

1/35

Benoîte de Saporta

Introduction

antérieurs
Les résultats de
Kesten
Les résultats de
Les résultats de
Le Page

La condition

i-p L'ensemble limite

Nouveau résultat

Eléments de preuve Exemples en

Sur l'équation vectorielle stochastique $Y_{n+1} = A_n Y_n + B_n$ à coefficients iid

Benoîte de Saporta

INRIA Sophia Antipolis Projet OMEGA

Yves Guivarc'h (Université de Rennes 1) Emile Le Page (Université de Bretagne Sud)

Séminaire Probabilité et Théorie Ergodique Amiens, 23 mars 2006

Plan

2/35

Benoîte de Saporta

Introductio

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

i-p L'ensemble limite

Nouveau résultat Eléments de preuve Exemples en dimension 2

- Introduction
- 2 Travaux antérieurs
 - Les résultats de Kesten
 - Les résultats de Le Page
- 3 La condition i-p
 - L'ensemble limite
- Nouveau résultat
 - Eléments de preuve
 - Exemples en dimension 2

Plan

3/35

Benoîte de Saporta

Introduction

Iravaux antérieurs Les résultats de Kesten Les résultats de Le Page

La conditior i-p

Nouveau résultat

Introduction

- Travaux antérieurs
 - Les résultats de Kesten
 - Les résultats de Le Page
- 3 La condition i-p
 - L'ensemble limite
- Nouveau résultat
 - Eléments de preuve
 - Exemples en dimension 2

Modèle Auto-Régressif

4/35

Benoîte de Saporta

Introduction

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

i-p

Nouveau résultat Eléments de pre

Eléments de preuve Exemples en dimension 2

Modèle AR(1):

$$Y_{n+1} = A_n Y_n + B_n \quad n \in \mathbb{N}, \quad Y_n \in \mathbb{R}^d$$

 (A_n, B_n) va iid sur $GI(d, \mathbb{R}) \times \mathbb{R}^d$ d > 1

- séries chronologiques,
- processus de branchement,
- marches aléatoires en milieu aléatoire,
- modèles AR(d), GARCH...

MINRIA Solution Stationnaire

5/35

Introduction

Brandt 1986, Bougerol et Picard 1992

Si

$$\alpha = \lim \frac{1}{n} \log \|A_1 \cdots A_n\| < 0$$

et

$$\mathbb{E} \log^+ \|B_0\| < \infty,$$

unique solution stationnaire de même loi que

$$R = \sum_{n=1}^{\infty} A_1 \cdots A_{n-1} B_n$$

Moments de la loi stationnaire

6/35

Benoîte de Saporta

Introduction

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

La conditior i-p

L'ensemble limit

Eléments de preuve Exemples en 0 < s ≤ 1

$$\mathbb{E}\|R\|^{s} \leq \sum_{n=0}^{\infty} \mathbb{E}\|A_{1} \cdots A_{n-1}\|^{s} \mathbb{E}\|B_{n}\|^{s}$$

s ≥ 1

$$(\mathbb{E}\|R\|^s)^{1/s} \leq \sum_{n=0}^{\infty} (\mathbb{E}\|A_1 \cdots A_{n-1}\|^s)^{1/s} (\mathbb{E}\|B_n\|^s)^{1/s}$$

 Si B₀ a des moments à tout ordre, R a un moment d'ordre s si

$$k(s) = \lim_{n} (\mathbb{E} ||A_1 \cdots A_n||^s)^{1/n} < 1$$

Queue de la loi stationnaire

7/35

Introduction

$k(s) = \lim_{n} (\mathbb{E} ||A_1 \cdots A_n||^s)^{1/n}$

Fonction log-convexe de s :

- $\mathbb{E}\|R^s\| < \infty$ si et seulement si k(s) < 1
- Si $k(\kappa) = 1$, queue polynômiale :

$$\mathbb{P}(\|R\| > t) \sim Ct^{-t}$$

Queue de la loi stationnaire

7/35

Introduction

$k(s) = \lim_{n} (\mathbb{E} ||A_1 \cdots A_n||^s)^{1/n}$

Fonction log-convexe de s :

KESTEN 1973, 1974, LE PAGE 1983, GOLDIE 1991

- $\mathbb{E}\|R^s\| < \infty$ si et seulement si k(s) < 1
- Si $k(\kappa) = 1$, queue polynômiale :

$$\mathbb{P}(\|R\| > t) \sim Ct^{-\kappa}$$

Plan

8/35

Benoîte de Saporta

Introductio

Travaux antérieurs

Les résultats de Kesten Les résultats de Le Page

i-p

Nouveau résultat Eléments de preuve Exemples en dimension ? Introduction

- 2 Travaux antérieurs
 - Les résultats de Kesten
 - Les résultats de Le Page
- 3 La condition i-p
 - L'ensemble limite
- Nouveau résultat
 - Eléments de preuve
 - Exemples en dimension 2

