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Abstract In this paper, we investigate tilings of tori and rectangles with rectangular
tiles. We present necessary and sufficient conditions for the existence of an integer C
such that any torus, having dimensions greater than C, is tiled with two given rectan-
gles (C depending on the dimensions of the tiles). We also give sufficient conditions
to tile a sufficiently large n-dimensional rectangle with a set of (n-dimensional) rect-
angular tiles. We do this by combining the periodicity of some particular tilings and
results concerning the so-called Frobenius number.
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1 Introduction

Let a and b be positive integers. Let R(a,b) be the 2-dimensional rectangle of sides
a and b and let T (a,b) be the 2-dimensional torus. We think of T (a,b) as a rect-
angle where their parallel sides are identified in the usual way. We will say that a
torus T (or a rectangle R) can be tiled with tiles (i.e., smaller 2-dimensional rectan-
gles) R1, . . . ,Rk if T (or R) can be filled entirely with copies of Ri, 1 ≤ i ≤ k where
rotations are not allowed.
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Question 1. Does there exist a function CT = CT (x,y,u,v) (resp. CR = CR(x,y,u,v))
such that for all integers a,b ≥CT (resp. a,b ≥CR) the torus T (a,b) (resp. rectan-
gle R(a,b)) can be tiled with copies of the rectangles R(x,y) and R(u,v) for given
positive integers x,y,u and v?

The special case of Question 1 for R(a,b) when x = 4,y = 6,u = 5 and v = 7 was
posed in the 1991 William Lowell Putnam Examination (Problem B-3). In this case,
Klosinski et. al. [9] gave a lower bound for CR. Their method was based on knowl-
edge of the Frobenius number. The Frobenius number, denoted by g(s1, . . . ,sn), of
a set of relatively prime positive integers s1, . . . ,sn, is defined as the largest integer
that is not representable as a nonnegative integer combination of s1, . . . ,sn. It is well
known [15] that

g(s1,s2) = s1s2− s1− s2. (1)

It turns out that the computation of a similar (simple) formula when n≥ 3 is much
more difficult. In fact, finding g(s1, . . . ,sn), for general n, is a hard problem from the
computational point of view (we refer the reader to [13] for a detailed discussion on
the Frobenius number). Let us notice that equality (1) can be interpreted in terms of
1-dimensional tilings as follows:

all sufficiently large interval can be tiled by two given intervals whose lenghts are relatively
primes.

Klosinski et. al. [9] used equation (1), with particular values for s1 and s2, to
show that R(a,b) can be tiled with R(4,6) and R(5,7) if a,b ≥ 2214. We improve
the latter by showing (see Remark 1) that if a,b ≥ 198 then R(a,b) can be tiled
with R(4,6) and R(5,7). This lower bound is not optimal, Narayan and Schwenk
[10] showed that it is enough to have a1,a2 ≥ 33 by presenting tilings with more
complicated patterns (allowing rotations of both tiles) which is not the case here.
We also mention that Barnes [1, Theorem 2.1] used algebraic arguments to show
the existence of CR if some complex set points conditions are verified but explicit
value for CR was not given.

In the same spirit of the subjects treated in the volume Unusual Applications of
Number Theory [11], we explore the connection between tilings and the Frobenius
number. We show how plane periodic tilings can be pertubed with tilings, obtained
via the Frobenius number, leading to a positive answer to Question 1. We hope these
new methods will motivate further investigations.

The paper is organized as follows. In the next section, we shall give neccessary
and sufficiente conditions on integers x,y,u,v for the existence of CT (x,y,u,v) (see
Theorem 3). In Section 3, we give various results in relation with a generalization
of CR for n-dimensional rectangles (see Theorem 5). In particular, the knowledge
of an upper bound for g(s1, . . . ,sn) is used to show that a n-dimensional rectangle
R(a1, . . . ,an) can be tiled with a given set of tiles if a j > r2n for all 1≤ j ≤ n where
r is the largest length among all the tiles (see Corollary 1). We finally give some
results concerning tilings of n-dimensional cubes.



A Tiling Problem and the Frobenius Number 3

2 Tiling tori

It is known [5, 8] that R(a,b) can be tiled with R(x,y) if and only if either x divides
one side of R and y divides the other or xy divides one side of R and the other side
can be expressed as a nonnegative integer combination of x and y. This shows that
a rectangle R(a,b) can be tiled with R(1,n) if and only n divide either a or b. It is
clear that this condition is also sufficient for tiling T (a,b) (since a tiling of R(a,b)
is also a tiling of T (a,b)) but it is not necessary, see for instance Figure 1.

Fig. 1 A tiling of T (15,10) with R(1,6) and R(6,1)

Proposition 1. Let n be a prime integer. Then, T (a,b) can be tiled with R(1,n) if
and only if n divides either a or b.

