On the number of numerical semigroups $\langle a, b \rangle$ of prime power genus

Shalom Eliahou^{*} and Jorge Ramírez Alfonsín[†]

September 17, 2012

Abstract

Given $g \geq 1$, the number $n(g)$ of numerical semigroups $S \subset \mathbb{N}$ of genus $|\mathbb{N} \setminus S|$ equal to g is the subject of challenging conjectures of Bras-Amorós. In this paper, we focus on the counting function $n(q, 2)$ of *two-generator* numerical semigroups of genus q , which is known to also count certain special factorizations of 2g. Further focusing on the case $g = p^k$ for any odd prime p and $k \ge 1$, we show that $n(p^k, 2)$ only depends on the class of p modulo a certain explicit modulus $M(k)$. The main ingredient is a reduction of $gcd(p^{\alpha}+1, 2p^{\beta}+1)$ to a simpler form, using the continued fraction of α/β . We treat the case $k = 9$ in detail and show explicitly how $n(p^9, 2)$ depends on the class of p mod $M(9) = 3 \cdot 5 \cdot 11 \cdot 17 \cdot 43 \cdot 257.$

Keywords. Gap number; Sylvester's theorem; Special factorizations; Euclidean algorithm; Continued fractions; RSA.

1 Introduction

A numerical semigroup is a subset $S \subset \mathbb{N}$ containing 0, stable under addition and with finite complement in N. The cardinality of $\mathbb{N} \setminus S$ is then called the *gap number* or the *genus* of S. It is well known that, given $q \in \mathbb{N}$, there are only finitely many numerical semigroups of genus q . Yet the question of counting them seems to be a very hard problem, analogous to the one of

[∗] eliahou@lmpa.univ-littoral.fr.

[†] jramirez@math.univ-montp2.fr

counting numerical semigroups by Frobenius number. See [1, 2] for some nice conjectures about it. The problem becomes more tractable when restricted to semigroups $S = \langle a, b \rangle = \mathbb{N}a + \mathbb{N}b$ with two generators. So, let us denote by $n(g, 2)$ the number of numerical semigroups $S = \langle a, b \rangle$ of genus g. On the one hand, determining $n(q, 2)$ is linked to hard factorization problems, like factoring Fermat and Mersenne numbers [3]. On the other hand, the value of $n(g, 2)$ is known for all $g = 2^k$ with $k \geq 1$, and for all $g = p^k$ with p an odd prime and $k \leq 8$. Indeed, exact formulas are provided in [3], showing in particular that $n(p^k, 2)$ for $k = 1, 2, 3, 4, 5, 6, 7$ and 8 only depends on the class of p modulo 3, 1, 15, 7, 255, 31, 36465 and 27559, respectively. See also Section 7, where these formulas are given in a new form.

Our purpose in this paper is to extend our understanding of $n(p^k, 2)$ to arbitrary exponents $k \in \mathbb{N}$. Giving exact formulas in all cases is out of reach since, for instance, a formula for $n(p^{4097}, 2)$ would require the still unknown factorization of the 12th Fermat number $2^{2^{12}} + 1$. However, what can and will be done here is to show that, for all $k \geq 1$, the value of $n(p^k, 2)$ only depends on the class of p modulo some explicit modulus $M(k)$.

This result is formally stated and proved in Section 4. Here is how $M(k)$ is defined:

$$
M(k) = \mathrm{rad}(\prod_{i=1}^{k} (2^{i/\mathrm{gcd}(i,k)} - (-1)^{k/\mathrm{gcd}(i,k)})),
$$

where $rad(n)$ denotes the product of the distinct prime factors of n, i.e. the largest square-free divisor of n. We start by recalling in Section 2 that $n(q, 2)$ can be identified with the counting function of certain special factorizations of 2g. In Section 3, we reduce $gcd(p^{\alpha}+1, 2p^{\beta}+1)$ for $\alpha, \beta \in \mathbb{N}$ to the simpler form

$$
\gcd(p^{\gcd(\alpha,\beta)} \pm 2^{\rho}, c)
$$

where $\rho, c \in \mathbb{Z}$ only depend on α, β and not on p. This reduction uses the continued fraction of α/β and directly leads to our main result in Section 4. In Section 5, we introduce basic binary functions $X_{a,q}$ which will serve as building blocks in our formulas. The case $k = 9$ is treated in detail in Section 6, where we give an explicit formula for $n(p^9, 2)$ depending on the class of p mod $M(9) = 3 \cdot 5 \cdot 11 \cdot 17 \cdot 43 \cdot 257$. We also provide a formula in the case $k = 10$ with somewhat less details. Finally, in the last section we give and prove new formulas for $n(p^k, 2)$ with $k \leq 8$ in terms of the $X_{a,q}$.

Background information on numerical semigroups can be found in the books [4, 5].

2 Special factorizations of 2g

We first recall from [3] that $n(q, 2)$ can be identified with the counting number of factorizations uv of 2q in N satisfying $gcd(u + 1, v + 1) = 1$. In formula:

$$
n(g,2) = #\{\{u,v\} \subset \mathbb{N} \mid uv = 2g, \gcd(u+1,v+1) = 1\}.
$$
 (1)

This follows from the classical theorem of Sylvester [6] stating that whenever $gcd(a, b) = 1$, the genus q of the numerical semigroup $S = \langle a, b \rangle$ is given by

$$
g = \frac{(a-1)(b-1)}{2}.
$$

For $g = p^k$ with p an odd prime, an immediate consequence of (1) is the following formula.