Notations

9/35

Benoîte de Saporta

Introductio

Travaux antérieurs

Les résultats de Kesten Les résultats de Le Page

La conditior i-p

Nouveau

Eléments de preuve Exemples en dimension 2

- μ loi de A₁
- S_{μ} support de μ
- \mathbb{R}^d vecteurs ligne de dimension d
- S^{d-1} vecteurs ligne de norme 1
- S₊ vecteurs ligne de norme 1 à coordonnées positives
- \mathbb{P}^{d-1} espace projectif
- Action de $GI(d, \mathbb{R})$ sur \mathbb{S}^{d-1}

$$\mathbf{x} \cdot \mathbf{a} = \frac{\mathbf{x} \mathbf{a}}{\|\mathbf{x} \mathbf{a}\|}$$

Hypothèses de Kesten

10/35

Benoîte d Saporta

Introductio

antérieurs
Les résultats de
Kesten
Les résultats de
Les résultats de
Le Page

La condition i-p

L'ensemble limi

résultat
Eléments de preuve
Exemples en

Condition d'existence de la loi stationnaire

- $\mathbb{P}(A_0 \geqslant 0) = 1$, $\mathbb{P}(A_0 \text{ a une ligne de } 0) = 0$
- le sous-groupe engendré par $\{\log \rho(a) \mid a \in \Gamma_{\mu}, \ a \gg 0\}$ est dense dans $\mathbb R$
- Condition d'intégrabilité : il existe $\sigma > 0$ tel que $\mathbb{E} \Big[\min_{1 \leq i \leq d} \Big\{ \sum_{j=1}^d A_0(i,j) \Big\} \Big]^{\sigma} \geq d^{\sigma/2} \text{ et }$ $\mathbb{E}[\|A_0\|^{\sigma} \log^+ \|A_0\|] < \infty$

RINRIA Résultats de Kesten

11/35

Les résultats de

Théorème 1

 $\exists \kappa$ dans $[0, \sigma]$ tel que pour tout x dans \mathbb{S}_+

$$\lim_{t\to +\infty} t^{\kappa} \mathbb{P}(\max_{n} \|xA_1\cdots A_n\| > t) > 0$$

Théorème 2

• Si
$$\mathbb{P}(B_0=0)<1,\quad \mathbb{P}(B_0\geqslant 0)=1,\quad \mathbb{E}\|B_0\|^\kappa<\infty$$

alors pour tout x dans \mathbb{S}_+

$$\lim_{t\to+\infty}t^{\kappa}\mathbb{P}(xR>t)>0$$

Preuve Première étape

12/35

Benoîte de Saporta

Introductio

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

La condition i-p

L'ensemble limite

résultat Eléments de preuve Exemples en Opérateurs sur les fonctions continues sur \mathbb{S}_+

$$\mathcal{P}^{s}f(x) = \mathbb{E}[\|xA_1\|^{s}f(x\cdot A_1)] = \int \|xa\|^{s}f(x\cdot a)\mu(da)$$

Propriétés

Pour tout $0 \le s \le \sigma$

• il existe ν^s proba sur \mathbb{S}_+ et k(s) réel

$$\nu^{\mathsf{S}}\mathcal{P}^{\mathsf{S}} = k(\mathsf{S})\nu^{\mathsf{S}}$$

il existe e_s continue, strictement positive sur S₊

$$\mathcal{P}^{s}e_{s}=k(s)e_{s}$$

• il existe $\kappa > 0$ tel que $k(\kappa) = 1$

Preuve Deuxième étape

13/35

Benoîte de Saporta

Introductio

antérieurs
Les résultats de
Kesten
Les résultats de

La condition i-p

L'ensemble limite

résultat
Eléments de preuve

Opérateur Markovien $\mathcal Q$ sur $\mathbb S_+$

$$Qf(x) = \frac{1}{e_{\kappa}} \mathcal{P}^{\kappa}(e_{\kappa}f)(x)$$
$$= \frac{1}{e_{\kappa}(x_n)} \int \|xa\|^{\kappa} e_{\kappa}(x \cdot a) f(x \cdot a) \mu(da)$$