Proof. . If n divides either a or b then there is a trivial tiling of T (a,b). If T (a,b) is
tiled with R(1,n) then n must divides ab and since it is prime then n must divides
either a or b. ut

In 1995, Fricke [6] gave the following characterization for tiling a rectangle with
two squares.

Theorem 1. [6] Let a,b,x and y be positive integers with gcd(x,y) = 1. Then,
R(a,b) can be tiled with R(x,x) and R(y,y) if and only if either a and b are both
multiple of x or a and b are both multiple of y or one of the numbers a,b is a multi-
ple of xy and the other can be expressed as a nonnegative integer combination of x
and y.

The conditions of Theorem 1 are again sufficients for tiling T (a,b) but they are
not necessary, that is, there are tilings of T (a,b) with R(x,x) and R(y,y) not verifying
the above conditions (and thus not tiling R(a,b)), see for instance Figure 2.

Remila [14] studied tilings of T (a,b) with two bars (that is, when the rectan-
gles are of the form R(1,y) and R(u,1)) where rotations are not allowed. In [14,
Section 8] the problem of investigating tilings of tori with two general rectangles
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Fig. 2 A tiling of T (13,13) with R(2,2) and R(3,3)

(not neccesarily bars) was posed. By using the algebraic approach (via polynomi-
als and ideals) first introduced by Barnes [1, 2], Clivio found [4, Theorem 6.2] the
existence of a value C such that for any n-dimensional torus T , having dimensions
at least C, there exist necessary and sufficient conditions for T to be tiled with two
given n-dimensional rectangles. In particular, for the 2-dimensional case, Clivio’s
result reads as follows.

Theorem 2. [4, Theorem 6.2] For arbitrary rectangles R(x,y) and R(u,v) there ex-
ists integer C such that for every T (a,b) with a,b ≥ C, T (a,b) can be tiled with

R(x,y) and R(u,v) if and only if gcd
(

uv
gcd(u,a)gcd(v,b) ,

xy
gcd(x,a)gcd(y,b)

)
= 1.

Theorem 2 gives a characterization of sufficiently large tori to be tiled with two
given rectangles. An estimation of value C was not given in [4] (even for n = 2).
Clivio remarked that if the volumes of the two given rectangles R(x,y) and R(u,v)
(and, in general, the two given n-dimensional rectangles) are relatively primes, that
is, if gcd(xy,uv) = 1, then the condition of Theorem 2 always holds.

Proposition 2. [4, Proposition 6.1, Step 2] Let u,v,x,y and s be positive integers
with gcd(xy,uv) = gcd(s,xy) = gcd(s,uv) = 1 and such that T (s,s) is tiled with
R(xy,xy) and R(uv,uv). Then, T (a,b) can be tiled with R(x,y) and R(u,v) if a,b ≥
s(xy)(uv).

This yield to the following lower bound (by taking s = xy+uv)

CT ≥ (xy+uv)xyuv. (2)

We might improve the latter by using a complete different technique.
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Theorem 3. Let u,v,x and y be positive integers such that gcd(xy,uv) = 1. Then,
T (a,b) can be tiled with R(x,y) and R(u,v) if

a,b≥min{n1(uv+ xy)+1,n2(uv+ xy)+1}

where n1 = max{ux,vy} and n2 = max{vx,uy}.

We notice that the above lower bound improves the one given in equation (2) by
a factor of max{ux,vy}. For instance, if we take R(3,5) and R(4,2) then n1 = 12,
n2 = 20 and Theorem 3 gives CT ≥ 12(15 + 8)+ 1 = 277 while equation (2) gives
CT ≥ (15 + 8)(15)(8) = 2760. The latter lower bound can be improved since, by
Proposition 2, CT ≥ 120s where gcd(s,15) = gcd(s,8) = 1 and such that T (s,s) is
tiled with R(15,15) and R(8,8). It is clear that such integer s must be at least 11 and
thus obtainig CT ≥ 1320 (which still worst than our lower bound).

Theorem 3 implies the following characterization.

Theorem 4. Let u,v,x and y be positive integers. Then, there exists CT (x,y,u,v) such
that any T (a,b) with a,b ≥ CT can be tiled with R(x,y) and R(u,v) if and only
ifgcd(xy,uv) = 1.

Proof. The sufficiency follows from Theorem 3. For the necessity, suppose, by
contradiction, that gcd(xy,uv) = d > 1. Since T (a,b) can be tiled with R(x,y)
and R(u,v) then ab = l1(xy) + l2(uv) for some nonnegative integers l1, l2 and any
a,b ≥CT . Since gcd(xy,uv) = d then d divides ab for any a,b ≥CT . In particular,
d divides pq for any pair of primes p,q > CT which is a contradiction. ut

In order to prove Theorem 3, we may consider a special Euclidean plane tiling
T ∗ formed with two rectangles R(x,y) and R(u,v) with sides parallel to the real
axes, as shown in Figure 3 (we always suppose that the sides u and x are horizontal
and the sides y and v are vertical).

