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Abstract

Given g € N, what is the number of numerical semigroups S =
{a,b) in N of genus [N\ S| = g? After settling the case g = 2¥ for all
k, we show that attempting to extend the result to g = p¥ for all odd
primes p is linked, quite surprisingly, to the factorization of Fermat
and Mersenne numbers.
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1 Introduction

A numerical semigroup is a subset S of N containing 0, stable under addition,
and with finite complement G(S) = N\ S. The elements of G(S) are called
the gaps of S, and their number is denoted ¢(S) and called the genus of S.
The Frobenius number of S is its largest gap. See [6] for more details. If
ai,...,a, are positive integers with ged(aq, ..., a,) = 1, then they generate
a numerical semigroup S = Na; + --- 4+ Na,, denoted S = (ay,...,a,). For
example, the numerical semigroup S = (4,5, 7) has gaps G(S) = {1, 2, 3,6},
whence genus ¢(S) = 4 and Frobenius number 6. It is well known that every
numerical semigroup admits a unique finite minimal generating set [3].

Given g € N, what is the number n, of numerical semigroups S of genus
g? Maria Bras-Amords recently determined n, for all g < 50 by computer.
On this basis, she made three conjectures suggesting that the numbers n,
behave closely like the Fibonacci numbers [1, 2]. For instance, the inequality
Ng > Ng_1 + Ng_g, valid for g < 50, is conjectured to hold for all g.



We propose here the refined problem of counting numerical semigroups
S of genus ¢g with a specified number of generators.

Notation 1.1 Given g,r > 1, let n(g,r) denote the number of numerical
semigroups S of genus g having a minimal generating set of cardinality r.

Of course ng = >, -, n(g,r). Is there an explicit formula for n(g,r), and
might it be true that n(g,r) > n(g —1,7) +n(g — 2,7)?

In this paper, we focus on the case r = 2, i.e. on numerical semigroups
S = (a,b) with ged(a,b) = 1. The genus of S is equal to (a — 1)(b —1)/2,
by a classical theorem of Sylvester. This allows us to show in Section 2 that
n(g,2) depends on the factorizations of both 2g and 2¢g — 1, and to determine
n(g,2) when 2g — 1 is prime. In Section 3, we determine n(g,2) for g = 2F
and all k > 1. We then tackle the case g = p* for odd primes p in Section 4.
On the one hand, we provide explicit formulas for n(p*,2) when k < 6. On
the other hand, we show that obtaining similar formulas for all £ > 1 is
linked to the factorization of Fermat and Mersenne numbers. We conclude
with a few open questions about n(g,2).

2 Basic properties of n(g,2)

We will show that n(g,2) is linked with the factorizations of 2¢ and 2¢g — 1.
For this, we need the following theorem of Sylvester [7].

Theorem 2.1 Let a,b be coprime positive integers, and let S = {a,b). Then
max G(S) =ab—a—0b, and for all x € {0,1,...,ab—a — b}, one has

reG(S)<=ab—a—-b—zeSb.

In particular, g(S) = (a —1)(b—1)/2.

2.1 Link with factorizations of 2¢g and 2g — 1

We first derive that n(g,2) is the counting function of certain particular
factorizations of 2g. As usual, the cardinality of a set X will be denoted |X]|.

Proposition 2.2 Let g > 1 be a positive integer. Then we have

n(g,2) = {(u,0) e N* |1 <u <o, wo=2g, ged(u+1,0+1) =1}/



Proof. Indeed, let S = (a,b) with 1 < a < b and ged(a,b) = 1, and
assume that ¢g(S) = ¢g. By Theorem 2.1, we have g = (a — 1)(b—1)/2, i.e.
2g = (a—1)(b—1). The claim follows by settingu =a—1,v=0—1. =

A first consequence is that every g > 1 is the genus of an appropriate
2-generator numerical semigroup.

Corollary 2.3 n(g,2) > 1 for all g > 1.

Proof. This follows from the factorization 2g = wv with uv = 1,v = 2g.
Concretely, the numerical semigroup S = (2,2¢ + 1) has genus g. m

Our next remark shows that n(g, 2) is also linked with the factors of 2g—1.

Lemma 2.4 Let ¢ > 1 be a positive integer, and let 2g = uv with u,v
positive integers. Then ged(u + 1,v + 1) divides 2g — 1.