Proposition 2.1 For any odd prime p and exponent $k \geq 1$, we have

$$
n(p^k, 2) = #\{0 \le i \le k \mid \gcd(p^i + 1, 2p^{k-i} + 1) = 1\}.
$$

Thus, in order to understand the behavior of $n(p^k, 2)$, we need to gain some control on

$$
\gcd(p^{\alpha}+1, 2p^{\beta}+1)
$$

for $\alpha, \beta \in \mathbb{N}$, and hopefully find ways to determine when this greatest common divisor equals 1. This is addressed in the next section.

3 On $gcd(p^{\alpha} + 1, 2p^{\beta} + 1)$

Here is the key technical tool which will lead to our main result in Section 4. Given $\alpha, \beta \in \mathbb{N}$, we shall reduce the greatest common divisor

$$
\gcd(p^{\alpha}+1, 2p^{\beta}+1)
$$

to the simpler form

$$
\gcd(p^{\delta} \pm 2^{\rho}, c),
$$

where $\delta = \gcd(\alpha, \beta)$ and where $\rho, c \in \mathbb{Z}$ only depend on α, β and not on p. For this purpose, it is more convenient to work in the ring $\mathbb{Z}[2^{-1}]$ where 2 is made invertible. Moreover, one may effortlessly replace $\mathbb{Z}[2^{-1}]$ by any unique factorization domain A , and 2 by any invertible element u in A . Of course then, the gcd is only defined up to invertible elements of A. The proof in this more general context remains practically the same.

Proposition 3.1 Let A be a unique factorization domain and let $x, u \in A$ with u invertible. Let $\alpha, \beta \in \mathbb{N}$ and set $\delta = \gcd(\alpha, \beta)$. Then there exists $\rho \in \mathbb{Z}$ such that

$$
gcd(x^{\alpha} + 1, ux^{\beta} + 1) = gcd(x^{\delta} \pm u^{\rho}, u^{\alpha/\delta} - (-1)^{(\alpha - \beta)/\delta}).
$$

The proof is based on a careful study of the successive steps in the Euclidean algorithm for computing gcd's.

Proof. First note that, since u is invertible, we have

$$
\gcd(x^{\alpha} + 1, ux^{\beta} + 1) = \gcd(x^{\alpha} + 1, x^{\beta} + u^{-1}).
$$

Set $r_0 = \alpha, r_1 = \beta$. Consider the Euclidean algorithm to compute gcd (r_0, r_1) :

$$
r_i = a_i r_{i+1} + r_{i+2} \tag{2}
$$

for all $0 \le i \le n-1$, where $0 \le r_{i+1} < r_i$ for all $1 \le i \le n-1$, $r_{n+1} = 0$, $r_n = \gcd(r_0, r_1)$. Of course, the a_i 's are the *partial quotients* of the continued fraction $[a_0, a_1, \ldots, a_n]$ of α/β . We have

$$
\begin{pmatrix} r_i \\ r_{i+1} \end{pmatrix} = \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_{i+1} \\ r_{i+2} \end{pmatrix}
$$
 (3)

for all $0 \le i \le n-1$. Set $(s_0, s_1) = (1, 1)$ and $(t_0, t_1) = (0, -1)$. Then we have ^r⁰ − (−1)^s⁰ u $\overline{}$

$$
x^{r_0} + 1 = x^{r_0} - (-1)^{s_0} u^{t_0},
$$

$$
x^{r_1} + u^{-1} = x^{r_1} - (-1)^{s_1} u^{t_1}.
$$

For $i = 0, \ldots, n - 1$, recursively define

$$
s_{i+2} = s_i - a_i s_{i+1},
$$

$$
t_{i+2} = t_i - a_i t_{i+1}.
$$

Then as in (3), we have

$$
\begin{pmatrix} s_i \\ s_{i+1} \end{pmatrix} = \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} s_{i+1} \\ s_{i+2} \end{pmatrix}, \tag{4}
$$

$$
\begin{pmatrix} t_i \\ t_{i+1} \end{pmatrix} = \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} t_{i+1} \\ t_{i+2} \end{pmatrix} \tag{5}
$$

for all $0 \le i \le n - 1$. Finally, for all $0 \le j \le n + 1$, set

$$
f_j = x^{r_j} - (-1)^{s_j} u^{t_j}.
$$

Note that $f_0 = x^{r_0} + 1$, $f_1 = x^{r_1} + u^{-1}$, and

$$
f_{n+1} = 1 - (-1)^{s_{n+1}} u^{t_{n+1}}
$$
\n(6)

since $r_{n+1} = 0$.

