . . ,
⌊

pq
p+q

⌋
−1

there exists a one-to-one correspondence between the sets

{x ∈ IN|x 6∈ Spq and pq − (k + 1)(p + q) ≤ x ≤ pq − k(p + q)}

and

{x ∈ Spq|(k − 1)(p + q) ≤ x ≤ k(p + q)}.

Let Ap(Spq, p+ q) = {w(0), . . . , w(p+ q− 1)} where w(i) is the least element
in Spq congruent with i modulo p + q. Then, for each i ∈ {0, . . . , p + q − 1}
we have that (k − 1)(p + q) + i ∈ Spq if and only if (k − 1)(p + q) + i ≥ w(i).
Hence,

|{x ∈ Spq|(k−1)(p+q) ≤ x ≤ k(p+q)}| = |{w ∈ Ap(Spq, p+q)|w < k(p+q)}|+1
(4)

Since g.c.d.(p, q) = 1 then Ap(Spq, p+q) = {0, p, 2p, . . . , (q−1)p, q, 2q, . . . , (p−
1)q, pq}. Besides, tq < k(p + q) if and only if t < k + kp/q or equivalently,
t ≤ k + bkp/qc. Analogously, tp < k(p + q) if and only if t ≤ k + bkq/pc.
Therefore,

{w ∈ Ap(Spq, p+q)|w < k(p+q)} = {0, p, . . . , (k+bkq/pc)p, q, . . . , (k+bkp/qc)q}

and

|{0, p, . . . , (k+bkq/pc)p, q, . . . , (k+bkp/qc)q}| = 1+k+bkq/pc+k+bkp/qc.

Thus, by equation (4),
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|{x ∈ Spq|(k − 1)(p + q) ≤ x ≤ k(p + q)}| = 2(k + 1) +

⌊
kq

p

⌋
+

⌊
kp

q

⌋

and the result follows by the above bijection. ut

Pick’s theorem [10] is considered as one of the gems of elementary mathe-
matics. It asserts that the area of a simplest lattice polygon3 S, denoted by
A(S), is given by I(S) + B(S)/2 − 1 where I(S) and B(S) are the number
of lattice points in the interior of S and in the boundary of S respectively;
see [16] for a short proof of Pick’s theorem.

Second proof of Theorem 1.3. Let P be the lattice polygon with vertices
(q−1,−1), (−1, p−1), (q, 0) and (0, p). Notice that there are no other lattice
points on the boundary of P and that the set of lattice points inside P ,
denoted by I(P ), are all in the first quadrant. The equation of the line
connecting the the first (resp. the last) two points is given by px + qy =
pq− p− q (resp. by px + qy = pq). Let T1 and T2 be the triangles formed by
points (q, 0), (0, p), (−1, p− 1) and (−1, p− 1), (q− 1,−1), (q, 0) respectively.
Since

A(T1) = 1
2

∣∣∣∣∣∣∣∣∣∣∣∣

q 0 1

0 p 1

−1 p− 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 1

2
(q + p) = 1

2

∣∣∣∣∣∣∣∣∣∣∣∣

−1 p− 1 1

q − 1 −1 1

q 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= A(T2)

then A(P ) = A(T1) + A(T2) = p + q and, by Pick’s theorem, we have that
|I(P )| = p + q − 1. We claim that line px + qy = pq − p − q + i contains

