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Abstract

Given g > 1, the number n(g) of numerical semigroups S C N of
genus [N\ S| equal to g is the subject of challenging conjectures of
Bras-Amorés. In this paper, we focus on the counting function n(g, 2)
of two-generator numerical semigroups of genus g, which is known to
also count certain special factorizations of 2g. Further focusing on the
case g = p* for any odd prime p and k > 1, we show that n(p¥, 2) only
depends on the class of p modulo a certain explicit modulus M (k).
The main ingredient is a reduction of ged(p® + 1, 2p% 4+ 1) to a simpler
form, using the continued fraction of a/3. We treat the case k =9 in
detail and show explicitly how n(p?,2) depends on the class of p mod
M©)=3-5-11-17-43-257.

Keywords. Gap number; Sylvester’s theorem; Special factorizations;
Fuclidean algorithm; Continued fractions; RSA.

1 Introduction

A numerical semigroup is a subset S C N containing 0, stable under addition
and with finite complement in N. The cardinality of N\ S is then called the
gap number or the genus of S. It is well known that, given g € N, there
are only finitely many numerical semigroups of genus g. Yet the question
of counting them seems to be a very hard problem, analogous to the one of
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counting numerical semigroups by Frobenius number. See [1, 2] for some nice
conjectures about it. The problem becomes more tractable when restricted
to semigroups S = (a,b) = Na + Nb with two generators. So, let us denote
by n(g,2) the number of numerical semigroups S = (a, b) of genus g. On the
one hand, determining n(g, 2) is linked to hard factorization problems, like
factoring Fermat and Mersenne numbers [3]. On the other hand, the value
of n(g,2) is known for all g = 2% with & > 1, and for all g = p* with p an
odd prime and k£ < 8. Indeed, exact formulas are provided in [3], showing in
particular that n(p*,2) for k = 1, 2, 3, 4, 5, 6, 7 and 8 only depends on the
class of p modulo 3, 1, 15, 7, 255, 31, 36465 and 27559, respectively. See also
Section 7, where these formulas are given in a new form.

Our purpose in this paper is to extend our understanding of n(p*,2) to
arbitrary exponents k£ € N. Giving exact formulas in all cases is out of reach
since, for instance, a formula for n(p*®7 2) would require the still unknown
factorization of the 12th Fermat number 22 + 1. However, what can and
will be done here is to show that, for all k > 1, the value of n(p*,2) only
depends on the class of p modulo some explicit modulus M (k).

This result is formally stated and proved in Section 4. Here is how M (k)

is defined: .

M(k) _ rad(H (2i/gcd(i,k) o (_1)k/gcd(i,k)>)7
i=1
where rad(n) denotes the product of the distinct prime factors of n, i.e. the
largest square-free divisor of n. We start by recalling in Section 2 that n(g, 2)
can be identified with the counting function of certain special factorizations
of 2g. In Section 3, we reduce ged(p® +1,2p” +1) for o, 3 € N to the simpler
form
gcd(pgcd(aﬂ) + 27 ¢)

where p,c € Z only depend on «, (3 and not on p. This reduction uses the
continued fraction of a/f and directly leads to our main result in Section 4.
In Section 5, we introduce basic binary functions X,, which will serve as
building blocks in our formulas. The case k£ = 9 is treated in detail in
Section 6, where we give an explicit formula for n(p% 2) depending on the
class of p mod M(9) =3-5-11-17-43-257. We also provide a formula in
the case k = 10 with somewhat less details. Finally, in the last section we
give and prove new formulas for n(p*,2) with & < 8 in terms of the X, .
Background information on numerical semigroups can be found in the

books [4, 5].



2 Special factorizations of 2g

We first recall from [3] that n(g,2) can be identified with the counting number
of factorizations uv of 2g in N satisfying ged(u + 1,v + 1) = 1. In formula:
n(g,2) = #{{u,v} C N|uv=2g, ged(u+1,v+1) = 1}. (1)
This follows from the classical theorem of Sylvester [6] stating that whenever
ged(a, b) = 1, the genus g of the numerical semigroup S = (a, b) is given by
(a—1)(b—1)
N 2

For g = p* with p an odd prime, an immediate consequence of (1) is the
following formula.