Claim. For all $0 \le i \le n - 1$, we have

$$
\gcd(f_i, f_{i+1}) = \gcd(f_{i+1}, f_{i+2}).\tag{7}
$$

Indeed, it follows from (2) that

$$
f_i = x^{r_i} - (-1)^{s_i} u^{t_i}
$$

= $(x^{r_{i+1}})^{a_i} x^{r_{i+2}} - (-1)^{s_i} u^{t_i}.$

Now, since

$$
x^{r_{i+1}} \equiv (-1)^{s_{i+1}} u^{t_{i+1}} \bmod f_{i+1},
$$

we find

$$
f_i \equiv ((-1)^{s_{i+1}} u^{t_{i+1}})^{a_i} x^{r_{i+2}} - (-1)^{s_i} u^{t_i} \bmod f_{i+1}
$$

$$
\equiv (-1)^{a_i s_{i+1}} u^{a_i t_{i+1}} x^{r_{i+2}} - (-1)^{s_i} u^{t_i} \bmod f_{i+1}.
$$

Thus,

$$
(-1)^{-a_i s_{i+1}} u^{-a_i t_{i+1}} f_i \equiv x^{r_{i+2}} - (-1)^{s_i - a_i s_{i+1}} u^{t_i - a_i t_{i+1}} \mod f_{i+1}
$$

$$
\equiv x^{r_{i+2}} - (-1)^{s_{i+2}} u^{t_{i+2}} \mod f_{i+1}
$$

$$
\equiv f_{i+2} \mod f_{i+1}.
$$

Consequently, we have $f_i \equiv (-1)^{a_i s_{i+1}} u^{a_i t_{i+1}} f_{i+2}$ mod f_{i+1} . Using the equality

$$
\gcd(f,g) = \gcd(g,h)
$$

whenever $f \equiv h \mod g$ for elements in A, we conclude that

$$
gcd(f_i, f_{i+1}) = gcd(f_{i+1}, (-1)^{a_i s_{i+1}} u^{a_i t_{i+1}} f_{i+2})
$$

=
$$
gcd(f_{i+1}, f_{i+2})
$$

since $(-1)^{a_i s_{i+1}} u^{a_i t_{i+1}}$ is a unit in A. This proves the claim.

As a first consequence, we get

$$
\gcd(f_0, f_1) = \gcd(f_n, f_{n+1}).\tag{8}
$$

Denote now

$$
A = \prod_{i=0}^{n-1} \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}.
$$

We have det $A = (-1)^n$, and it follows from repeatedly applying (3) that

$$
\begin{pmatrix} r_0 \\ r_1 \end{pmatrix} = A \begin{pmatrix} r_n \\ 0 \end{pmatrix}.
$$

This implies, in particular, that $\alpha_{11} = r_0/r_n$ and $\alpha_{21} = r_1/r_n$. Similarly, using (5) repeatedly, we have

$$
A^{-1}\begin{pmatrix}t_0\\t_1\end{pmatrix}=\begin{pmatrix}t_n\\t_{n+1}\end{pmatrix}.
$$

Since $A^{-1} = (-1)^n \begin{pmatrix} \alpha_{22} & -\alpha_{12} \\ -\alpha_{21} & \alpha_{11} \end{pmatrix}$ and $\begin{pmatrix} t_0 \\ t_1 \end{pmatrix}$ t_1 \setminus = $\bigg($ 0 −1 \setminus , this implies that $t_{n+1} = (-1)^{n+1} \alpha_{11} = (-1)^{n+1} r_0/r_n.$

Finally, using (4) repeatedly, we have

$$
A^{-1}\begin{pmatrix} s_0 \\ s_1 \end{pmatrix} = \begin{pmatrix} s_n \\ s_{n+1} \end{pmatrix}.
$$

As above, and since s_0 s_1 \setminus = $\sqrt{1}$ 1 \setminus , we find that

$$
s_{n+1} = (-1)^n (-\alpha_{21} + \alpha_{11}) = (-1)^n (r_0 - r_1) / r_n.
$$

Summarizing, it follows from the equality (8), the expression (6) for f_{n+1} , and the above values of s_{n+1}, t_{n+1} , that

$$
gcd(x^{\alpha} + 1, ux^{\beta} + 1) = gcd(f_n, f_{n+1})
$$

=
$$
gcd(x^{r_n} - (-1)^{s_n}u^{t_n}, 1 - (-1)^{s_{n+1}}u^{t_{n+1}})
$$

=
$$
gcd(x^{\delta} - (-1)^{s_n}u^{t_n}, u^{\alpha/\delta} - (-1)^{(\alpha - \beta)/\delta}).
$$

The special case of interest to us, namely where $A = \mathbb{Z}[2^{-1}]$ and $u = 2$, reduces to the following statement.

Corollary 3.2 Let $1 \leq i \leq k$ be given integers, and set $\delta = \gcd(i, k)$. Then there exists $\rho \in \mathbb{Z}$ such that for any odd prime p, we have

 $\gcd(p^i+1, 2p^{k-i}+1) = \gcd(p^{\delta} \pm 2^{\rho}, 2^{i/\delta} - (-1)^{k/\delta}).$

Proof. First observe that $gcd(p^i + 1, 2p^{k-i} + 1)$ is odd since the second argument is, so we may as well work in $\mathbb{Z}[2^{-1}]$ when computing this gcd. Set $\alpha = i$, $\beta = k - i$. Since $gcd(i, k - i) = gcd(i, k)$, the values of δ in Proposition 3.1 and here are the same. Now $(\alpha - \beta)/\delta = (2i - k)/\delta$, and so

$$
(-1)^{(\alpha-\beta)/\delta} = (-1)^{k/\delta}.
$$

The claimed formula for $gcd(p^i + 1, 2p^{k-i} + 1)$ now follows directly from that in Proposition 3.1.