Chaîne de Markov (X_n, U_n) sur \mathbb{S}_+

$$X_n = X_0 \cdot A_1 \cdots A_n$$
 $U_n = \log \frac{\|X_0 A_1 \cdots A_{n+1}\|}{\|X_0 A_1 \cdots A_n\|}$

avec X_n de transition Q

Preuve Troisième étape

14/35

Benoîte d Saporta

Introductio

antérieurs Les résultats de Kesten Les résultats de Le Page

La conditior

L'ensemble limite

Nouveau

résultat

Eléments de preuve Exemples en dimension 2 Théorème 1 théorème de renouvellement de Kesten pour (X_n, U_n)

$$\lim_{t\to +\infty} t^{\kappa} \mathbb{P}(\max_n \|xA_1\cdots A_n\|>t) = \textit{Ke}_{\kappa}(x).$$

• Théorème 2 Positivité comparaison entre $\mathbb{P}(\max_n \|xA_1 \cdots A_n\| > t)$ et $\mathbb{P}(xR > t)$

MINRIA Hypothèses de Le Page

15/35

Les résultats de Le Page

condition d'existence de la loi stationnaire

• pour tout ouvert \mathcal{U} de \mathbb{S}^{d-1} et tout $x \in \mathbb{S}^{d-1}$,

$$\sum_{n=0}^{\infty} \int \mathbf{1}_{\mathcal{U}}(\mathbf{x} \cdot \mathbf{a}) \mu^{n}(d\mathbf{a}) > \mathbf{0}$$

- le sous-groupe engendré par l'ensemble des $\log |\rho(a)|$ tels que $a \in \Gamma_{\mu}$ et a a une valeur propre simple réelle dominante est dense dans R
- pour tout $x \mathbb{P}(A_1x + B_1 = x) < 1$
- $\exists \sigma > 0$ tel que $\mathbb{E}[p(A_1)^{\sigma}] \geq 1$, où $p(A_1)$ est la plus petite valeur propre de $(A_1^t A_1)^{1/2}$
- $\exists \delta > 0$ tel que $\mathbb{E}[\sup\{\|A_1\|, \|B_1\|\}]^{\sigma+\delta} < +\infty$, et $\mathbb{E}(\|A_1\|^{-\delta}) < +\infty$

Résultats de Le Page

16/35

Benoîte d Saporta

Introduction

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

La condition i-p

Nouveau résultat

Eléments de preuve Exemples en dimension 2

Théorème

Il existe $\kappa \in]0, \ \sigma]$ tel que $\lim_n (\mathbb{E} ||A_1 \cdots A_n||^{\kappa})^{1/n} = 1$ et pour tout $x \in \mathbb{S}^{d-1}$

$$\lim_{t\to\infty}t^{\kappa}\mathbb{P}(xR>t)=H_{\kappa}(\bar{x}),$$

où H_{κ} fonction continue sur \mathbb{P}^{d-1} , strictement positive et vérifiant pour tout v dans \mathbb{P}^{d-1} ,

$$H_{\kappa}(\mathbf{v}) = \int \|\tilde{\mathbf{v}}\mathbf{A}\|^{\kappa} H_{\kappa}(\mathbf{v}\mathbf{A})\mu(\mathbf{d}\mathbf{A}).$$

17/35

Benoîte de Saporta

Introduction

antérieurs
Les résultats de
Kesten
Les résultats de
Le Page

La conditior

L'ensemble limit

Nouveau
résultat
Eléments de preuve
Exemples en

• Etape 1 : étude des opérateurs P^s sur \mathbb{P}^{d-1}

$$P^{s}f(v) = \mathbb{E}[\|\tilde{v}A_1\|^{s}f(vA_1)] = \int \|\tilde{v}a\|^{s}f(va)\mu(da)$$

- Etape 2 : définition d'un opérateur Markovien Q sur \mathbb{P}^{d-1} puis sur \mathbb{S}^{d-1}
- Etape 3 : théorème de renouvellement de Kesten
- Etape supplémentaire : la limite trouvée est non nulle

Plan

18/35

Benoîte de Saporta

Introductio

Iravaux
antérieurs
Les résultats de
Kesten
Les résultats de

La condition

i-p

Nouveau résultat Eléments de pro Introduction

- Travaux antérieurs
 - Les résultats de Kesten
 - Les résultats de Le Page
- 3 La condition i-p
 - L'ensemble limite
- Nouveau résultat
 - Eléments de preuve
 - Exemples en dimension 2