Proposition 2.1 For any odd prime p and exponent k > 1, we have
n(p*,2) = #{0<i<k|gd(p' +1,20" " +1)=1}. m

Thus, in order to understand the behavior of n(p*,2), we need to gain
some control on
ged(p® +1,2p% + 1)

for a, B € N, and hopefully find ways to determine when this greatest com-
mon divisor equals 1. This is addressed in the next section.

3 On ged(p® + 1,207 +1)

Here is the key technical tool which will lead to our main result in Section 4.
Given «a, 8 € N, we shall reduce the greatest common divisor

ged(p® +1,2p° + 1)

to the simpler form
ged(p’ £ 27, ¢),

where § = ged(a, §) and where p, ¢ € Z only depend on «, § and not on p.
For this purpose, it is more convenient to work in the ring Z[27!] where 2 is
made invertible. Moreover, one may effortlessly replace Z[27!] by any unique
factorization domain A, and 2 by any invertible element u in A. Of course
then, the ged is only defined up to invertible elements of A. The proof in
this more general context remains practically the same.
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Proposition 3.1 Let A be a unique factorization domain and let x,u € A
with u invertible. Let o, 3 € N and set § = ged(a, 8). Then there exists
p € Z such that

ged(z” + 1, uz’ + 1) = gcd(az5 + uf, u®® — (—1)(“’5)/5).

The proof is based on a careful study of the successive steps in the Eu-
clidean algorithm for computing ged’s.

Proof. First note that, since u is invertible, we have
ged(z® + Lux® +1) = ged(z® +1,2° +u™).
Set 1o = «, 1 = (. Consider the Euclidean algorithm to compute ged(rg, 71):
Ti = QiTit1 + Tig2 (2)

forall0 <7 <n—1, where 0 <r;yy <rforalll <i<n—-1,r, =0,
rn = ged(ro, r1). Of course, the a;’s are the partial quotients of the continued
fraction [ag, a1, ..., a,| of a/F. We have

()= (o) (2) g

forall 0 < i <n—1. Set (so,s1) = (1,1) and (tp,t1) = (0,—1). Then we
have

_ t
o 4+1 = 2" — (=1)%u’,
" HuTt = ™ — (—1)%uh,
For i =0,...,n — 1, recursively define
Sit+2 =  Si — AjSi+1,
tiyo = t; — aitiy1-

Then as in (3), we have
S; . a; 1 Si+1
<3i+1> N (1 0) (3i+2) ’ (4>
t\ | (a
iyt



forall 0 <7 <n —1. Finally, for all 0 < j <n + 1, set
i = = (1),
Note that fo = 2™ + 1, fi = 2™ + v~ !, and
forr =1—(=1) i (6)

since 7,41 = 0.

Claim. For all 0 <i <n — 1, we have
ged(fi, fir1) = ged(fiv, fire)- (7)
Indeed, it follows from (2) that

fi = 2" —(=1)%u"

— (xri+1)aix7’i+2 _ (_1)5iuti‘

Now, since
27 = (—1) et mod fi g,

we find

fi = ((=1) gty sighie — (—1)%y" mod fi,y

= (—1)mErystinigtiez — (—1)%y" mod fi.
Thus,

(_1)_ai5i+lu_aiti+1 fz

ghi? — (=1)%Tmsy et mod fy
LT _ (_1)Si+2uti+2 mod fiJrl

Jiva mod fiyq.

Consequently, we have f; = (—1)%S+1y%t+1 f;. o mod f;;1. Using the equality

ged(f, g) = ged(g, h)

whenever f = h mod g for elements in A, we conclude that

ged(fi, fiv1) = ged(fipr, (—1)% &+ £ )
= ng(fi+1>fz’+2)
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since (—1)%si+1y%ti+1 s a unit in A. This proves the claim.
As a first consequence, we get
Y

ng<f07f1) = ng<fmfn+1)- (8>

n—1
a; 1 a1 2
A= = .
Z,l_! <1 0) (0421 0422)
We have det A = (—1)", and it follows from repeatedly applying (3) that
o\ _ Tn
()= (5)

This implies, in particular, that a;; = ro/r, and as; = r1/r,. Similarly,
using (5) repeatedly, we have

t t
A—l 0 _ n )
(tl) (tn+1>
Since At = (—1)" @22 —ou2) oq (P0) = 0 , this implies that
—Q1 Qg tq -1

tn+1 = (—1)n+10611 = (—1>n+17“0/7“n.