Consequently, given $1 \leq i \leq k$, an odd prime p satisfies the condition

$$
\gcd(p^i + 1, 2p^{k-i}) + 1 = 1
$$

if and only if p belongs to a certain union of classes mod $(2^{i/\delta} - (-1)^{k/\delta})$, where as above $\delta = \gcd(i, k)$. This is the key to our main result below.

4 The main result

For a positive integer n, let $rad(n)$ denote the *radical* of n, i.e. the product of the distinct primes factors of n. For instance, $rad(4) = 2$ and $rad(6) =$ rad (12) = rad (18) = 6. Given $k \ge 1$, let us define

$$
M(k) = \mathrm{rad}(\prod_{i=1}^{k} (2^{i/\mathrm{gcd}(i,k)} - (-1)^{k/\mathrm{gcd}(i,k)})).
$$

Note that if k is odd, the formula becomes

$$
M(k) = \text{rad}(\prod_{i=1}^{k} (2^{i/\gcd(i,k)} + 1)),
$$

whereas if k is even there is no such reduction in general, since the exponent $k/\gcd(i, k)$ may assume both parities. Here is our main result.

Е

Theorem 4.1 For any odd prime p and $k \geq 1$, the value of $n(p^k, 2)$ only depends on the class of p modulo $M(k)$.

Proof. Recall the formula given by Proposition 2.1:

$$
n(p^k, 2) = \#\{0 \le i \le k \mid \gcd(p^i + 1, 2p^{k-i} + 1) = 1\}.
$$
 (9)

If $i = 0$, then $gcd(2, 2p^k + 1) = 1$ always, since p is odd. Assume now $1 \leq i \leq k$, and set

$$
m_k(i) = 2^{i/\gcd(i,k)} - (-1)^{k/\gcd(i,k)}.
$$

By Corollary 3.2, the value of $gcd(p^i+1, 2p^{k-i}+1)$ only depends on the class of p mod $m_k(i)$. Therefore, it follows from (9) and this property of $m_i(k)$ that if we set

$$
M(k) = \operatorname{rad}(\prod_{i=1}^k m_k(i)),
$$

the value of $n(p^k, 2)$ only depends on the class of p mod $M(k)$.

For concreteness, Table 1 gives the value of $M(k)$ for $1 \leq k \leq 10$. We have seen that $n(p^k, 2)$ only depends on the class of p modulo $M(k)$. But $M(k)$ is not necessarily the *smallest* modulus with this property, only a multiple of it. For instance, we have $M(4) = 21$, but the value of $n(p⁴, 2)$ only depends on the class of $p \mod 7$, as stated in the Introduction. However, for all odd k in the range $1 \leq k \leq 9$, the modulus $M(k)$ actually turns out to be optimal for the desired property. (See [3] and Section 7.)

k) M(15 21 255 465	\mid 36465	82677 30998055	

Table 1: First 10 values of $M(k)$.

5 The basic functions $X_{a,q}$

We now introduce numerical functions $X_{a,q}$, with values in $\{0, 1\}$, which will subsequently serve as building blocks in our explicit formulas for $n(p^k, 2)$ with $k \leq 10$. Given integers a, q with $q \geq 2$, the definition of

$$
X_{a,q} : \mathbb{Z} \to \{0,1\}
$$

depends on the distinct prime factors of q , as follows.

• If q is prime, then $X_{a,q}$ is the indicator function of the complement of the subset $a + q\mathbb{Z}$ in \mathbb{Z} , i.e.

$$
X_{a,q}(n) = \begin{cases} 1 & \text{if } n \not\equiv a \bmod q, \\ 0 & \text{if } n \equiv a \bmod q. \end{cases}
$$

• If q_1, \ldots, q_t are the distinct prime factors of q, then we set

$$
X_{a,q} = \prod_{i=1}^t X_{a,q_i}.
$$

In particular, since $X_{a,q}$ only depends on the prime factors of q, we have

$$
X_{a,q} = X_{a,\text{rad}(q)}.
$$

Note that $X_{a,q}$ only depends on the class of a mod q. It is also plain that $X_{a,q}(n)$ only depends on the class of n mod q.

We now establish a few more properties of these functions. The first one links $X_{a,q}(n)$ with $gcd(n - a, q)$, and so will be useful to capture occurrences of the equality $gcd(p^{i} + 1, 2p^{k-i} + 1) = 1$.

Proposition 5.1 Let a, q be integers with $q \geq 2$. For all $n \in \mathbb{Z}$, we have

$$
X_{a,q}(n) = \begin{cases} 1 & \text{if } \gcd(n-a,q) = 1, \\ 0 & \text{if } not. \end{cases}
$$

Proof. Let q_1, \ldots, q_t be the distinct prime factors of q. Then we have

$$
X_{a,q}(n) = 1 \iff X_{a,q_i}(n) = 1 \forall i
$$

$$
\iff n \not\equiv a \mod q_i \forall i
$$

$$
\iff \gcd(n-a, q_i) = 1 \forall i
$$

$$
\iff \gcd(n-a, q) = 1.
$$

Since $X_{a,q}(n)$ only takes values in $\{0,1\}$, this implies that $X_{a,q}(n) = 0$ if and only if $gcd(n - a, q) \neq 1$. ■

Next, for determining $n(p^k, 2)$, we often need to evaluate $X_{a,q}(p^s)$ with $s \geq 2$. The next two properties help remove that exponent s. The first one reduces the task to the case where s divides $q-1$. It suffices to consider the case where q is prime.