Irréductibilité et Proximalité

19/35

La condition

 Γ_{μ} semi-groupe engendré par le support S_{μ} de la loi μ de A_1

Irréductibilité

- Γ_{μ} irréductible : pas de sous-espace invariant non trivial
- Γ_{μ} fortement irréductible : pas de réunion finie de sous-espace invariants

proximalité

• Γ_{μ} proximal sur l'espace projectif \mathbb{P}^{d-1} :

$$\forall v, v' \in \mathbb{P}^{d-1}, \quad \exists (a_n) \in \Gamma_{\mu} \text{ t.q. } d(va_n, v'a_n) \to 0$$

- $a \in \Gamma_u$ est proximale si a a une unique valeur propre dominante.
 - $v^a \in \mathbb{P}^{d-1}$ direction propre associée

NINRIA La Condition i-p

20/35

La condition

Définition

 Γ_{μ} vérifie la condition i-p s'il est

- irréductible
- proximal

Définition équivalente

 Γ_{μ} vérifie la condition i-p si

- fortement irréductible
- contient un élément proximal

MINRIA Exemples en dimension 2

21/35

La condition

Semi-goupes engendrés par deux matrices

- a, a' matrices de $GI(2,\mathbb{R})$ telles que
 - a et a' ont chacune deux valeurs propres réelles de modules distincts.
 - les quatre espaces propres correspondants sont deux à deux distincts.

Alors le semi-groupe Γ engendré par a et a' vérifie la condition i-p

Exemple vérifiant i-p :

$$a = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$
 $a' = \begin{pmatrix} -1 & -1 \\ -2 & 0 \end{pmatrix}$

N_{INRIA} Action de Γ_{μ} sur l'espace projectif

22/35

L'ensemble limite

Ensemble limite

$$L(\Gamma_{\mu}) = \overline{\{v^a, \ a \in \Gamma_{\mu}, \ a \ \mathsf{proximale}\}} \subset \mathbb{P}^{d-1}$$

Proposition

Sous la condition i-p

- $L(\Gamma_{\mu})$ est non vide
- Unique fermé Γ_{μ} -invariant minimal sur \mathbb{P}^{d-1}

$$L(\Gamma_{\mu}) = \bigcap_{\mathbf{v} \in \mathbb{P}^{d-1}} \overline{\mathbf{v}\Gamma_{\mu}}$$

N_{INRIA} Action de Γ_{μ} sur la sphère

23/35

L'ensemble limite

Deux cas possibles

- **unique** ensemble fermé Γ_{μ} -invariant minimal, symétrique, d'image projective $L(\Gamma_{\mu})$
- deux ensembles fermés Γ_μ-invariants minimaux disjoints, symétriques l'un de l'autre, d'image projective $L(\Gamma_{\mu})$

Caractérisation des deux cas

Cas 2 ssi

Γ₁₁ préserve un cône convexe fermé saillant d'intérieur non vide

Exemples en dimension 2

Deux ensembles limite

24/35

Benoîte d Saporta

Introductio

antérieurs
Les résultats de
Kesten
Les résultats de
Le Page

La conditior i-p

L'ensemble limite

Nouveau résultat

Eléments de preuve Exemples en dimension 2

Exemple 1

$$a = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$
 $a' = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$

- Γ engendré par a et a' vérifie la condition i-p
- Cône convexe invariant : vecteurs positifs

Exemples en dimension 2

Un seul ensemble limite

25/35

Benoîte de Saporta

Introductio

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

i-p L'ensemble limite

L'ensemble lim

résultat Eléments de preuv Exemples en

Exemple 2

$$a = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$
 $a' = \begin{pmatrix} -1 & -1 \\ -2 & 0 \end{pmatrix}$

- Γ engendré par a et a' vérifie la condition i-p
- a' envoie les vecteurs positifs sur les négatifs, donc un seul ensemble limite symétrique
- a et a' préservent l'ensemble des vecteurs positifs ou négatifs :
 - l'ensemble limite n'est pas égal à toute la sphère

Plan

26/35

Benoîte de Saporta

Introductio

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

La condition i-p L'ensemble limite

Nouveau résultat

Eléments de preuve Exemples en dimension 2

- 1 Introduction
- Travaux antérieurs
 - Les résultats de Kesten
 - Les résultats de Le Page
- La condition i-p
 - L'ensemble limite
- Mouveau résultat
 - Eléments de preuve
 - Exemples en dimension 2