Proof. Set § = ged(u+1,v+1). Then u = v = —1 mod §, and therefore
2g=w =1modd. m

2.2 The case where 2g — 1 is prime

We can now determine n(g,2) when 2g— 1 is prime. As customary, for n € N
we denote by d(n) the number of divisors of n in N.

Proposition 2.5 Let g > 3, and assume that 2g — 1 is prime. Then

n(g,2) = d(29)/2.
In particular, n(g,2) = d(g) if g is odd.

Proof. Let 29 = wv be any factorization of 2¢g in N. We claim that
ged(u+1,v+ 1) = 1. Indeed, by Lemma 2.4 we know that ged(u+1,v + 1)
divides 2¢g — 1. Assume for a contradiction that ged(u + 1,0+ 1) # 1. Then
ged(u+1,v 4+ 1) = 2g — 1, since 2g — 1 is assumed to be prime. It follows
that u,v > 2g — 2, implying

29 = uv > 4(g — 1)



However, the inequality 2g > 4(g — 1)?, while true at g = 2, definitely fails
for g > 3 as assumed here. Thus ged(u + 1,v + 1) = 1, as claimed. Hence,
by Proposition 2.2, we have

n(g,2) = |{(u,v) € N’ | u < 0,29 = uv}|. (1)

Clearly 2¢g counts as many divisors u < /2g as divisors v > /2g. Moreover
2g is not a perfect square. This is clear for g = 3 or 4. If ¢ > 5 and 2g = a?
with @ € N, then a > 3 and 29—1 = a*—1 = (a—1)(a+1), contradicting the
primality of 2g — 1. We conclude from (1) that n(g,2) = d(2¢)/2. Finally, if
g is further assumed to be odd, then clearly d(2g)/2 = d(g). =

Proposition 2.5 cannot be extended to g = 2, even though 2g — 1 is prime.
Indeed n(2,2) =1 as easily seen, whereas d(4)/2 is not even an integer.

Since n(g,2) is controlled by the factorizations of both 2¢g and 2¢g — 1, its
determination is expected to be hard in general, even if the factors of g are
known. Nevertheless, below we determine n(g,2) when g = 2* for all k € N,
despite the fact that the prime factors of 2% — 1 are generally unknown.

3 The case g =2*

Let g = 2°~! with p an odd prime, and assume that 2g — 1 is prime.! Propo-
sition 2.5 then applies, and gives

n(271,2) =d(2")/2 = (p+1)/2.

But we shall now determine n(2%,2) for all k¥ € N, and show that its value
only depends on the largest odd factor s of k + 1.

Theorem 3.1 Let g = 2% with k € N. Write k + 1 = 2#s with u € N and s
odd. Then
n(28,2) = (s+1)/2.

Proof. Since 2g = 2¥F!, the only integer factorizations 2¢g = uv with

1 <wu < v are given by

u = 217 v = 2k’+171

In fact a Mersenne prime, since 2g — 1 = 2P — 1. See also Section 4.2.



with 0 <i < (k +1)/2. In order to determine n(2*,2) with Proposition 2.2,
we must count those 4 in this range for which ged(2¢ + 1,287 4 1) = 1.
This condition is taken care of by the following claim.

Claim. We have ged(2 + 1,217 4+ 1) = 1 if and only if 2* divides i.

The claim is proved by examining separately the cases where 2# divides
1 or not.

e Case 1: 2" divides i. Assume for a contradiction that there is a prime
p dividing ged (2% + 1,25717% + 1), Then p is odd, and we have

2t = 2k+1=1 = _1 mod p. (2)

It follows that .
2% = 2M1 =1 mod p. (3)

Let m denote the multiplicative order of 2 mod p. It follows from (3) that
m divides ged(2i, k + 1). Now, in the present case, we have

ged (24, k + 1) = ged(i, k + 1),

since 2# divides 4 and k + 1, while 2#T! divides 2i without dividing k + 1.
Consequently m divides i, not only 2i. Hence 2° = 1 mod p, in contradiction
with (2). Therefore ged (2! 4 1,25717" 4+ 1) = 1, as desired.

o Case 2: 2" does not divide . We may then write ¢« = 25 with j odd
and v < p. Set ¢ = 2% + 1, and note that ¢ > 3. We claim that ¢ divides
ged(28 41,2517 1+ 1). Indeed, observe that

22" = —1 mod g,
by definition of ¢q. Since i = 2”5 with j odd, we have
20 4+1=2")Y4+1= (-1 +1=0mod q.