Let u and v be positive integers. A plane tiling T is said to be horizantally pe-
riodic with horizontal period, denoted by hT , equals to u (resp. vertically periodic
with vertical period, denoted by vT , equals to v) if T + (u,0) (resp. T + (0,v))
is a congruent tansform mapping T into itself. A tiling T is periodic if it is both
horizontally and vertically periodic.

Lemma 1. Let T ∗ be the plane tiling given in Figure 3 with R(x,y) and R(u,v).
Then, T ∗ is periodic with hT ∗ = vT ∗ = uv+ xy.

Proof. Without loss of generality, we assume that the lower leftmost corner of one
copy of R(x,y) is placed at (0,0). It is clear that the coordinate of the lower leftmost
corner of any other copy of R(x,y) is given by p(x,v)+q(u,−y) with p,q ∈ Z. And
thus, the translation T ∗+(px+qu, pv−qy) is a congruent transform mapping T ∗
into itself. In particular, by taking p = y and q = v (resp. by taking p = u and q =−x)
we have that T ∗ +(vu + yx,0) (resp. T ∗ +(0,xy + uv)) is a congruent transform
mapping T ∗ into itself. Therefore, T ∗ is periodic with hT ∗ = vT ∗ = uv+ xy. ut
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Fig. 3 Tiling T ∗ of the plane

Proposition 3. Let p,q ≥ 1 be integers. Then, T (phT ∗ ,qvT ∗) can be tiled with
R(x,y) and R(u,v).

Proof. Without loss of generality, we assume that the lower leftmost corner of one
copy of R(x,y) is placed at (0,0). Let B be the rectangle formed by lines x1 = 0,
x2 = phT ∗ , y1 = 0 and y2 = qvT ∗ . By definition of horizontally period, if a rectangle
R is split by a line x1 into two parts, r1 (the part lying inside B) and r2 (the part lying
outside B) then the corresponding traslated rectangle is also split by line x2 into
two parts r′1 (the part lying outside B) and r′2 (the part lying inside B) where r1 is
congruent to r′1 and r2 is congruent to r′2 (similarly for the split rectangles by lines
y1 and y2), this is illustrated in Figure 4 when p = q = 1 and x = 3,y = 5,u = 4,v =
2. Thus, the tiling induced by the copies inside B where their opposites sides are
identified gives the desired tiling of T (phT ∗ ,qvT ∗). ut

Proposition 4. Let x,y,u and v be positive integers. Then, T (phT ∗ + sux,qvT ∗ +
tvy) can be tiled with R(x,y) and R(u,v) for all integers p,q≥ 1 and s, t ≥ 0.

Proof. Let E1 (resp. E2) be the row formed by sticking together u (resp. x) copies of
R(x,y) (resp. R(u,v)) and let F1 (resp. F2) be the column formed by sticking together
v (resp. y) copies of R(x,y) (resp. R(u,v)), see Figure 5.
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Fig. 4 Rectangle B formed with R(3,5) and R(4,2)
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Fig. 5 Blocks of rows and columns

Given the constructed rectangle B as in Proposition 3 (that induces a tiling
of T (phT ∗ ,qvT ∗)), we shall construct a rectangle B′ that will induce a tiling of
T (phT ∗ + sux,qvT ∗ + tvy). We will do this as follows (each step of the construc-
tion is illustrated with the case when p = q = s = t = 1, x = 3,y = 5,u = 4,v = 2).

Let E (resp. F) be the set of rectangles R of T ∗ such that either R shares its
left-hand side border (resp. its bottom border) with the right-hand side border (resp.
the top border) of B or R is cut by the right-hand side border (resp. the top border)
of B. Let B̄ be the union of the rectangles inside B together with sets E and F . We
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place B̄ in the plane such that the leftmost bottom corner of one copy of R(x,y) is
placed at (0,0). Figure 6 illustrates the construction of B̄.

Now, for each rectangle R of E we stick s copies of E1 if R = R(x,y) (or s copies
of E2 if R = R(u,v)) to the right-hand side of R. And, analogously, for each rectangle
R of F we stick t copies of F1 if R = R(x,y) (or t copies of F2 if R = R(u,v)) above
R, we do this in Figure 7.

Let B′ be the rectangle formed by lines x1 = 0,y1 = 0,x3 = phT ∗ + sux and
y3 = qvT ∗ + tvy (notice that if s = t = 0 then x3 = x2 and y3 = y2). The rectangle
formed by lines x2,x3,y2 and y3 (lying inside B′ in its rightmost top corner) is of
size (sux)× (tvy) and it can be tiled by placing tv, rows each formed by sticking
together su copies of E1, this is done in Figure 8.