Denote now

Finally, using (4) repeatedly, we have

" ()-(2)
S1 Sny1)

As above, and since (SO) = (1), we find that

Snt1 = (—=1)"(—a21 + o) = (=1)"(ro — r1) /7.

Summarizing, it follows from the equality (8), the expression (6) for f,i1,
and the above values of s,.1,t,.1, that

ged(z® 4+ 1Lua® +1) = ged(fo, fri1)
= ged(a’™ — (=1)%ul, 1 — (=1)*1yfn+)
= ged(z? — (=1)*muln, u®/? — (=1)@0)/9),
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The special case of interest to us, namely where A = Z[27!] and u = 2,
reduces to the following statement.

Corollary 3.2 Let 1 < i <k be given integers, and set § = ged(i, k). Then
there exists p € Z such that for any odd prime p, we have

gcd(pi + 1,20 + 1) = gcd(p5 + 27, 2i/0 _ (—1)k/5).

Proof. First observe that ged(p! + 1,2pF% + 1) is odd since the second
argument is, so we may as well work in Z[27!'] when computing this ged.
Set « = i, § = k —i. Since ged(i,k — 1) = ged(i, k), the values of § in
Proposition 3.1 and here are the same. Now (a — (3)/6 = (2¢ — k) /0, and so

(_1)(a—ﬁ)/5 — (_1)k/5.
The claimed formula for ged(p® + 1, 2p* =%+ 1) now follows directly from that
in Proposition 3.1. =
Consequently, given 1 < ¢ < k, an odd prime p satisfies the condition
ged(p' +1,2p" ) +1 =1

if and only if p belongs to a certain union of classes mod (2% — (—1)*/9),
where as above d = ged (4, k). This is the key to our main result below.

4 The main result

For a positive integer n, let rad(n) denote the radical of n, i.e. the product
of the distinct primes factors of n. For instance, rad(4) = 2 and rad(6) =
rad(12) = rad(18) = 6. Given k > 1, let us define

k
M(k) = rad(H (Qi/gcd(i,k) _ (_1)k/gcd(i,k)))_
i=1
Note that if k is odd, the formula becomes

M(k) = rad(f[ (2/840R 4 1)),

i=1
whereas if k is even there is no such reduction in general, since the exponent
k/ged(i, k) may assume both parities. Here is our main result.
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Theorem 4.1 For any odd prime p and k > 1, the value of n(p*,2) only
depends on the class of p modulo M (k).

Proof. Recall the formula given by Proposition 2.1:

n(p",2) = #40 < i <k | ged(p + 1,255 +1) = 1}. (9)
If i = 0, then ged(2,2pF + 1) = 1 always, since p is odd. Assume now
1 <1<k, and set

me(i) = i/ ged(ik) _ (_1)k’/gcd(i,k).

By Corollary 3.2, the value of ged(p®+ 1,2pF~% +1) only depends on the class
of p mod my(i). Therefore, it follows from (9) and this property of m;(k)
that if we set

k
M(k) = rad(] [ ma(i)),
i=1
the value of n(p*,2) only depends on the class of p mod M (k). m

For concreteness, Table 1 gives the value of M (k) for 1 < k < 10. We have
seen that n(p®,2) only depends on the class of p modulo M (k). But M (k) is
not necessarily the smallest modulus with this property, only a multiple of
it. For instance, we have M (4) = 21, but the value of n(p*,2) only depends
on the class of p mod 7, as stated in the Introduction. However, for all odd k
in the range 1 < k <9, the modulus M (k) actually turns out to be optimal
for the desired property. (See [3] and Section 7.)

|k Jif2[3[4]5]6] 7 | 8 | 9 | 10 |
| M (k) [[3]3]15]21]255] 465 | 36465 | 82677 | 30998055 | 16548735 |

Table 1: First 10 values of M (k).

