
Two-generator numerical semigroups and
Fermat and Mersenne numbers

Shalom Eliahou and Jorge Ramı́rez Alfonśın

Abstract

Given g ∈ N, what is the number of numerical semigroups S =
〈a, b〉 in N of genus |N \ S| = g? After settling the case g = 2k for all
k, we show that attempting to extend the result to g = pk for all odd
primes p is linked, quite surprisingly, to the factorization of Fermat
and Mersenne numbers.
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1 Introduction

A numerical semigroup is a subset S of N containing 0, stable under addition,
and with finite complement G(S) = N \ S. The elements of G(S) are called
the gaps of S, and their number is denoted g(S) and called the genus of S.
The Frobenius number of S is its largest gap. See [6] for more details. If
a1, . . . , ar are positive integers with gcd(a1, . . . , ar) = 1, then they generate
a numerical semigroup S = Na1 + · · · + Nar, denoted S = 〈a1, . . . , ar〉. For
example, the numerical semigroup S = 〈4, 5, 7〉 has gaps G(S) = {1, 2, 3, 6},
whence genus g(S) = 4 and Frobenius number 6. It is well known that every
numerical semigroup admits a unique finite minimal generating set [3].

Given g ∈ N, what is the number ng of numerical semigroups S of genus
g? Maria Bras-Amorós recently determined ng for all g ≤ 50 by computer.
On this basis, she made three conjectures suggesting that the numbers ng

behave closely like the Fibonacci numbers [1, 2]. For instance, the inequality
ng ≥ ng−1 + ng−2, valid for g ≤ 50, is conjectured to hold for all g.

1



We propose here the refined problem of counting numerical semigroups
S of genus g with a specified number of generators.

Notation 1.1 Given g, r ≥ 1, let n(g, r) denote the number of numerical

semigroups S of genus g having a minimal generating set of cardinality r.

Of course ng =
∑

r≥1 n(g, r). Is there an explicit formula for n(g, r), and
might it be true that n(g, r) ≥ n(g − 1, r) + n(g − 2, r)?

In this paper, we focus on the case r = 2, i.e. on numerical semigroups
S = 〈a, b〉 with gcd(a, b) = 1. The genus of S is equal to (a − 1)(b − 1)/2,
by a classical theorem of Sylvester. This allows us to show in Section 2 that
n(g, 2) depends on the factorizations of both 2g and 2g−1, and to determine
n(g, 2) when 2g − 1 is prime. In Section 3, we determine n(g, 2) for g = 2k

and all k ≥ 1. We then tackle the case g = pk for odd primes p in Section 4.
On the one hand, we provide explicit formulas for n(pk, 2) when k ≤ 6. On
the other hand, we show that obtaining similar formulas for all k ≥ 1 is
linked to the factorization of Fermat and Mersenne numbers. We conclude
with a few open questions about n(g, 2).

2 Basic properties of n(g, 2)

We will show that n(g, 2) is linked with the factorizations of 2g and 2g − 1.
For this, we need the following theorem of Sylvester [7].

Theorem 2.1 Let a, b be coprime positive integers, and let S = 〈a, b〉. Then
maxG(S) = ab− a− b, and for all x ∈ {0, 1, . . . , ab− a− b}, one has

x ∈ G(S) ⇐⇒ ab− a− b− x ∈ S.

In particular, g(S) = (a− 1)(b− 1)/2.

2.1 Link with factorizations of 2g and 2g − 1

We first derive that n(g, 2) is the counting function of certain particular
factorizations of 2g. As usual, the cardinality of a set X will be denoted |X|.

Proposition 2.2 Let g ≥ 1 be a positive integer. Then we have

n(g, 2) = |{(u, v) ∈ N
2 | 1 ≤ u ≤ v, uv = 2g, gcd(u+ 1, v + 1) = 1}|.
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Proof. Indeed, let S = 〈a, b〉 with 1 ≤ a ≤ b and gcd(a, b) = 1, and
assume that g(S) = g. By Theorem 2.1, we have g = (a − 1)(b − 1)/2, i.e.
2g = (a− 1)(b− 1). The claim follows by setting u = a− 1, v = b− 1.