We have the following two observations concerning B′.

(a) By definition of horizontal (resp. vertical) periodicity of T ∗, the intersection
of x1 and y3 (resp. of y1 and x3) is a leftmost bottom corner of a copy of R(x,y).

(b) If a rectangle is split by line x1 into two parts r1 (part lying inside B′) and
r2 (part lying outside B′) then the corresponding traslated rectangle is split by line
x3 into two parts, r′1 (part lying outside B′) and r′2 (part lying inside B′) where r1 is
congruent to r′1 and r2 is congruent to r′2 (similarly for the split rectangles by lines
y1 and y3).

Therefore, by the above observations, the desired tiling of T (phT ∗ +sux,qvT ∗ +
tvy) is obtained by identifying opposite sides of B′. ut

Proposition 5. Let x,y,u and v be positive integers such that gcd(xy,uv) = 1. Then,
gcd(xy+uv,vx) = gcd(xy+uv,uy) = 1.

Proof. We first show that if gcd(xy,uv) = 1 then gcd(u,x) = gcd(u,y) = gcd(v,x) =
gcd(v,y) = 1. Indeed, if gcd(x,u) = d > 1 then there exists an integer k > 1 with
k|d. So, k divides both x and u and thus k|gcd(xy,uv) implying that gcd(xy,uv) > 1
which is a contradiction (similar for the other cases).

We shall now show that gcd(xy + uv,vx) = 1 (the case gcd(uv + xy,uy) = 1 can
be done similarly). Let us suppose that gcd(uv + xy,vx) = k > 1 and thus k divides
both uv+xy and vx. Let p > 1 be a prime such that p divides k. Then p also divides
both uv+ xy and vx, and since p is prime then we have that p divides either v or x.

Case 1) If p divides v then p|uv and since p|(uv + xy) then either p|x (but since
p|v then p|gcd(x,v) implying that gcd(x,v) > 1 which is a contradiction) or p|y (but
since p|v then p|gcd(y,v) implying that gcd(y,v) > 1 which is a contradiction).

Case 2) If p divides x then p|xy and since p|(uv + xy) then either p|u (but since
p|x then p|gcd(x,u) implying that gcd(x,u) > 1 which is a contradiction) or p|v (but
since p|x then p|gcd(x,v) implying that gcd(x,v) > 1 which is a contradiction). ut

We may now prove Theorem 3.
Proof of Theorem 3. Let C = max{g(hT ∗ ,ux)+ hT ∗ + 1,g(vT ∗ ,vy)+ vT ∗ + 1}

(notice that the Frobenius numbers are well defined by Proposition 5). Let us sup-
pose that C = g(hT ∗ ,ux)+hT ∗ +1 (similarly, in the case C = g(vT ∗ ,uy)+vT ∗ +1).
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Fig. 6 Rectangle B̄

Then, by definition of the Frobenius number there exist integers p,s ≥ 0 such that
N = phT ∗ + sux for any integer N ≥ g(hT ∗ ,ux)+1. Thus there exist integers p≥ 1
and s≥ 0 such that N = phT ∗ + sux for any integer N ≥ g(hT ∗ ,vx)+hT ∗ +1. So,
since p ≥ 1 then, by Proposition 4, T (a,b) can be tiled with R(x,y) and R(u,v) if
a,b≥max{g(hT ∗ ,ux)+hT ∗ +1,g(vT ∗ ,vy)+ vT ∗ +1} or equivalentely, by equa-
tion (1), if a,b≥max{vx(uv+ xy)+1,uy(uv+ xy)+1}.

We finally observe that in the construction of T ∗ we assume that the sides v and
y are vertical and the sides u and x are horizontal but we could construct a similar
tiling with the sides u and y vertical and the sides v and x horizontal. In this case,
by applying the same arguments as above, we obtain that T (a,b) can be tiled with
R(x,y) and R(v,u) if a,b ≥ max{ux(uv + xy) + 1,vy(uv + xy) + 1}, and the result
follows. ut
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Fig. 7 Extended tiling

3 Tiling rectangles

Let a1, . . . ,an be positive integers. We denote by R = R(a1 . . . ,an) the n-dimensional
rectangle of sides ai, that is, R = {(x1, . . . ,xn) ∈ Rn|0 ≤ xi ≤ ai, i = 1, . . . ,n}. A
n-dimensional rectangle R is said to be tiled with tiles (n-dimensional rectangles)
R1, . . . ,Rk if R can be filled entirely with copies of Ri, 1 ≤ i ≤ k (rotations are not
allowed).