5 The basic functions X,

We now introduce numerical functions X, ,, with values in {0, 1}, which will
subsequently serve as building blocks in our explicit formulas for n(p*,2)
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with k£ < 10. Given integers a, q with ¢ > 2, the definition of
Xogq:Z — {0,1}
depends on the distinct prime factors of ¢, as follows.

o If ¢ is prime, then X, , is the indicator function of the complement of
the subset a + qZ in Z, i.e.

| 1 ifn#amody,
Xag(n) = { 0 ifn=amodq.

o If q,...,q are the distinct prime factors of ¢, then we set

In particular, since X, , only depends on the prime factors of ¢, we have
Xa,q = Xa,rad(q)-

Note that X, , only depends on the class of a mod q. It is also plain that
Xa,q(n) only depends on the class of n mod g¢.

We now establish a few more properties of these functions. The first one
links X, ,(n) with ged(n — a, ¢), and so will be useful to capture occurrences
of the equality ged(p + 1,2pF~¢ + 1) = 1.

Proposition 5.1 Let a,q be integers with ¢ > 2. For all n € Z, we have

_ 1 Zf ng<n - a, q) - ]-7
Xag(n) = { 0 if not.

Proof. Let gy, ..., q be the distinct prime factors of g. Then we have

Xog(n) =1 <= X, (n)=1VYi
< n#Zamod ¢ Vi
<— ged(n—a,q)=1Vi
< ged(n—a,q) = 1.



Since X, ,(n) only takes values in {0, 1}, this implies that X, ,(n) = 0 if and
only if ged(n —a,q) #1. m

Next, for determining n(p*,2), we often need to evaluate X, ,(p*) with
s > 2. The next two properties help remove that exponent s. The first one
reduces the task to the case where s divides ¢ — 1. It suffices to consider the
case where ¢ is prime.

Proposition 5.2 Let q be a prime number, and let a,s be integers with

s > 2. Write s = te with t = ged(s,q — 1), so that ged(e,q — 1) = 1. Let
d € N satisfy de =1 mod q — 1. Then

Xog(n®) = Xyaq(n')
for all integers n.

Proof. This is the heart of the RSA cryptographic protocol, which relies
on the fact that exponentiation to the power e in Z/qZ is a bijection, whose
inverse is exponentiation to the power d. We have

Xag(n®) =0 <= n®=amodyq
(n")® = a mod q
(n')% = a? mod ¢
d

n' = a® mod ¢

Xad7q(nt) =0.

111l

Thus, we may now assume that the exponent s divides ¢ — 1.

Proposition 5.3 Let q be a prime number, and let a,s be integers with s
dividing ¢ — 1. Let g € N be an integer whose class mod q generates the
multiplicative group of non-zero elements in 7./qZ. We have:

o Ifa is not an s-power mod q, then X, ,(n®) =1 for all n.

e [fa in an s-power mod q, then a = ¢* mod q for some integer i such
that 0 <i<(q—1)/s—1, and

s—1
Xoq(n®) = HXgi+j(q—1)/s7q(n)
§=0
for all integers n.
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Proof. In the group (Z/qZ)* of nonzero classes mod ¢, the set of s-powers
is of cardinality (¢ — 1)/s and coincides with

{g""modq|0<i<(q—1)/s—1}.

First, if a is not an s-power mod ¢, then n® # a mod ¢ for all n, implying
Xoq(n®) =1 for all n. Assume now a is an s-power mod ¢. By the above
remark, there exists 0 < i < (¢ —1)/s — 1 such that a = ¢* mod q. We have

Xog(n®) =0 <= n’=amodgq
<~ n*=g¢"modq

= (ﬁ) = 1 mod q.
gl

This means that n/g’ is of order dividing s in the group (Z/qZ)*. Now, the
elements of order dividing s in this group constitute a subgroup of order s
generated by ¢(9~1/%. Thus, there exists an integer j such that 0 < j < s—1
and satisfying