Similarly, we have k + 1 — ¢ = 2"j" where j' = 2#7%s — j. Then j' is odd,
since p — v > 0 and j is odd. As above, this implies that

k1= — (92")7" + 1 = 0 mod q.

It follows that ¢ divides ged (2% + 1,25717¢ + 1), thereby settling the claim.



We may now conclude the proof. Indeed, the above claim yields
n(2¥,2) = |{i|0<i<(k+1)/2, i=0mod2"}|

{510 <j<(k+1)/2""}
= |[(k+1)/2"" +1] =(s+1)/2.

Corollary 3.2 For every N > 1, there are infinitely many g > 1 such that
n(g,2) = N.

Proof. Let s = 2N — 1. Then s is odd, and for all £ = 2#s — 1 with
p € N, we have n(2%,2) = (s +1)/2 = N by Theorem 3.1. =

In particular, there are infinitely many g > 1 for which n(g,2) = 1. Since
n(h,2) > 1 for all h > 1, the inequality n(g,2) > n(g — 1,2) + n(g — 2,2)
fails to hold infinitely often. This says nothing, of course, about the original
conjecture ng > ng_1 + ngy_o of Bras-Amords.

4 The case g = p* for odd primes p

We have determined n(2¥, 2) for all k > 1. Attempting to similarly determine
n(p*, 2) for odd primes p leads to a somewhat paradoxical situation. Indeed,
while the case where k is small is relatively straightforward, formidable dif-
ficulties arise when k grows. This Jekyll-and-Hyde behavior is shown below.

4.1 When £ is small

Given positive integers q1, ..., q;, we denote by
Pgrogs L — L]GZL X - X L]

the canonical reduction morphism pg, 4 (n) = (nmod g,...,n mod ¢),
and shall write n = —a mod ¢ instead of n Z a mod ¢q. For example, the
condition

p3s7(p) = (2,73, -8)
means that p =2 mod 3, p Z 3 mod 5 and p # 8 mod 17.



Proposition 4.1 Let p be an odd prime number. Then we have:

{ if  ps p =2
Zf P3 - _'27
2) =3

2. n p ,
L if p3s(p) =(2,2)
3 2 if pss(p) =(2,72)
' 3 if P3,5(p) =(=2,2)
4 if P3,5(p) = (—2,72),
/on { 4 if pr(p)=3
' 5 if pi(p) =3,
( 1 Zf PS,5,17(P) = (27 37 )
2 if /93,5,17?9; = E27 3,-8) )07’ (2,73,8)
) 3 if pssar(p) = (2,73, -8
P =N 0 i ) = (42,3.8)
d Zf p3,5,17(p) = (_‘27 37 ﬁ8) or (_'Qa _‘37 8)
\ 6 Zf P3,5,17(p) = (_‘27 _'37 _‘8>7

6 if palp)=15
o2 ={ 5 2l

With the Chinese Remainder Theorem, the above result implies that
n(p3,2) depends on the class of p modulo 15, and that n(p*,2), n(p®,2) and
n(p%,2) depend on the class of p modulo 7, 255 and 31, respectively.

Proof. Let k < 6. We determine n(p*,2) using Proposition 2.2. As
p is an odd prime, counting the factorizations 2p* = wv with v < v and
ged(u + 1,v + 1) = 1 amounts to count the number of exponents i in the
range 0 < ¢ < k satisfying the condition

ged(p' + 1,2+ 1) = 1.

A convenient way to ease the computation of this ged is to replace p by a
variable x and to reduce, in the polynomial ring Z[x], the greatest common
divisor of z° + 1 and 227 + 1 to the simpler form

ged(a' + 1,227 + 1) = ged(f, ), (4)
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where either polynomial f or ¢ is constant. Polynomials are used here pre-
cisely for allowing such degree considerations. Since ged(p® + 1,2p7 + 1) is
odd, we may equivalently work in the rings Z[27'] or Z[27!, 2], where 2 is
made invertible. Note that these rings are still unique factorization domains.