Our main result in this section is given by Theorem 5 (below) stating that a
sufficiently large n-dimensional rectangle can be tiled with a set of n + k− 1 tiles
if any k-subset of the set of 1-coordinates (set of the first lengths) of the tiles are
relatively primes and the set of j-coordinates (set of the jth lengths) of the tiles are
pairwise relatively prime for each j = 2, . . . ,n. We shall use again the Frobenius
number and for, we need the following result.

Proposition 6. Let a1, . . . ,an be positive integers such that gcd(ai,a j) = 1 for all
1≤ i 6= j ≤ n. Then,
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Fig. 8 Rectangle B′ inducing a tiling of T ∗(33,35) with R(3,5) and R(4,2)

gcd
(

ai1 · · ·ai`
ai`

, . . . ,
ai1 · · ·ai`

ai1

)
= 1

for any {i1 < .. . < i`} ⊆ {1, . . . ,n}.

We leave the reader to prove this proposition by induction on `.

Theorem 5. Let k ≥ 2 and n≥ 1 be integers. Let Ri(xi
1, . . . ,x

i
n), i = 1, . . . ,n+ k−1

be rectangles formed with integers xi
j ≥ 2 such that

(a) gcd(xi1
1 , . . . ,xik

1 ) = 1 for any {i1, . . . , ik} ⊂ {1, . . . ,n+ k−1} and
(b) gcd(xi1

j ,xi2
j ) = 1 for any {i1, i2} ⊂ {1, . . . ,n+ k−1} and any j = 2, . . . ,n.

Let g1 = max{g(x1
i1 , . . . ,x

1
ik)|{i1, . . . , ik} ⊂ {1, . . . ,n+ k−1}} and

g` = max

{
g

(
xi1
` · · ·x

i`+k−2
`

xi`+k−2
`

, . . . ,
xi1
` · · ·x

i`+k−2
`

xi1
`

)
| {i1, . . . , i`+k−2} ⊆ {1, . . . ,n+ k−1}

}

for each ` = 2, . . . ,n. Then,
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R(a1, . . . ,an) can be tiled with tiles R1, . . . ,Rn+k−1 if a j > max
1≤`≤n

{g`} for all j.

Notice that when k = 2 the number of tiles is n+1 which is the minimum required
since, by Theorem 1, two square tiles do not suffice to tile all sufficiently large
rectangles. Also, notice that if k = 2 condition (a) becomes condition (b) with j = 1
and when k > 2 the number of tiles is increased but condition (a) is less restrictive
that condition (b), we justify this below (see second paragraph after Corollary 1).
We finally remark that the Frobenius numbers gi used in Theorem 5 are well defined
by Proposition 6.

In order to understand how the Frobenius number is used, we show how the
constructive proof proceeds in the special case when n = 2 and k = 2 (the complete
proof, given below, will be done by induction on n). Let us consider a rectangle
R(a1,a2) and tiles Ri(xi

1,x
i
2) with i = 1, . . . ,3. Since gcd(xi

1,x
j
1) = 1 then if a1 > g1

we have a1 = uxi
1 + vx j

1 for all 1 ≤ i 6= j ≤ 3. So, we can form a rectangle Ri j =
R(a1,xi

2x j
2) by sticking together u copies of Ri and v copies of R j along the first

coordinate, and then by replacing each Ri (resp. R j) by a colmumn of x j
2 (resp. of

xi
2) copies of Ri (resp. R j). Now, since gcd(xi

2,x
j
2) = 1 for all 1 ≤ i 6= j ≤ 3 then,

by Proposition 6, gcd(x1
2x2

2,x
1
2x3

2,x
2
2x3

2) = 1. So, if a2 > g(x1
2x2

2,x
1
2x3

2,x
2
2x3

2) we have
a2 = ux1

2x2
2 + vx1

2x3
2 + wx2

2x3
2. Therefore, R(a1,a2) can be tiled with R1,R2,R3 by

sticking together u copies of R12, v copies of R13 and w copies of R23 along the
second coordinate.

Remark 1. R(a,b) can be tiled with R(4,6) and R(5,7) if a,b > 197.

Proof. We apply the above argument with R1(6,4),R2(5,7) and R3(7,5) obtaining
that g1 = max{g(6,5),g(6,7),g(5,7)}= max{19,29,23}= 29 and g2 = max{g(28,20,35)}=
197. ut

We denote by (R;q) the rectangle obtained from R(x1, . . . ,xn) by sticking to-
gether q copies of R along the nth-axis, that is, (R;q) = R(x1, . . . ,xn−1,qxn). We also
denote by R̄ the (n−1)-dimensional rectangle obtained from R(x1, . . . ,xn) by setting
xn = 0, that is, R̄ = R̄(x1, . . . ,xn−1).

Proof of Theorem 5. We shall use induction on the dimension n with a fixed k≥ 2.
For n = 1 we have that gcd(xi1

1 , . . . ,xik
1 ) = 1 for any {i1, . . . , ik} ⊂ {1, . . . ,n+ k−1}.