A first consequence is that every g ≥ 1 is the genus of an appropriate
2-generator numerical semigroup.

Corollary 2.3 n(g, 2) ≥ 1 for all g ≥ 1.

Proof. This follows from the factorization 2g = uv with u = 1, v = 2g.
Concretely, the numerical semigroup S = 〈2, 2g + 1〉 has genus g.

Our next remark shows that n(g, 2) is also linked with the factors of 2g−1.

Lemma 2.4 Let g ≥ 1 be a positive integer, and let 2g = uv with u, v
positive integers. Then gcd(u+ 1, v + 1) divides 2g − 1.

Proof. Set δ = gcd(u+1, v+1). Then u ≡ v ≡ −1 mod δ, and therefore
2g = uv ≡ 1 mod δ.

2.2 The case where 2g − 1 is prime

We can now determine n(g, 2) when 2g−1 is prime. As customary, for n ∈ N

we denote by d(n) the number of divisors of n in N.

Proposition 2.5 Let g ≥ 3, and assume that 2g − 1 is prime. Then

n(g, 2) = d(2g)/2.

In particular, n(g, 2) = d(g) if g is odd.

Proof. Let 2g = uv be any factorization of 2g in N. We claim that
gcd(u+ 1, v + 1) = 1. Indeed, by Lemma 2.4 we know that gcd(u+ 1, v + 1)
divides 2g − 1. Assume for a contradiction that gcd(u+ 1, v + 1) 6= 1. Then
gcd(u + 1, v + 1) = 2g − 1, since 2g − 1 is assumed to be prime. It follows
that u, v ≥ 2g − 2, implying

2g = uv ≥ 4(g − 1)2.
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However, the inequality 2g ≥ 4(g − 1)2, while true at g = 2, definitely fails
for g ≥ 3 as assumed here. Thus gcd(u + 1, v + 1) = 1, as claimed. Hence,
by Proposition 2.2, we have

n(g, 2) =
∣

∣{(u, v) ∈ N
2 | u ≤ v, 2g = uv}

∣

∣. (1)

Clearly 2g counts as many divisors u <
√
2g as divisors v >

√
2g. Moreover

2g is not a perfect square. This is clear for g = 3 or 4. If g ≥ 5 and 2g = a2

with a ∈ N, then a ≥ 3 and 2g−1 = a2−1 = (a−1)(a+1), contradicting the
primality of 2g − 1. We conclude from (1) that n(g, 2) = d(2g)/2. Finally, if
g is further assumed to be odd, then clearly d(2g)/2 = d(g).

Proposition 2.5 cannot be extended to g = 2, even though 2g−1 is prime.
Indeed n(2, 2) = 1 as easily seen, whereas d(4)/2 is not even an integer.

Since n(g, 2) is controlled by the factorizations of both 2g and 2g− 1, its
determination is expected to be hard in general, even if the factors of g are
known. Nevertheless, below we determine n(g, 2) when g = 2k for all k ∈ N,
despite the fact that the prime factors of 2k+1 − 1 are generally unknown.

3 The case g = 2k

Let g = 2p−1 with p an odd prime, and assume that 2g− 1 is prime.1 Propo-
sition 2.5 then applies, and gives

n(2p−1, 2) = d(2p)/2 = (p+ 1)/2.

But we shall now determine n(2k, 2) for all k ∈ N, and show that its value
only depends on the largest odd factor s of k + 1.

Theorem 3.1 Let g = 2k with k ∈ N. Write k + 1 = 2µs with µ ∈ N and s
odd. Then

n(2k, 2) = (s+ 1)/2.

Proof. Since 2g = 2k+1, the only integer factorizations 2g = uv with
1 ≤ u ≤ v are given by

u = 2i, v = 2k+1−i

1In fact a Mersenne prime, since 2g − 1 = 2p − 1. See also Section 4.2.
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with 0 ≤ i ≤ (k + 1)/2. In order to determine n(2k, 2) with Proposition 2.2,
we must count those i in this range for which gcd(2i + 1, 2k+1−i + 1) = 1.
This condition is taken care of by the following claim.