Proposition 5.2 Let q be a prime number, and let a, s be integers with $s \geq 2$. Write $s = te$ with $t = \gcd(s, q - 1)$, so that $\gcd(e, q - 1) = 1$. Let $d \in \mathbb{N}$ satisfy $de \equiv 1 \mod q - 1$. Then

$$
X_{a,q}(n^s) = X_{a^d,q}(n^t)
$$

for all integers n.

Proof. This is the heart of the RSA cryptographic protocol, which relies on the fact that exponentiation to the power e in $\mathbb{Z}/q\mathbb{Z}$ is a bijection, whose inverse is exponentiation to the power d. We have

$$
X_{a,q}(n^s) = 0 \iff n^s \equiv a \mod q
$$

$$
\iff (n^t)^e \equiv a \mod q
$$

$$
\iff (n^t)^{de} \equiv a^d \mod q
$$

$$
\iff n^t \equiv a^d \mod q
$$

$$
\iff X_{a^d,q}(n^t) = 0.
$$

Thus, we may now assume that the exponent s divides $q - 1$.

Proposition 5.3 Let q be a prime number, and let a, s be integers with s dividing $q - 1$. Let $q \in \mathbb{N}$ be an integer whose class mod q generates the multiplicative group of non-zero elements in $\mathbb{Z}/q\mathbb{Z}$. We have:

- If a is not an s-power mod q, then $X_{a,q}(n^s) = 1$ for all n.
- If a in an s-power mod q, then $a \equiv g^{si} \mod q$ for some integer i such that $0 \leq i \leq (q-1)/s - 1$, and

$$
X_{a,q}(n^s) = \prod_{j=0}^{s-1} X_{g^{i+j(q-1)/s},q}(n)
$$

for all integers n.

Proof. In the group $(\mathbb{Z}/q\mathbb{Z})^*$ of nonzero classes mod q, the set of s-powers is of cardinality $(q-1)/s$ and coincides with

$$
\{g^{si} \bmod q \mid 0 \le i \le (q-1)/s - 1\}.
$$

First, if a is not an s-power mod q, then $n^s \not\equiv a \mod q$ for all n, implying $X_{a,q}(n^s) = 1$ for all n. Assume now a is an s-power mod q. By the above remark, there exists $0 \leq i \leq (q-1)/s-1$ such that $a \equiv g^{si} \mod q$. We have

$$
X_{a,q}(n^s) = 0 \iff n^s \equiv a \mod q
$$

$$
\iff n^s \equiv g^{si} \mod q
$$

$$
\iff \left(\frac{n}{g^i}\right)^s \equiv 1 \mod q.
$$

This means that n/g^i is of order dividing s in the group $(\mathbb{Z}/q\mathbb{Z})^*$. Now, the elements of order dividing s in this group constitute a subgroup of order s generated by $g^{(q-1)/s}$. Thus, there exists an integer j such that $0 \leq j \leq s-1$ and satisfying

$$
\frac{n}{g^i} \equiv g^{j(q-1)/s} \bmod q,
$$

yielding

$$
X_{a,q}(n^s) = 0 \iff n \equiv g^{i+j(q-1)/s} \bmod q.
$$

Summarizing, for $a \equiv g^{si} \mod q$, we have established the equivalence

$$
X_{a,q}(n^s) = 0 \iff \prod_{j=0}^{s-1} X_{g^{i+j(q-1)/s},q}(n) = 0,
$$

whence the claimed equality $X_{a,q}(n^s) = \prod_{j=0}^{s-1} X_{g^{i+j(q-1)/s},q}(n)$.

Example 5.4 In order to establish our formula for $n(p^{10}, 2)$ in Section 6, the term $X_{8,17}(p^2)$ turns out to be involved. Now 8 is a square mod 17, namely $8 \equiv 5^2 \equiv 12^2 \mod 17$. Thus, the above result yields

$$
X_{8,17}(p^2) = X_{5,17}(p)X_{12,17}(p).
$$

6 The cases $k = 9, 10$

Explicit formulas for $n(p^k, 2)$ with p an odd prime and $k \leq 6$ or $k = 8$ are given in [3]. Here we go further and treat the case $k = 9$ in detail. This will show how Corollary 3.2 can be applied, and will also give a sense of the increasing complexity of these formulas. We also briefly address the case $k = 10$. The main ingredients are the basic functions $X_{a,q}$ defined in the preceding section.

Here comes our formula for $n(p^9, 2)$. The fact that it depends on the class of p mod $M(9)$ follows from this prime decomposition:

$$
M(9) = 30998055 = 5 \cdot 17 \cdot 257 \cdot 3 \cdot 11 \cdot 43.
$$

Theorem 6.1 Let p be an odd prime. Then we have

$$
n(p^9,2) = 1+2X_{3,5}(p)+X_{9,17}(p)+X_{128,257}(p)+X_{2,3}(p)\cdot(3+X_{2,11}(p)+X_{8,43}(p)).
$$