We obtain the following table, with a method explained below. For sim-
plicity, we write (f, g) rather than ged(f, g), and 1 whenever either f or g is
invertible in the ring Z[27!, z]. The cases i = 0 and j = 0 are not included,
since then x + 1 and 227 + 1 are already constant, respectively.

ged | 2241 | 22241 | 228 +1 | 2241 | 22°+1 | 225+1 |
r+1 1 (r+1,3) 1 (x+1,3) 1 (x+1,3)

2+ 1

(2 +1,5)

1

(2 — 1,5)

(2% +1,3)

(2z +1,5)

1

3+ 1

(2¢+1,7)

(r—2,9)

1

(2x — 1,9)

(x+2,7)

(23 +1,3)

2+ 1

(204 1,17)

(22% +1,5)

(x —2,17)

1

(22— 1,17)

(222 —1,5)

x° +1

(22 + 1,31)

(z + 4, 33)

(4 + 1,31)

(z — 2,33)

1

(27 — 1,33)

25+ 1

(27 + 1,65)

(222 +1,7)

(223 +1,5)

(x2 —2,9)

(x —2,65)

1

Table 1: Reduction of ged(z’ + 1,227 + 1) for 1 < i,j <6.

In order to construct this table, we use the most basic trick for computing
gcd’s in a unique factorization domain A, namely:

g1 = g2mod f = ged(f,g1) = ged(f, g2)

()

for all f,g1,92 € A. As an illustration, let us reduce ged(z? + 1,22 + 1) to
the form (4) in the ring Z[27', z]. We have

ged(? +1,22° +1) = ged(z? + 1,22 + 1) (6)
= ged(27?+ 1,2z +1) (7)
= ged(1+2% 22 — 1), (8)

where steps (6) and (7) follow from (5) and the respective congruences

l‘2

T

—1 mod (2* + 1),
271 mod (—2z + 1).

Hence ged(z? + 1,223 4+ 1) = ged(2z — 1, 5), as displayed in Table 4.1.



Now, from that table, it is straightforward to determine those pairs of
exponents 7, 7 with 7 + j < 6 and those odd primes p for which

ged(p + 1,297 +1) = 1,

and hence to obtain the stated formulas for n(p*,2). Consider, for instance,
the case k = 3. We shall count those exponents i € {0, 1,2, 3} for which

ged(p' +1,2p° 7"+ 1) = 1. (9)

i = 0: Condition (9) is always satisfied.

I
—

i : Table 4.1 gives ged(p+1,2p?+1) = ged(p+1, 3), which equals 1 exactly

when p # 2 mod 3.

o~
I
b

: Table 4.1 gives ged(p? + 1,2p + 1) = ged(2p + 1,5), which equals 1
exactly when p # 2 mod 5.

o~
Il
w

: Finally, we have ged(p® + 1, 3) = 1 exactly when p # 2 mod 3.

It follows that n(p3,2) is entirely determined by the classes of p mod 3
and 5, with a value ranging from 1 to 4 depending on whether ps 5(p) equals
(2,2),(2,72),(72,2) or (—2,-2), as stated.

The cases k = 1,2,4,5,6 are similar and left to the reader. m

We leave the determination of n(p’,2) as an exercise to the reader. Let
us just mention that the value of this function depends on the class of the
prime p mod 3-5-11-13-17, and that its range is equal to {1,2,...,8}. The
case k = 8 is much simpler. We state the result without proof.

Proposition 4.2 Let p be an odd prime number. Then we have:

(5,23,63)

(=5,23,63), (5,-23,63) or (5,23, -63)

(=5, -23,63), (5,23, -63) or (5,23, -63)
(=5, -23,-63). m

if /07,31,127(17
8 if  prs 127(p
n(p°,2) = . o
(p ) if P7,31,127(p
(

if P7.31,127\P

© 00 ~J O

)=
) =
) =
) =

That was the gentle side of the story. Here comes the harder one.



4.2 When k grows

When k grows arbitrarily, the task of determining n(p*, 2) for all odd primes
p using Proposition 2.2 becomes much more complicated, and turns out to
be linked to hard problems. Let us focus on one specific factorization of 2p*,
namely 2p* = uv with

U = pk_l, v = 2p.
In order to find when this factorization contributes 1 to n(p*,2), we need to
decide when ged(p*~! +1,2p + 1) is equal to 1. Here is the key reduction.