Claim. We have gcd(2i + 1, 2k+1−i + 1) = 1 if and only if 2µ divides i.

The claim is proved by examining separately the cases where 2µ divides
i or not.

• Case 1: 2µ divides i. Assume for a contradiction that there is a prime
p dividing gcd(2i + 1, 2k+1−i + 1). Then p is odd, and we have

2i ≡ 2k+1−i ≡ −1 mod p. (2)

It follows that
22i ≡ 2k+1 ≡ 1 mod p. (3)

Let m denote the multiplicative order of 2 mod p. It follows from (3) that
m divides gcd(2i, k + 1). Now, in the present case, we have

gcd(2i, k + 1) = gcd(i, k + 1),

since 2µ divides i and k + 1, while 2µ+1 divides 2i without dividing k + 1.
Consequently m divides i, not only 2i. Hence 2i ≡ 1 mod p, in contradiction
with (2). Therefore gcd(2i + 1, 2k+1−i + 1) = 1, as desired.

• Case 2: 2µ does not divide i. We may then write i = 2νj with j odd
and ν < µ. Set q = 22

ν

+ 1, and note that q ≥ 3. We claim that q divides
gcd(2i + 1, 2k+1−i + 1). Indeed, observe that

22
ν ≡ −1 mod q,

by definition of q. Since i = 2νj with j odd, we have

2i + 1 = (22
ν

)j + 1 ≡ (−1)j + 1 ≡ 0 mod q.

Similarly, we have k + 1 − i = 2νj′ where j′ = 2µ−νs − j. Then j′ is odd,
since µ− ν > 0 and j is odd. As above, this implies that

2k+1−i = (22
ν

)j
′

+ 1 ≡ 0 mod q.

It follows that q divides gcd(2i + 1, 2k+1−i + 1), thereby settling the claim.
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We may now conclude the proof. Indeed, the above claim yields

n(2k, 2) =
∣

∣{i | 0 ≤ i ≤ (k + 1)/2, i ≡ 0 mod 2µ}
∣

∣

=
∣

∣{j | 0 ≤ j ≤ (k + 1)/2µ+1}
∣

∣

=
⌊

(k + 1)/2µ+1 + 1
⌋

= (s+ 1)/2.

Corollary 3.2 For every N ≥ 1, there are infinitely many g ≥ 1 such that

n(g, 2) = N .

Proof. Let s = 2N − 1. Then s is odd, and for all k = 2µs − 1 with
µ ∈ N, we have n(2k, 2) = (s+ 1)/2 = N by Theorem 3.1.

In particular, there are infinitely many g ≥ 1 for which n(g, 2) = 1. Since
n(h, 2) ≥ 1 for all h ≥ 1, the inequality n(g, 2) ≥ n(g − 1, 2) + n(g − 2, 2)
fails to hold infinitely often. This says nothing, of course, about the original
conjecture ng ≥ ng−1 + ng−2 of Bras-Amorós.

4 The case g = pk for odd primes p

We have determined n(2k, 2) for all k ≥ 1. Attempting to similarly determine
n(pk, 2) for odd primes p leads to a somewhat paradoxical situation. Indeed,
while the case where k is small is relatively straightforward, formidable dif-
ficulties arise when k grows. This Jekyll-and-Hyde behavior is shown below.