Proof. By Proposition 2.1, in order to determine $n(p^9, 2)$, it suffices to count those exponents *i* between 0 and 9 satisfying $gcd(p^{i}+1, 2p^{9-i}+1) = 1$. Using Corollary 3.2 and the calculations leading to it, these gcd's may be reduced as follows:

$$
gcd(p^{0} + 1, 2p^{9} + 1) = 1
$$

\n
$$
gcd(p^{1} + 1, 2p^{8} + 1) = gcd(p + 1, 3)
$$

\n
$$
gcd(p^{2} + 1, 2p^{7} + 1) = gcd(2p - 1, 5)
$$

\n
$$
gcd(p^{3} + 1, 2p^{6} + 1) = gcd(p^{3} + 1, 3) = gcd(p + 1, 3)
$$

\n
$$
gcd(p^{4} + 1, 2p^{5} + 1) = gcd(2p - 1, 17)
$$

\n
$$
gcd(p^{5} + 1, 2p^{4} + 1) = gcd(p - 2, 33)
$$

\n
$$
gcd(p^{6} + 1, 2p^{3} + 1) = gcd(2p^{3} + 1, 5)
$$

\n
$$
gcd(p^{7} + 1, 2p^{2} + 1) = gcd(p - 8, 129)
$$

\n
$$
gcd(p^{8} + 1, 2p^{1} + 1) = gcd(2p + 1, 257)
$$

\n
$$
gcd(p^{9} + 1, 2p^{0} + 1) = gcd(p^{9} + 1, 3) = gcd(p + 1, 3).
$$

Now, by Proposition 5.1 and the properties of the functions $X_{a,q}$, these equal-

ities imply the following equivalences:

$$
gcd(p^{0} + 1, 2p^{9} + 1) = 1
$$
 always
\n
$$
gcd(p^{1} + 1, 2p^{8} + 1) = 1 \iff X_{2,3}(p) = 1
$$

\n
$$
gcd(p^{2} + 1, 2p^{7} + 1) = 1 \iff X_{3,5}(p) = 1
$$

\n
$$
gcd(p^{3} + 1, 2p^{6} + 1) = 1 \iff X_{2,3}(p) = 1
$$

\n
$$
gcd(p^{4} + 1, 2p^{5} + 1) = 1 \iff X_{9,17}(p) = 1
$$

\n
$$
gcd(p^{5} + 1, 2p^{4} + 1) = 1 \iff X_{2,33}(p) = 1
$$

\n
$$
gcd(p^{6} + 1, 2p^{3} + 1) = 1 \iff X_{3,5}(p) = 1
$$

\n
$$
gcd(p^{7} + 1, 2p^{2} + 1) = 1 \iff X_{8,129}(p) = 1
$$

\n
$$
gcd(p^{8} + 1, 2p^{1} + 1) = 1 \iff X_{128,257}(p) = 1
$$

\n
$$
gcd(p^{9} + 1, 2p^{0} + 1) = 1 \iff X_{2,3}(p) = 1.
$$

Read sequentially, this table directly yields the following first formula for $n(p^9, 2)$, with 10 summands, in terms of the functions $X_{a,q}$:

$$
n(p^9,2) = 1 + X_{2,3}(p) + X_{3,5}(p) + X_{2,3}(p) + X_{9,17}(p) + X_{2,33}(p)
$$

+
$$
X_{3,5}(p) + X_{8,129}(p) + X_{128,257}(p) + X_{2,3}(p)
$$

=
$$
1 + 3X_{2,3}(p) + 2X_{3,5}(p) + X_{9,17}(p) + X_{2,33}(p) + X_{8,129}(p)
$$

+
$$
X_{128,257}(p).
$$

Among the moduli involved above, the only non-prime ones are $33 = 3 \cdot 11$ and $129 = 3 \cdot 43$. By definition of $X_{a,q}$ for non-prime q, we have

$$
X_{2,33} = X_{2,3} X_{2,11}
$$

$$
X_{8,129} = X_{8,3} X_{8,43}.
$$

Moreover, since $X_{a,q}$ only depends on the class of a mod q, we have

$$
X_{8,3} = X_{2,3}.
$$

Substituting these equalities in the above formula for $n(p^9, 2)$, we get

$$
n(p^9,2) = 1+2X_{3,5}(p)+X_{9,17}(p)+X_{128,257}(p)+X_{2,3}(p)\cdot(3+X_{2,11}(p)+X_{8,43}(p)),
$$
 as claimed.

We now derive another version of our formula for $n(p^9, 2)$, from which its values are easier to read. Given positive integers q_1, \ldots, q_t , we denote by

$$
\rho_{q_1,\dots,q_t}:\mathbb{Z}\ \rightarrow\ \mathbb{Z}/q_1\mathbb{Z}\times\cdots\times\mathbb{Z}/q_t\mathbb{Z}
$$

the canonical reduction morphism $\rho_{q_1,...,q_t}(n) = (n \mod q_1,...,n \mod q_t)$. Moreover, we write $n \equiv \neg a \mod q$ instead of $n \not\equiv a \mod q$. For example, the condition

$$
\rho_{5,17,257}(p) = (3, \neg 9, \neg 128)
$$

means $p \equiv 3 \mod 5$, $p \not\equiv 9 \mod 17$ and $p \not\equiv 128 \mod 257$.