D= ¢~/ mod ¢,

gl

yielding
Xog(n®) =0 <= n =gt mod q.
Summarizing, for a = ¢ mod ¢, we have established the equivalence

s—1
Xa,q(ns) =0 <= HXgiJrj(q—l)/s,q(n) =0,

5=0
whence the claimed equality X, ,(n®) = H;;(l) Xivita-v/s g(n).
Example 5.4 In order to establish our formula for n(p'®,2) in Section 6,
the term Xg17(p*) turns out to be involved. Now 8 is a square mod 17, namely

8 =52 =122 mod 17. Thus, the above result yields

X8,17(p2) = X5717(p)X12,17(p).
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6 The cases £k =9,10

Explicit formulas for n(p*,2) with p an odd prime and £ < 6 or k = 8 are
given in [3]. Here we go further and treat the case & = 9 in detail. This
will show how Corollary 3.2 can be applied, and will also give a sense of
the increasing complexity of these formulas. We also briefly address the case
k = 10. The main ingredients are the basic functions X, , defined in the
preceding section.

Here comes our formula for n(p?, 2). The fact that it depends on the class
of p mod M (9) follows from this prime decomposition:

M(9) = 30998055 = 5-17-257-3-11-43.
Theorem 6.1 Let p be an odd prime. Then we have

n(p”,2) = 1+2X55(p)+Xo17(p) +X128,257(p) + X2,3(p)- (3+ X211 (p) + Xs,43(p))-

Proof. By Proposition 2.1, in order to determine n(p°, 2), it suffices to count
those exponents i between 0 and 9 satisfying ged(p’+1,2p°~*+1) = 1. Using
Corollary 3.2 and the calculations leading to it, these gcd’s may be reduced
as follows:

ged(p’ +1,2p" +1) = 1
ged(pt +1,2p° +1) = ged(p+1,3)
ged(p? +1,2p" +1) = ged(2p —1,5)
ged(p® +1,2p° +1) = ged(p® +1,3) = ged(p + 1, 3)
ged(p* +1,2p° +1) = ged(2p — 1,17)
ged(p® +1,2p* +1) = ged(p —2,33)
ged(p®+1,2p° +1) = ged(2p® + 1,5)
ged(p” +1,2p* +1) = ged(p — 8,129)
ged(p® +1 2p +1) = gcd(2p—|— 1,257)
(r” ) (v’

ged = ged(p’ +1,3) = ged(p + 1, 3).

Now, by Proposition 5.1 and the properties of the functions X, ,, these equal-
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ities imply the following equivalences:

ged(p® +1,2p° +1) =1 always

ged(p' + 1,20 +1) =1 <= Xp3(p) =1
gcd(p +1,2p"+1) =1 <= Xz5(p)=1
ged(P’ +1,20° + 1) =1 <= Xo3(p)=1
ged(p* +1,20° +1) =1 <= Xgi7(p) =1
ged(P® +1,2p" + 1) =1 <= Xoas(p) =1
ged(P + 1,208 + 1) =1 <= Xz;(p)=1
ged(p” + 1,20 +1) =1 <= Xgi(p) =1
ged(p® +1,2p' +1) =1 <=  Xpsosr(p) =1
ged(p? +1,20° +1) =1 <= Xy3(p) = 1.

Read sequentially, this table directly yields the following first formula for
n(p®,2), with 10 summands, in terms of the functions X, ,:

n(p’,2) = 1+ Xa3(p) + Xs5(p) + X25(p) + Xo17(p) + X2,33(p)
+X35(p) + Xg120(p) + X12s 257(p) + X23(p)
= 143X53(p) +2X35(p) + Xo17(p) + X233(p) + X5,120(p)
+X128,257(p).

Among the moduli involved above, the only non-prime ones are 33 = 3 - 11
and 129 = 3 - 43. By definition of X, , for non-prime ¢, we have

Xoszs = XoszXomn
Xgi29 = Xg3Xgus.