Lemma 4.3 Let p be an odd prime and let m € N. Then

m o ged(2™+1,2p+1) if m is even,
ged(p™ +1,2p+1) = { ged(2™ —1,2p+ 1) if m is odd.
Proof. As earlier, we will reduce ged(z™ + 1,2z + 1) in Z[271, 2] to
the form gcd(f,g), where either f or g is a constant polynomial. Since
r = —2""mod (2z + 1), trick (5) yields

ged(™ + 1,20 +1) = ged((—2)"™+ 1,20+ 1)
= ged(2™ + (—1)™, 2z +1).

Substituting « = p gives the stated formula. m

Hence, in order to determine when ged(p™ + 1,2p + 1) equals 1, we need
to know the prime factors of 2™ + 1 for m even, and of 2™ — 1 for m odd.
This is an ancient open problem. It is not even known at present whether
there are finitely or infinitely many Fermat or Mersenne primes, i.e. primes
of the form F, = 22" +1 or M, =27 —1 with t > 0 and ¢ prime, respectively.

e Assume for instance that & = 2 +1 for some ¢t > 1. Then k — 1 is even,
and thus Lemma 4.3 yields

ged(p ' 4+ 1,2p + 1) = ged(F,, 2p + 1). (10)

Therefore, as long as the prime factors of the Fermat number F; remain
unknown, we cannot determine those primes p for which the ged in (10)
equals 1, and hence write down an exact formula for n(p*,2) in the spirit of
Proposition 4.1. For the record, as of 2010, the prime factorization of Fj is
completely known for ¢ < 11 only [5].
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e Assume now that k = ¢ + 1 for some large prime q. Then k — 1 = ¢ is
odd, and Lemma 4.3 yields

ged(p 14 1,2p + 1) = ged(29 — 1,2p + 1). (11)

Here again, we do not know the prime factors of M, = 29 — 1 in general,
it may even happen that 279 — 1 hits some unknown Mersenne prime. Thus,
we will not know for which primes p the ged in (11) equals 1, i.e. when the
specific factorization 2p* = p*~1-2p contributes 1 to n(p*,2). For the record,
the largest prime currently known is the Mersenne prime p = 243112609 _ 1
found in August 2008 [4].

The above difficulties concern the specific factorization 2p* = pF=1 . 2p.
However, most other ones will also lead to trouble for some exponents k. For
instance, consider the factorization 2pF = pF=2.2p%, and let k = 2+ + 2.
Then, a computation as in the proof of Lemma 4.3 yields

gcd(pk_2 +1,2p% + 1) = ged(Fy, 2p? + 1).

Once again, not knowing the prime factors of F, = 2% 4+ 1 prevents us to
know for which primes p this ged equals 1.

5 Concluding remarks and open questions

We have determined n(g,2) when 2g—1 is prime, for g = 2% for all k > 1, and
for g = p* for all odd primes p and k < 6. The general case is probably out
of reach. However, here are a few questions which might be more tractable,
yet which we cannot answer at present.

1. Is there an explicit formula for n(3%,2) as a function of k? Is it true
that n(3%,2) goes to infinity as k does?

Here are the values of this function for £ =1,2,...,20:

2,3,4,4,5,7,8,9,8,9,11,13, 11, 15, 16, 14, 14, 18, 20, 21.

2. Can one characterize those integers g > 1 for which n(g,2) =17

In special cases, we know enough to get a complete answer, for in-
stance when ¢ is prime using Proposition 4.1, or when g = 2% using
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Theorem 3.1. However, the general case seems to be very hard. As an
appetizer, let us mention that a prime p satisfies n(p*,2) = 1 if and
only if p=8 mod 3-5-17-257-65537; the smallest such prime is

p = 12,884,901, 893.

3. Letr e N, r > 1. Doesn(p;y---p:,2) attain every valuei € {1,2,...,2"}
for suitable distinct primes pi,...,p,, and infinitely often so?

4. Letl € N, I > 1. Does n(p*=1,2) attain every value i € {1,2,...,2l}
for suitable odd primes p, and infinitely often so?

5. In contrast, is it true that min{n(p¥,2) | p odd prime} goes to infinity
with 17

Using the above methods, and a classical theorem of Dirichlet, it is fairly
easy to show that, independently of the parity of k, the function n(p*,?2)
attains its maximal value k + 1 infinitely often.
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