Since a1 > g1 then, by definition of the Frobenius number, any integer a1 >

g(xi1
1 , . . . ,xik

1 ) is of the form a1 =
k
∑
j=1

u jx
i j
1 where u j is a nonnegative integer. Thus,

the 1-dimensional rectangle R(a1) (that is, the interval [0,a1]) can be tiled by
sticking together tiles (Ri1 ;u1), . . . ,(Rik ;uk) (that is, by sticking together intervals
[0,u1xi1

1 ], . . . , [0,ukxik
1 ]) .

Let us suppose that it is true for n− 1 ≥ 1 and we prove it for n. Let xi
j

be a positive integer for each j = 1, . . . ,n and each i = 1, . . . ,n + k − 1 with
gcd(xi1

1 , . . . ,xik
1 ) = 1 for any {i1, . . . , ik} ⊂ {1, . . . ,n+ k−1} and gcd(xi1

j ,xi2
j ) = 1

for any {i1, i2} ⊂ {1, . . . ,n+ k−1} and any j = 2, . . . ,n. Let Ri = Ri(xi
1, . . . ,x

i
n),
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i = 1, . . . ,n+ k−1 and a j > max{g1,g2, . . . ,gn}. By induction, R(a1, . . . ,an−1) can
be tiled with tiles R̄i1 , . . . , R̄in+k−2 for any {i1 < · · · < in+k−2} ⊂ {1, . . . ,n + k− 1}
since a j > max{g1,g2, . . . ,gn−1} for any 1≤ j ≤ n−1.

We claim that R(a1, . . . ,an−1,x
i1
n · · ·xin+k−2

n ) can be tiled with tiles Ri1 , . . . ,Rin+k−2
for any {i1 < · · · < in+k−2} ⊂ {1, . . . ,n + k− 1}. Indeed, if we consider the rec-
tagle R(a1, . . . ,an−1) embedded in Rn with xn = 0 then, by replacing each tile

R̄i j (used in the tiling of R(a1, . . . ,an−1)) by (Ri j ;
x

i1
n ···xin

n

x
i j
n

) we obtain a tiling of

R(a1, . . . ,an−1,x
i1
n · · ·xin+k−2

n ) with tiles Ri1 , . . . ,Rin+k−2 .

Now, since an > gn then an = wn+k−1(
x1

n···xn+k−1
n

xn+k−1
n

) + · · ·+ w1(
x1

n···xn+k−1
n

x1
n

) where

each wi is a nonnegative integer. By the above claim, rectangle R′j =(a1, . . . ,an−1,
x1

n···xn+k−1
n

x j
n

)

can be tiled with tiles {R1, . . . ,Rn+k−1} \ R j for each j = 1, . . . ,n + k− 1. Thus,
R(a1, . . . ,an−1,an) can be tiled with R1, . . . ,Rn+k−1 by sticking together tiles (R′1;w1), . . . ,(R′n+k−1;wn+k−1)
along the nth-axis. ut
Example 1. Let R1 = (22,3,3),R2 = (14,5,5),R3 = (21,2,2),R4 = (15,7,7) and
R5 = (55,11,11). In this case, we have k = n = 3.

g1 = max{g(22,14,21),g(22,14,15),g(22,14,55),g(22,21,15),g(22,21,55),g(22,15,55),
g(14,21,15),g(14,21,55),g(14,15,55),g(21,15,55)}

= max{139,91,173,181,243,97,288,151,179}= 288.

With ` = 2 we obtain

g2 = max{g(3 ·5,3 ·2,5 ·2),g(3 ·5,3 ·7,5 ·7),g(3 ·5,3 ·11,5 ·11),g(3 ·2,3 ·7,2 ·7)
g(3 ·2,3 ·11,2 ·11),g(3 ·7,3 ·11,7 ·11),g(5 ·2,5 ·7,2 ·7),g(5 ·2,5 ·11,2 ·11),
g(5 ·7,5 ·11,7 ·11),g(2 ·7,2 ·11,7 ·11)}

= max{g(15,6,10),g(15,21,35),g(15,33,55),g(6,21,14),g(6,33,22),
g(21,33,77),g(10,35,14),g(10,55,22),g(35,55,77),g(14,22,77)}

= max{29,139,227,43,71,331,81,133,603,195}= 603.

And with ` = 3

g3 = max{g(3 ·5 ·2,3 ·5 ·7,3 ·2 ·7,5 ·2 ·7),g(3 ·5 ·2,3 ·5 ·11,3 ·2 ·11,5 ·2 ·11),
g(3 ·5 ·7,3 ·5 ·11,3 ·7 ·11,5 ·7 ·11),g(5 ·2 ·7,5 ·2 ·11,5 ·7 ·11,2 ·7 ·11)}

= max{g(30,105,42,70),g(30,165,66,110),g(105,165,231,385),g(70,110,385,154)}
= max{383,619,2579,1591}= 2579.