Moreover, since X, , only depends on the class of @ mod ¢, we have

Xs3 = Xag3.
Substituting these equalities in the above formula for n(p?,2), we get
n(p”,2) = 142X;5(p)+Xo,17(p) + X 128,257 () + X2,3(p)- (3+ X211 (p) + Xs.43(p)),

as claimed. =
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We now derive another version of our formula for n(p?, 2), from which its
values are easier to read. Given positive integers ¢, ..., q, we denote by

Pooas “ L — LJGZL X - X L] G

the canonical reduction morphism pg, 4 (n) = (nmod g,...,n mod g¢).
Moreover, we write n = —a mod q 1nstead of n # amod q. For example,
the condition

,05,17,257(]7) = (3,79, —128)
means p = 3 mod 5, p # 9 mod 17 and p # 128 mod 257.

Corollary 6.2 Let p be an odd prime. Consider the following functions of
p depending on its classes mod 5,17,257 and 11,43, respectively:

L if  psarasi(p) = (3,9,128)
2 df  psarest(p) € {(3,9,7128), (3, 79,128)}
Ap) = {3 if psares(p) € {(3,79,-128), (—3,9,128)}
4 if  psarasi(p) € {(ﬁ3 9,-128), (=3, 9,128)}
5 if  psarest(p) = (—3,79,7128),
3 if pua(p) = (2,8)
pwp) = 4 if pas(p) € {(2,-8),(-2,8)}
5 if pu 43(p) = (_‘2 _‘8)-
Then we have
| Ap) if p =2 mod 3,
nr'2) = { Ap) +p(p) if p# 2 mod 3.

Proof. This directly follows from the preceding result and the easy to prove
equalities

Ap) = 1+4+2X55(p) + Xo17(p) + Xi2s257(p),
u(p) = 34+ Xa11(p) + Xsa3(p).

It is still clearer now that n(p®,2) is determined by the class of p mod
M(9)=3-5-17-257-11-43, and that M(9) is the smallest modulus with
this property.
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We close this section by briefly treating the case £ = 10. The formula
obtained shows that n(p'®,2), for p an odd prime, is determined by the class
of p modulo M(10)/15 = 7-17-73-127.

Theorem 6.3 Let p be an odd prime. Then we have

n(p™,2) = 7+ X37(p)(1 + X36.73(p)) + X5.17(p) X12.17(p) + X123.127(p)-

Proof. After reducing ged(pi+1,2p'9~i+1) for 0 < i < 10 as in Corollary 3.2,
and using Proposition 5.1 involving the functions X, ,, we obtain this first
raw formula:

”(p107 2) = 2+ X_173(p2) + Xs7(p) + X_275(p2) +1+ X279(p2) + Xi23.127(p)
+ Xg17(p?) + Xosss511(p) + X_1.3(p™).

We now invoke Proposition 5.3 several times. Since —1 is not a square mod
3, we have X_; 3(p?) = 1. The same reason yields X5 9(p?) = X_13(p'°) = 1.
Similarly, we have X _55(p?) = 1 as —2 is not a square mod 5. As already
explained in Example 5.4, we have Xg17(p*) = X517(p)X1217(p). Finally,
since 511 = 7 - 73, and since 255 is congruent to 3 mod 7 and to 36 mod 73,
we have

X255,511(p) = X3,7(p)X36,73(P)-

Inserting these reductions into the raw formula gives the stated one, where
now the only argument of the various basic functions X, , is p and all involved
¢’s are primes. m

7 The cases k£ < 8 revisited

While explicit formulas for n(p*,2) with k& < 6 and k = 8 are given in [3],
we provide here new, shorter formulas in terms of the basic functions X, ,
for £ < 8, including £ = 7. The construction method is similar to the cases
k = 9,10 and relies on the reduction of ged(p® + 1,2p*~* + 1) provided by
Corollary 3.2.
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Theorem 7.1 Let p be an odd prime. Then we have

n(p'2) = 1+ Xp3(p)

n(p*2) = 3

n(p®,2) = 1+2X53(p) + Xo5(p)

n(p',2) = 4+ X37(p)

n(p°,2) = 1+ 3Xa3(p) + X35(p) + Xg17(p)

n(®,2) = 6+ Xi53(p)

n(p’,2) = 1+ Xa3(p)3+ X711(p)) + Xos5(p)(1 + Xg15(p)) + Xa.17(p)
n(p®,2) = 6+ X57(p) + Xosz31(p) + Xes,127(p).-