4.1 When k is small

Given positive integers q1, . . . , qt, we denote by

ρq1,...,qt : Z → Z/q1Z× · · · × Z/qtZ

the canonical reduction morphism ρq1,...,qt(n) = (n mod q1, . . . , n mod qt),
and shall write n ≡ ¬a mod q instead of n 6≡ a mod q. For example, the
condition

ρ3,5,17(p) = (2,¬3,¬8)
means that p ≡ 2 mod 3, p 6≡ 3 mod 5 and p 6≡ 8 mod 17.
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Proposition 4.1 Let p be an odd prime number. Then we have:

1. n(p, 2) =

{

1 if ρ3(p) = 2
2 if ρ3(p) = ¬2,

2. n(p2, 2) = 3,

3. n(p3, 2) =















1 if ρ3,5(p) = (2, 2)
2 if ρ3,5(p) = (2,¬2)
3 if ρ3,5(p) = (¬2, 2)
4 if ρ3,5(p) = (¬2,¬2),

4. n(p4, 2) =

{

4 if ρ7(p) = 3
5 if ρ7(p) = ¬3,

5. n(p5, 2) =































1 if ρ3,5,17(p) = (2, 3, 8)
2 if ρ3,5,17(p) = (2, 3,¬8) or (2,¬3, 8)
3 if ρ3,5,17(p) = (2,¬3,¬8)
4 if ρ3,5,17(p) = (¬2, 3, 8)
5 if ρ3,5,17(p) = (¬2, 3,¬8) or (¬2,¬3, 8)
6 if ρ3,5,17(p) = (¬2,¬3,¬8),

6. n(p6, 2) =

{

6 if ρ31(p) = 15
7 if ρ31(p) = ¬15.

With the Chinese Remainder Theorem, the above result implies that
n(p3, 2) depends on the class of p modulo 15, and that n(p4, 2), n(p5, 2) and
n(p6, 2) depend on the class of p modulo 7, 255 and 31, respectively.

Proof. Let k ≤ 6. We determine n(pk, 2) using Proposition 2.2. As
p is an odd prime, counting the factorizations 2pk = uv with u ≤ v and
gcd(u + 1, v + 1) = 1 amounts to count the number of exponents i in the
range 0 ≤ i ≤ k satisfying the condition

gcd(pi + 1, 2pk−i + 1) = 1.

A convenient way to ease the computation of this gcd is to replace p by a
variable x and to reduce, in the polynomial ring Z[x], the greatest common
divisor of xi + 1 and 2xj + 1 to the simpler form

gcd(xi + 1, 2xj + 1) = gcd(f, g), (4)
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where either polynomial f or g is constant. Polynomials are used here pre-
cisely for allowing such degree considerations. Since gcd(pi + 1, 2pj + 1) is
odd, we may equivalently work in the rings Z[2−1] or Z[2−1, x], where 2 is
made invertible. Note that these rings are still unique factorization domains.

We obtain the following table, with a method explained below. For sim-
plicity, we write (f, g) rather than gcd(f, g), and 1 whenever either f or g is
invertible in the ring Z[2−1, x]. The cases i = 0 and j = 0 are not included,
since then xi + 1 and 2xj + 1 are already constant, respectively.

gcd 2x+ 1 2x2 + 1 2x3 + 1 2x4 + 1 2x5 + 1 2x6 + 1

x+ 1 1 (x+ 1, 3) 1 (x+ 1, 3) 1 (x+ 1, 3)

x2 + 1 (2x+ 1, 5) 1 (2x− 1, 5) (x2 + 1, 3) (2x+ 1, 5) 1

x3 + 1 (2x+ 1, 7) (x− 2, 9) 1 (2x− 1, 9) (x+ 2, 7) (x3 + 1, 3)

x4 + 1 (2x+ 1, 17) (2x2 + 1, 5) (x− 2, 17) 1 (2x− 1, 17) (2x2 − 1, 5)

x5 + 1 (2x+ 1, 31) (x+ 4, 33) (4x+ 1, 31) (x− 2, 33) 1 (2x− 1, 33)

x6 + 1 (2x+ 1, 65) (2x2 + 1, 7) (2x3 + 1, 5) (x2 − 2, 9) (x− 2, 65) 1

Table 1: Reduction of gcd(xi + 1, 2xj + 1) for 1 ≤ i, j ≤ 6.