Therefore, Theorem 5 implies that R(a1,a2,a3) can be tiled with tiles R1, . . . ,R5
if a1,a2,a3 > max{g1,g2,g3}= {288,603,2579}= 2579.
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Corollary 1. Let k ≥ 2 and n ≥ 1 be integers and let Ri(xi
1, . . . ,x

i
n), i = 1, . . . ,n +

k− 1 be rectangles formed with integers xi
j ≥ 2 verifying conditions (a) and (b) of

Theorem 5. Then,

R(a1, . . . ,an) can be tiled with tiles R1, . . . ,Rn+k−1 if a j > r2n for all j

where r is the largest length among all the tiles Ri.

Proof. The following upper bound for the Frobenius number, due to Wilf [13, The-
orem 3.1.9], states that

g(b1, . . . ,bn)≤ b2
n (3)

where b1 < · · ·< bn are relatively prime integers. In our case, this gives

g` ≤ (z`
`)

2

where z` = max{x1
` , . . . ,x

n+k−1
` } for each ` = 1, . . . ,n. Therefore, by Theorem 5,

we have that R(a1, . . . ,an) can be tiled with tiles R1, . . . ,Rn+k−1 if

ai > r2n ≥ max
1≤`≤n

{z2`
` } ≥ max

1≤`≤n
{g`}, (4)

where r is the largest length among tiles R1, . . . ,Rn+k−1. ut
Notice that the lower bound given in the above corollary depends on the lower

bound given by equation (3) and thus it is not necessary optimal. For instance, in
the above example, Corollary 1 would give a1,a2,a3 > 556 while a1,a2,a3 > 2579
is sufficient as shown in the example.

In [3, Theorem 3], it was announced (without proof) Theorem 5 for the case
when k = 2, that is, when each set consisting of the jth lengths of the tiles, are
pairwise relatively prime. The latter is sometimes restrictive, for instance, the above
example cannot be considered under these conditions. Indeed, any permutation of
the coordinates (lengths) of tiles in this case will give a pair of jth-coordinates not
relatively primes for some 1≤ j ≤ 3.

Katona and Szász [7] also investigated conditions for tiling n-dimensional rect-
angles by applying a generalization of the well-known Marriage theorem. They
showed [7, Theorem 2 and Theorem 3] that R(a1, . . . ,an) can be tiled with tiles
R1, . . . ,Rm if

a j > 3km2mk
r2kn+2 for all j

where r is the largest length among all the tiles and k ≥ 1 is the cardinality of
special sets constructed from the lengths of the tiles. In particular, when k = 1 (the
smallest cardinality possible) the above inequality gives

a j > 3m2m
a2n+2. (5)



A Tiling Problem and the Frobenius Number 15

It is clear that this lower bound is exponentially worst than the one given by
Corollary 1.

3.1 Cube tiles

Theorem 6. [3, Theorem 4] All sufficiently large n-dimensional rectangle R can be
tiled by any given set of n+1 cubes with pairwise relatively prime edge lengths.

We notice that this theorem is a particular case of Theorem 5 by taking k = 2 and
xi

j = ai for each i = 1, . . . ,n + 1 and all 1 ≤ j ≤ n where 1 < a1 < a2 < · · · < an+1
are pairwise relatively prime integers, n ≥ 1. Moreover, Theorem 5 implies that
R(a, . . . ,a︸ ︷︷ ︸

n

) can be tiled with R(a1, . . . ,a1︸ ︷︷ ︸
n

), . . . ,R(an+1, . . . ,an+1︸ ︷︷ ︸
n

) if

a > g(A1, . . . ,An+1) (6)

where Ai = P/ai with P = ∏n+1
j=1 a j. It turns out that the above lower bound can

be stated explicitly by using the following formula, due to Tripathi [16], when 1 <
a1 < a2 < · · ·< an+1 are pairwise relatively prime integers,

g(A1, . . . ,An+1) = nP−
n+1

∑
i=1

Ai. (7)

The above lower bound is not optimal in general. For instance, by combining
equations (6) and (7), we obtain that R(a,a) can be tiled with R(2,2),R(3,3) and
R(p, p) if a ≥ 7p− 6 where p is an odd integer with 3 6 | p. The following result
improves the latter.

Theorem 7. Let p > 4 be an odd integer with 3 6 | p. Then, R(a,a) can be tiled with
R(2,2),R(3,3) and R(p, p) if a≥ 3p+2.

We refer the reader to [12] where a collection of some unpublished work, due to
D.A. Klarner, in relation with Theorem 7 can be found.