Proof. Corollary 3.2 and its proof method yield the following reductions
of ged(p® + 1,2p*" + 1) for i = 1,...,k. The case i = 0 is omitted, as
ged(p®+1,2p% + 1) = 1 always. A few more arithmetical reductions are also
applied. For instance, the equality ged(p®+1,3) = 1 below follows from the
fact that —1 is not a square mod 3. This is one easy case of Proposition 5.3.

kK = 1:
ged(p' +1,2p° +1) = ged(p+1,3)
k = 2:
ged(p' +1,2p' +1) = ged(2p+1,1) =1
ged(p® +1,2p° +1) = ged(p®+1,3) =1
kK = 3:

ged(p' +1,2p° + 1)
ged(p® +1,2p' +1)
ged(p® 4+ 1,2p° + 1)

ged(p+1,3)
ged(2p + 1,5)
= ged(p® +1,3) = ged(p+1,3)

k = 4:
ged(p' +1,2p° +1) = ged(p+1,1) =1
ged(p® + 1,2 +1) = ged(2p®+1,1) = 1
ged(p® +1,2p' +1) = ged(2p+1,7)
ged(p? +1,20° +1) = ged(p®+1,3) =1
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k = 5:

ged(p! +1,2p7 +1) = ged(p+1,3)
ged(p? +1,2p° +1) = ged(2p —1,5)
ged(p® + 1,20 +1) = ged(p—2,9)
ged(pt +1,2p' +1) = ged(2p+1,17)
ged(p® +1,2p° +1) = ged(p® +1,3) = ged(p+ 1,3)
k = 6:
ged(p! +1,20° +1) = ged(p+1,1) =1
ged(p? +1,2p7 +1) = ged(p*+1,3) =
ged(p® +1,20° +1) = ged(2p®+1,1) = 1
ged(p* +1,20° +1) = ged(2p® +1,5) = 1
ged(p® +1,2p' +1) = ged(2p+1,31)
ged(p® +1,2p° +1) = ged(p®+1,3) =
kK = T7:
ged(p' +1,2p% +1) = ged(p+1,3)
ged(p® 4+ 1,2p° +1) = ged(2p+1,5)
ged(p®+1,2p* +1) = ged(2p—1,9)
ged(p* 4+ 1,20 +1) = ged(p —2,17)
ged(p® 4+ 1,20 +1) = ged(p+4,33)
ged(p® +1,2p' +1) = ged(2p+1,65)
ged(p” +1,2p° +1) = ged(p” +1,3) = ged(p+ 1,3)
k = 8:
ged(p! +1,2p" +1) = ged(p+1,1) =1
ged(p® +1,20% +1) = ged(p®+1,1) =1
ged(p® +1,2p° +1) = ged(p+2,7)
ged(p* + 1,27 +1) = ged(2p?*+1,1) = 1
ged(p® +1,2p° +1) = ged(dp +1,31)
ged(p® +1,2p° +1) = ged(2p? +1,7) = 1
ged(p” +1,2p' +1) = ged(2p +1,127)
ged(p® 4+ 1,20 +1) = ged(p®+1,3) = 1.



As in the case k = 9, the claimed formulas follow by reading these tables
sequentially and using properties of the functions X, , from Section 5. m

In particular, these formulas confirm that for £k = 1,...,8, the value of
n(pk,2) at an odd prime p is determined by the class of p modulo 3, 1, 3 -5,
7,3-5-17,31,3-5-11-13-17 and 7 - 31 - 127, respectively.

8 A question

We shall conclude this paper with an open question. On the one hand, we
have obtained explicit formulas for n(p*,2) in all cases k < 10. On the other
hand, we know from [3] that no such formula can be expected in the case
k = 4097, at least as long as the prime factors of the 12th Fermat number
22" 41 remain unknown. Well then, what happens in the intermediate range
11 < k < 40967 Are there fundamental obstacles which would prevent us to
obtain exact formulas for n(p¥, 2) all the way up to k = 40967
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