In order to construct this table, we use the most basic trick for computing
gcd’s in a unique factorization domain A, namely:

g1 ≡ g2 mod f ⇒ gcd(f, g1) = gcd(f, g2) (5)

for all f, g1, g2 ∈ A. As an illustration, let us reduce gcd(x2 + 1, 2x3 + 1) to
the form (4) in the ring Z[2−1, x]. We have

gcd(x2 + 1, 2x3 + 1) = gcd(x2 + 1,−2x+ 1) (6)

= gcd(2−2 + 1,−2x+ 1) (7)

= gcd(1 + 22, 2x− 1), (8)

where steps (6) and (7) follow from (5) and the respective congruences

x2 ≡ −1 mod (x2 + 1),
x ≡ 2−1 mod (−2x+ 1).

Hence gcd(x2 + 1, 2x3 + 1) = gcd(2x− 1, 5), as displayed in Table 4.1.
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Now, from that table, it is straightforward to determine those pairs of
exponents i, j with i+ j ≤ 6 and those odd primes p for which

gcd(pi + 1, 2pj + 1) = 1,

and hence to obtain the stated formulas for n(pk, 2). Consider, for instance,
the case k = 3. We shall count those exponents i ∈ {0, 1, 2, 3} for which

gcd(pi + 1, 2p3−i + 1) = 1. (9)

i = 0: Condition (9) is always satisfied.

i = 1: Table 4.1 gives gcd(p+1, 2p2+1) = gcd(p+1, 3), which equals 1 exactly
when p 6≡ 2 mod 3.

i = 2: Table 4.1 gives gcd(p2 + 1, 2p + 1) = gcd(2p + 1, 5), which equals 1
exactly when p 6≡ 2 mod 5.

i = 3: Finally, we have gcd(p3 + 1, 3) = 1 exactly when p 6≡ 2 mod 3.

It follows that n(p3, 2) is entirely determined by the classes of p mod 3
and 5, with a value ranging from 1 to 4 depending on whether ρ3,5(p) equals
(2, 2), (2,¬2), (¬2, 2) or (¬2,¬2), as stated.

The cases k = 1, 2, 4, 5, 6 are similar and left to the reader.

We leave the determination of n(p7, 2) as an exercise to the reader. Let
us just mention that the value of this function depends on the class of the
prime p mod 3 · 5 · 11 · 13 · 17, and that its range is equal to {1, 2, . . . , 8}. The
case k = 8 is much simpler. We state the result without proof.

Proposition 4.2 Let p be an odd prime number. Then we have:

n(p8, 2) =















6 if ρ7,31,127(p) = (5, 23, 63)
7 if ρ7,31,127(p) = (¬5, 23, 63), (5,¬23, 63) or (5, 23,¬63)
8 if ρ7,31,127(p) = (¬5,¬23, 63), (¬5, 23,¬63) or (5,¬23,¬63)
9 if ρ7,31,127(p) = (¬5,¬23,¬63).

That was the gentle side of the story. Here comes the harder one.
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4.2 When k grows

When k grows arbitrarily, the task of determining n(pk, 2) for all odd primes
p using Proposition 2.2 becomes much more complicated, and turns out to
be linked to hard problems. Let us focus on one specific factorization of 2pk,
namely 2pk = uv with

u = pk−1, v = 2p.

In order to find when this factorization contributes 1 to n(pk, 2), we need to
decide when gcd(pk−1 + 1, 2p+ 1) is equal to 1. Here is the key reduction.

Lemma 4.3 Let p be an odd prime and let m ∈ N. Then

gcd(pm + 1, 2p+ 1) =

{

gcd(2m + 1, 2p+ 1) if m is even,
gcd(2m − 1, 2p+ 1) if m is odd.

Proof. As earlier, we will reduce gcd(xm + 1, 2x + 1) in Z[2−1, x] to
the form gcd(f, g), where either f or g is a constant polynomial. Since
x ≡ −2−1 mod (2x+ 1), trick (5) yields

gcd(xm + 1, 2x+ 1) = gcd((−2)−m + 1, 2x+ 1)

= gcd(2m + (−1)m, 2x+ 1).

Substituting x = p gives the stated formula.