Corollary 6.2 Let p be an odd prime. Consider the following functions of p depending on its classes mod 5, 17, 257 and 11, 43, respectively:

$$
\lambda(p) = \begin{cases}\n1 & \text{if } \rho_{5,17,257}(p) = (3,9,128) \\
2 & \text{if } \rho_{5,17,257}(p) \in \{(3,9,-128),(3,-9,128)\} \\
3 & \text{if } \rho_{5,17,257}(p) \in \{(3,-9,-128),(-3,9,128)\} \\
4 & \text{if } \rho_{5,17,257}(p) \in \{(-3,9,-128),(-3,-9,128)\} \\
5 & \text{if } \rho_{5,17,257}(p) = (-3,-9,-128), \\
4 & \text{if } \rho_{5,17,257}(p) = (-3,-9,-128), \\
5 & \text{if } \rho_{11,43}(p) \in \{(2,-8),(-2,8)\} \\
5 & \text{if } \rho_{11,43}(p) = (-2,-8).\n\end{cases}
$$

Then we have

$$
n(p^9, 2) = \begin{cases} \lambda(p) & \text{if } p \equiv 2 \text{ mod } 3, \\ \lambda(p) + \mu(p) & \text{if } p \not\equiv 2 \text{ mod } 3. \end{cases}
$$

Proof. This directly follows from the preceding result and the easy to prove equalities

$$
\lambda(p) = 1 + 2X_{3,5}(p) + X_{9,17}(p) + X_{128,257}(p),
$$

\n
$$
\mu(p) = 3 + X_{2,11}(p) + X_{8,43}(p).
$$

It is still clearer now that $n(p^9, 2)$ is determined by the class of p mod $M(9) = 3 \cdot 5 \cdot 17 \cdot 257 \cdot 11 \cdot 43$, and that $M(9)$ is the smallest modulus with this property.

We close this section by briefly treating the case $k = 10$. The formula obtained shows that $n(p^{10}, 2)$, for p an odd prime, is determined by the class of p modulo $M(10)/15 = 7 \cdot 17 \cdot 73 \cdot 127$.

Theorem 6.3 Let p be an odd prime. Then we have

$$
n(p^{10},2) = 7 + X_{3,7}(p)(1 + X_{36,73}(p)) + X_{5,17}(p)X_{12,17}(p) + X_{123,127}(p).
$$

Proof. After reducing $gcd(p^{i}+1, 2p^{10-i}+1)$ for $0 \le i \le 10$ as in Corollary 3.2, and using Proposition 5.1 involving the functions $X_{a,q}$, we obtain this first raw formula:

$$
n(p^{10}, 2) = 2 + X_{-1,3}(p^2) + X_{3,7}(p) + X_{-2,5}(p^2) + 1 + X_{2,9}(p^2) + X_{123,127}(p) + X_{8,17}(p^2) + X_{255,511}(p) + X_{-1,3}(p^{10}).
$$

We now invoke Proposition 5.3 several times. Since −1 is not a square mod 3, we have $X_{-1,3}(p^2) = 1$. The same reason yields $X_{2,9}(p^2) = X_{-1,3}(p^{10}) = 1$. Similarly, we have $X_{-2,5}(p^2) = 1$ as -2 is not a square mod 5. As already explained in Example 5.4, we have $X_{8,17}(p^2) = X_{5,17}(p)X_{12,17}(p)$. Finally, since $511 = 7 \cdot 73$, and since 255 is congruent to 3 mod 7 and to 36 mod 73, we have

$$
X_{255,511}(p) = X_{3,7}(p)X_{36,73}(p).
$$

Inserting these reductions into the raw formula gives the stated one, where now the only argument of the various basic functions $X_{a,q}$ is p and all involved q 's are primes. \blacksquare

7 The cases $k \leq 8$ revisited

While explicit formulas for $n(p^k, 2)$ with $k \leq 6$ and $k = 8$ are given in [3], we provide here new, shorter formulas in terms of the basic functions $X_{a,q}$ for $k \leq 8$, including $k = 7$. The construction method is similar to the cases $k = 9, 10$ and relies on the reduction of $gcd(p^{i} + 1, 2p^{k-i} + 1)$ provided by Corollary 3.2.

Theorem 7.1 Let p be an odd prime. Then we have

 $n(p^1,2) = 1 + X_{2,3}(p)$ $n(p^2, 2) = 3$ $n(p^3, 2) = 1 + 2X_{2,3}(p) + X_{2,5}(p)$ $n(p^4,2) = 4 + X_{3,7}(p)$ $n(p^5, 2) = 1 + 3X_{2,3}(p) + X_{3,5}(p) + X_{8,17}(p)$ $n(p^6,2) = 6 + X_{15,31}(p)$ $n(p^7,2) = 1 + X_{2,3}(p)(3+X_{7,11}(p)) + X_{2,5}(p)(1+X_{6,13}(p)) + X_{2,17}(p)$ $n(p^8, 2) = 6 + X_{5,7}(p) + X_{23,31}(p) + X_{63,127}(p).$

Proof. Corollary 3.2 and its proof method yield the following reductions of $gcd(p^i + 1, 2p^{k-i} + 1)$ for $i = 1, ..., k$. The case $i = 0$ is omitted, as $\gcd(p^0+1, 2p^k+1) = 1$ always. A few more arithmetical reductions are also applied. For instance, the equality $gcd(p^2+1, 3) = 1$ below follows from the fact that −1 is not a square mod 3. This is one easy case of Proposition 5.3.