3We call a polygon simple if its boundary is a simple closed curve. A lattice polygon is
a polygon where its vertices have integer coordinates.
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exactly one point in I(P ) for each i = 1, . . . , p + q − 1. Suppose that there
exists 1 ≤ j ≤ p + q − 1 such that the line px + qy = pq − p− q + j contains
two points of I(P ), that is, px1 + qy1 = pq − p − q + j = px2 + qy2 for
some 0 ≤ x1, x2 < q, x1 6= x2 and 0 ≤ y1, y2 < q, y1 6= y2. But then,
(x1 − x2)p = (y2 − y1)q and since (p, q) = 1 then (x1 − x2) = sq ≥ q which
is impossible. So each line px + qy = pq − p − q + i contains at most one
point of I(P ). Moreover, each line px + qy = pq − p− q + i has at least one
point of I(P ) otherwise, by the pigeon hole principle, it would exists a line
px + qy = pq − p− q + j for some 1 ≤ j ≤ p + q − 1 containing two points of
I(P ), which is a contradiction. Notice that, since all lines px + qy = n ≥ pq
clearly have at least one lattice point in the first quadrant then pq − p− q is
the largest value for which px + qy = pq − p − q does not have solution on
the nonnegative integers. Thus F0(Spq) = 1.

Let k∗ be the largest integer such that pq − k∗(p + q) ≥ 0. Let Qk be the
polygon formed by the points (q− k,−k), (q− (k + 1),−(k + 1)), (−k, p− k)
and (−(k+1), p−(k+1)). Notice that Q0 = P , that Qk is just a translation of
Q0 and that Qk∗−1 does not contains points (−x,−y), x, y > 0 (by definition
of k∗). Let r1

k (resp. r2
k) be the intersection of the line px+qy = pq−k(p+q)

with the x-axis (resp. with the y-axis) for each k = 0, . . . , k∗. Let Q1
k (resp.

Q2
k), k = 0, . . . , k∗− 1 be the (not necessarily lattice) polygon formed by the

points (r1
k, 0), (r1

k+1, 0), (q − k,−k) and (q − (k + 1),−(k + 1)) (resp. formed
by the points (0, r2

k), (0, r
2
k+1), (−k, p − k) and (−(k + 1), p − (k + 1))). We

notice that Q1
k (resp. Q2

k) is the piece of Qk that lies below the x-axis (resp.
on the left-hand side of the y-axis). Since each line px+qy = pq− (p+q)+j,
1 ≤ j ≤ p + q − 1 has a unique solution with nonnegative integers (x, y)
then the translated line px + qy = pq − k(p + q) + j (lying in Qk) does
not have solution with nonnegative integers if the corresponding translation
of (x, y) lies either in Q1

k or Q2
k. Hence, Fk(Spq) = I(Q1

k) + I(Q2
k) + 2 for

each k = 1, . . . , k∗ − 1 (the term 2 counts the gaps corresponding to the
inexistence of solutions for px + qy = pq − k(p + q) and px + qy = pq − (k +
1)(p + q)). We calculate I(Q1

k) and I(Q2
k) for each k = 1, . . . , k∗− 1. To this

end, we first observe that the number of integer points lying on the interval
[(dr1

ke, 0), . . . , (q, 0)[= [(q−k−bkq
p
c, 0), . . . , (q, 0)[ (resp. lying on the interval

[(0, p), . . . , (0, dr2
ke)[= [(0, p), . . . , (0, p−k−bkp

q
c)[) is equals to k+

⌊
kq
p

⌋
(resp.

13



equals to k +
⌊

kp
q

⌋
). Let ∆1

k and ∆2
k the number of integer points lying on

the intervals [(r1
k+1, 0), . . . , (r1

k, 0)[ and [(0, r2
k+1), . . . , (0, r

2
k)[ respectively for

each k = 1, . . . , k∗ − 1. Then,

I(Q1
k) =

k−1∑
i=0

∆1
i =

k−1∑
i=0

(
(i + 1) +

⌊
(i+1)q

p

⌋
−
(
i +

⌊
iq
p

⌋))
=

k−1∑
i=0

(
1 +

⌊
(i+1)q

p

⌋
−
⌊

iq
p

⌋)
= k +

⌊
kq
p

⌋
.

Similarly, I(Q2
k) = k +

⌊
kp
q

⌋
, k = 1, . . . , k∗ − 1 and the result follows. ut

We end this section with the following question. Let ρi(S) = ρi be the ith

non-gap of S and let M(i) be the number of gaps smaller than ρi.

Question 3.1 Is M(i) computable in polynomial time?
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