Hence, in order to determine when gcd(pm + 1, 2p+ 1) equals 1, we need
to know the prime factors of 2m + 1 for m even, and of 2m − 1 for m odd.
This is an ancient open problem. It is not even known at present whether
there are finitely or infinitely many Fermat or Mersenne primes, i.e. primes
of the form Ft = 22

t

+1 or Mq = 2q − 1 with t ≥ 0 and q prime, respectively.

• Assume for instance that k = 2t+1 for some t ≥ 1. Then k− 1 is even,
and thus Lemma 4.3 yields

gcd(pk−1 + 1, 2p+ 1) = gcd(Ft, 2p+ 1). (10)

Therefore, as long as the prime factors of the Fermat number Ft remain
unknown, we cannot determine those primes p for which the gcd in (10)
equals 1, and hence write down an exact formula for n(pk, 2) in the spirit of
Proposition 4.1. For the record, as of 2010, the prime factorization of Ft is
completely known for t ≤ 11 only [5].
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• Assume now that k = q + 1 for some large prime q. Then k − 1 = q is
odd, and Lemma 4.3 yields

gcd(pk−1 + 1, 2p+ 1) = gcd(2q − 1, 2p+ 1). (11)

Here again, we do not know the prime factors of Mq = 2q − 1 in general;
it may even happen that 2q − 1 hits some unknown Mersenne prime. Thus,
we will not know for which primes p the gcd in (11) equals 1, i.e. when the
specific factorization 2pk = pk−1 ·2p contributes 1 to n(pk, 2). For the record,
the largest prime currently known is the Mersenne prime p = 243,112,609 − 1,
found in August 2008 [4].

The above difficulties concern the specific factorization 2pk = pk−1 · 2p.
However, most other ones will also lead to trouble for some exponents k. For
instance, consider the factorization 2pk = pk−2 · 2p2, and let k = 2t+1 + 2.
Then, a computation as in the proof of Lemma 4.3 yields

gcd(pk−2 + 1, 2p2 + 1) = gcd(Ft, 2p
2 + 1).

Once again, not knowing the prime factors of Ft = 22
t

+ 1 prevents us to
know for which primes p this gcd equals 1.

5 Concluding remarks and open questions

We have determined n(g, 2) when 2g−1 is prime, for g = 2k for all k ≥ 1, and
for g = pk for all odd primes p and k ≤ 6. The general case is probably out
of reach. However, here are a few questions which might be more tractable,
yet which we cannot answer at present.

1. Is there an explicit formula for n(3k, 2) as a function of k? Is it true

that n(3k, 2) goes to infinity as k does?

Here are the values of this function for k = 1, 2, . . . , 20:

2, 3, 4, 4, 5, 7, 8, 9, 8, 9, 11, 13, 11, 15, 16, 14, 14, 18, 20, 21.

2. Can one characterize those integers g ≥ 1 for which n(g, 2) = 1?

In special cases, we know enough to get a complete answer, for in-
stance when g is prime using Proposition 4.1, or when g = 2k using
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Theorem 3.1. However, the general case seems to be very hard. As an
appetizer, let us mention that a prime p satisfies n(p21, 2) = 1 if and
only if p ≡ 8 mod 3 · 5 · 17 · 257 · 65537; the smallest such prime is

p = 12, 884, 901, 893.

3. Let r ∈ N, r ≥ 1. Does n(p1 · · · pr, 2) attain every value i ∈ {1, 2, . . . , 2r}
for suitable distinct primes p1, . . . , pr, and infinitely often so?

4. Let l ∈ N, l ≥ 1. Does n(p2l−1, 2) attain every value i ∈ {1, 2, . . . , 2l}
for suitable odd primes p, and infinitely often so?

5. In contrast, is it true that min{n(p2l, 2) | p odd prime} goes to infinity

with l?

Using the above methods, and a classical theorem of Dirichlet, it is fairly
easy to show that, independently of the parity of k, the function n(pk, 2)
attains its maximal value k + 1 infinitely often.
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