$$
k = 1:
$$

\n
$$
gcd(p^{1} + 1, 2p^{0} + 1) = gcd(p + 1, 3)
$$

\n
$$
k = 2:
$$

\n
$$
gcd(p^{1} + 1, 2p^{1} + 1) = gcd(2p + 1, 1) = 1
$$

\n
$$
gcd(p^{2} + 1, 2p^{0} + 1) = gcd(p^{2} + 1, 3) = 1
$$

\n
$$
k = 3:
$$

\n
$$
gcd(p^{1} + 1, 2p^{2} + 1) = gcd(p + 1, 3)
$$

\n
$$
gcd(p^{2} + 1, 2p^{1} + 1) = gcd(2p + 1, 5)
$$

\n
$$
gcd(p^{3} + 1, 2p^{0} + 1) = gcd(p^{3} + 1, 3) = gcd(p + 1, 3)
$$

\n
$$
k = 4:
$$

\n
$$
gcd(p^{1} + 1, 2p^{3} + 1) = gcd(p + 1, 1) = 1
$$

\n
$$
gcd(p^{2} + 1, 2p^{2} + 1) = gcd(2p^{2} + 1, 1) = 1
$$

\n
$$
gcd(p^{3} + 1, 2p^{1} + 1) = gcd(2p + 1, 7)
$$

\n
$$
gcd(p^{4} + 1, 2p^{0} + 1) = gcd(p^{4} + 1, 3) = 1
$$

$$
k = 5:
$$

\n
$$
gcd(p^{1} + 1, 2p^{4} + 1) = gcd(p + 1, 3)
$$

\n
$$
gcd(p^{2} + 1, 2p^{3} + 1) = gcd(2p - 1, 5)
$$

\n
$$
gcd(p^{3} + 1, 2p^{2} + 1) = gcd(p - 2, 9)
$$

\n
$$
gcd(p^{4} + 1, 2p^{1} + 1) = gcd(2p + 1, 17)
$$

\n
$$
gcd(p^{5} + 1, 2p^{0} + 1) = gcd(p^{5} + 1, 3) = gcd(p + 1, 3)
$$

$$
k = 7:
$$

$$
k = 8:
$$

gcd(p¹ + 1, 2p⁷ + 1) = gcd(p + 1, 1) = 1

 $\gcd(p^2+1, 2p^6+1) = \gcd(p^2+1, 1) = 1$ $\gcd(p^3 + 1, 2p^5 + 1) = \gcd(p + 2, 7)$ $\gcd(p^4+1, 2p^4+1) = \gcd(2p^4+1, 1) = 1$ $\gcd(p^5 + 1, 2p^3 + 1) = \gcd(4p + 1, 31)$ $\gcd(p^6+1, 2p^2+1) = \gcd(2p^2+1, 7) = 1$ $\gcd(p^7 + 1, 2p^1 + 1) = \gcd(2p + 1, 127)$ $\gcd(p^8 + 1, 2p^0 + 1) = \gcd(p^8 + 1, 3) = 1.$

As in the case $k = 9$, the claimed formulas follow by reading these tables sequentially and using properties of the functions $X_{a,q}$ from Section 5.

In particular, these formulas confirm that for $k = 1, \ldots, 8$, the value of $n(p^k, 2)$ at an odd prime p is determined by the class of p modulo 3, 1, 3 · 5, 7, $3 \cdot 5 \cdot 17$, 31 , $3 \cdot 5 \cdot 11 \cdot 13 \cdot 17$ and $7 \cdot 31 \cdot 127$, respectively.

8 A question

We shall conclude this paper with an open question. On the one hand, we have obtained explicit formulas for $n(p^k, 2)$ in all cases $k \leq 10$. On the other hand, we know from [3] that no such formula can be expected in the case $k = 4097$, at least as long as the prime factors of the 12th Fermat number $2^{2^{12}}+1$ remain unknown. Well then, what happens in the intermediate range $11 \leq k \leq 4096$? Are there fundamental obstacles which would prevent us to obtain exact formulas for $n(p^k, 2)$ all the way up to $k = 4096$?

References

- [1] M. BRAS-AMORÓS, Fibonacci-like behavior of the number of numerical semigroups of a given genus, Semigroup Forum 76 (2008) 379–384.
- [2] M. BRAS-AMORÓS, Bounds on the number of numerical semigroups of a given genus, J. Pure and Applied Algebra 213 (2009) 997–1001.
- [3] S. ELIAHOU AND J.L. RAMÍREZ ALFONSÍN, Two-generator numerical semigroups and Fermat and Mersenne numbers, SIAM J. Discrete Math. 25 (2011) 622–630.
- [4] J.L. RAMÍREZ ALFONSÍN, The Diophantine Frobenius problem. Oxford Lecture Series in Mathematics and its Applications 30, Oxford University Press, Oxford, 2005.
- [5] J.C. ROSALES AND P.A. GARCÍA-SÁNCHEZ, Numerical semigroups. Developments in Mathematics, 20. Springer, New York, 2009.
- [6] J.J. Sylvester, On subinvariants, i.e. semi-invariants to binary quantities of an unlimited order, Amer. J. Math. 5 (1882) 119–136.

Authors addresses:

• Shalom Eliahou^{a,b,c}, ^aUniv Lille Nord de France, F-59000 Lille, France ^bULCO, LMPA J. Liouville, B.P. 699, F-62228 Calais, France ^cCNRS, FR 2956, France

 \bullet Jorge Ramírez Alfonsín, Institut de Mathématiques et de Modélisation de Montpellier Université Montpellier 2 Case Courrier 051 Place Eugène Bataillon 34095 Montpellier, France UMR 5149 CNRS