Proposition 7. Let L,a,b,c and r be positive integers with b|r and such that r =
x1a+x2c for some integers x1,x2≥ 0 and Lc = y1a+y2b for some integers y1,y2≥ 0.
Then, R(r + ac,r + ac) and R(Lc + kab,Lc + kab) can be tiled with R(a,a),R(b,b)
and R(c,c) for any integer k ≥ 1.

Proof. Suppose that b|r. By Theorem 1, we have that
• R(r,r) can be tiled with R(b,b)
• R(ac,ac) can be tiled with R(a,a),
• R(ac,r) can be tiled with R(a,a) and R(c,c),
• R(Lc,Lc) can be tiled with R(c,c),
• R(Lc,kab) can be tiled with R(a,a) and R(b,b) and
• R(kab,kab) can be tiled with R(a,a) (or with R(b,b)).
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The results folllow by sticking together copies of the tilings of the above rectan-
gles as shown in Figure 9. ut

ac

rac

ac

r

ac r

r

Lc Lc

Lc

kab

kabLc

kab

kab

Fig. 9 Compositions of tilings

Proof of Theorem 7. By Theorem 1, R( f , f ) can be tiled with R(2,2) and R(3,3)
if f ≡ 0 mod 2 or f ≡ 0 mod 3. So, we only need to show that R( f , f ) can be tiled
with R(2,2),R(3,3) and R(p, p) if f ≥ 3p+2 when f is odd and f ≡ 1 or 2 mod 3.
Since 3 6 | p then p≡ i mod 3 with i = 1 or 2.

Let s = p− i + 3t ≥ p + 1 for any integer t ≥ 1. Since s > g(2, p) = p− 2 then
there exist nonnegative integers u and v such that s = 2u+ pv. So, by Proposition 7
(with a = 2,b = 3,r = s and c = p), we have that R(s+2p,s+2p) = R(3(p+ t)−
i,3(p + t)− i) can be tiled with R(2,2),R(3,3) and R(p, p) for any integer t ≥ 1.
Or equivalently, R( f , f ) can be tiled with R(2,2),R(3,3) and R(p, p) for any integer
f ≥ 3p+1 with f ≡−i mod 3.

Also, since p = 3t + i with i = 1 or 2 for some integer t ≥ 1 then for p > 3 we
have that p = (t−1)3+2(2) and so, by Proposition 7 (with a = 2,b = 3,r = s,c = p
and L = 1), we have that, R(p + 6k, p + 6k) = R(3(t + 2k)+ i,3(t +2k)+ i) can be
tiled with R(2,2),R(3,3) and R(p, p) for any integer k≥ 1. Or equivalently, R( f , f )
can be tiled with R(2,2),R(3,3) and R(p, p) for any odd integer f ≥ p + 6 with
f ≡ i mod 3. ut
Corollary 2. R(a,a) can be tiled with (a) R(2,2),R(3,3) and R(5,5) if and only if
a 6= 1,7 and with (b) R(2,2),R(3,3) and R(7,7) if and only if a 6= 1,5,11.

Proof. (a) It is clear that R(1,1) and R(7,7) cannot be tiled with R(2,2),R(3,3) and
R(5,5). By Theorem 7, we have that R(a,a) can be tiled with R(2,2),R(3,3) and
R(5,5) if a≥ 3p+2 = 17 and, by Theorem 1, R(a,a) can be tiled with R(2,2) and
R(3,3) if a≡ 0 mod 2 or a≡ 0 mod 3. These leave us with the cases when a = 5,11
and 13. The case a = 5 is trivial. R(11,11) can be tiled with R(2,2),R(3,3) and
R(5,5) since, by Theorem 7, the result is true for any odd integer a ≥ p + 6 = 11
and a≡ 2 mod 3. Finally, R(13,13) can be tiled as it is illustrated in Figure 10.
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Fig. 10 Tiling R(13,13) with R(2,2),R(3,3) and R(5,5)

(b) It is clear that R(1,1), R(5,5) and R(11,11) cannot be tiled with R(2,2),R(3,3)
and R(7,7). By Theorem 7, we have that R(a,a) can be tiled with R(2,2),R(3,3)
and R(7,7) if a≥ 3p+2 = 23 and, by Theorem 1, R(a,a) can be tiled with R(2,2)
and R(3,3) if a ≡ 0 mod 2 or a ≡ 0 mod 3. These leave us with the cases when
a = 7,13,17 and 19. The case a = 7 is trivial. R(13,13) and R(19,19) both can be
tiled since, by Theorem 7, the result is true for any odd integer a≥ p+6 = 13 with
a≡ 1 mod 3. Finally, R(17,17) can be tiled as it is illustrated in Figure 11. ut
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Fig. 11 Tiling R(17,17) with R(2,2),R(3,3) and R(7,7)
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