MINRIA Hypothèses

27/35

Nouveau résultat

- Condition d'existence de la loi stationnaire
- Γ_μ vérifie la condition i-p
- pas de cône convexe fermé saillant d'intérieur non vide invariant
- pour tout $x \mathbb{P}(A_1x + B_1 = x) < 1$
- Conditions d'intégrabilité :

$$k(s) = \lim_{n} \left(\int \|a\|^{s} \mu^{n}(da) \right)^{1/n}$$

- $\sigma = \sup\{s \ge 0 \mid k(s) < +\infty\} > 0$
- $\lim_{s\to\sigma} k(s) > 1$
- pour κ tel que $k(\kappa) = 1$

$$\mathbb{E}[\|A_1\|^{\kappa} \log^+ \|A_1\| + \|B_1\|^{\kappa}] < +\infty$$

NINRIA Nouveau résultat

28/35

Nouveau résultat

Théorème CRAS 2004

Pour tout x dans \mathbb{S}^{d-1}

$$\lim_{t o \infty} t^{\kappa} \mathbb{P}(xR > t) = \ell e_{\kappa}(\bar{x})$$

avec $\ell > 0$

NINRIA Les opérateurs Ps

29/35

Eléments de preuve

Pour $0 \le s \le \sigma$, opérateurs P^s sur \mathbb{P}^{d-1}

$$P^{s}f(v) = \mathbb{E}[\|\tilde{v}A_1\|^{s}f(vA_1)] = \int \|\tilde{v}a\|^{s}f(va)\mu(da)$$

GUIVARC'H ET LE PAGE 2004

Pour tout $0 < s < \sigma$

• il existe une unique proba ν^s sur \mathbb{P}^{d-1}

$$\nu^{s}P^{s} = k(s)\nu^{s}$$

 il existe une unique e_s continue, strictement positive sur \mathbb{D}^{d-1}

$$P^{s}e_{s}=k(s)e_{s}$$
 $\nu^{s}(e_{s})=1$

Preuve

30/35

Benoîte d Saporta

Introductio

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

i-p

Nouveau résultat

Eléments de preuve

- définition d'un opérateur Markovien Q sur \mathbb{P}^{d-1} à partir de P^{κ} et e_{κ}
- extension de Q et de ses bonnes propriétés à \mathbb{S}^{d-1}
- théorème de renouvellement de Kesten
- la limite trouvée est non nulle

Conditions d'existence de κ

31/35

Benoîte de Saporta

Introductio

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

i-p

Nouveau
résultat
Eléments de preuve
Exemples en
dimension 2

Si $\sigma = \sup\{s \ge 0 \mid k(s) < +\infty\} = +\infty$

Proposition

$$\lim_{s \to +\infty} \frac{\log k(s)}{s} = \limsup_{n} \frac{1}{n} \sup \{ \log \rho(a) \mid a \in S_{\mu}^{n} \}$$

Dans ce cas κ existe si et seulement si Γ_{μ} est dilatant i.e. contient une matrice de rayon spectral > 1

Un exemple qui ne vérifie pas les hypothèses de Le Page

32/35

Benoîte de Saporta

Introductio

Iravaux
antérieurs
Les résultats de
Kesten
Les résultats de

La condition

Nouveau résultat

Eléments de preuve

$$B_n \sim \mathcal{N}(0,1),\, A_n \sim \mu ext{ avec } \mu = rac{1}{2}(\delta_a + \delta_{a'})$$

$$a = \left(\begin{array}{cc} 2 & 1 \\ 0 & 1 \end{array}\right) \qquad a' = \left(\begin{array}{cc} -\frac{1}{5} & -\frac{1}{5} \\ -\frac{1}{5} & 0 \end{array}\right)$$

- $\sqrt{\ \mathbb{E} \log \|A_1\|} < 0$ donc existence d'une loi stationnaire
- √ conditions d'intégrabilité
- \checkmark condition i-p par étude des valeurs propres et espaces propres, et dilatant
- $\sqrt{\frac{1}{2}}$ un seul ensemble limite différent de \mathbb{S}^{d-1}
- $\sqrt{}$ loi de A_n discrète, loi de B_n continue, donc pas de point fixe

Un exemple qui ne vérifie pas les hypothèses de Le Page

32/35

 $B_n \sim \mathcal{N}(0,1), A_n \sim \mu \text{ avec } \mu = \frac{1}{2}(\delta_a + \delta_{a'})$

$$a = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \qquad a' = \begin{pmatrix} -\frac{1}{5} & -\frac{1}{5} \\ -\frac{1}{5} & 0 \end{pmatrix}$$

- $\mathbb{E} \log \|A_1\| < 0$ donc existence d'une loi stationnaire

Un exemple qui ne vérifie pas les hypothèses de Le Page

32/35

Benoîte de Saporta

Introduction

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

La conditior i-p

Nouveau résultat Eléments de preuve $B_n \sim \mathcal{N}(0,1),\, A_n \sim \mu ext{ avec } \mu = rac{1}{2}(\delta_a + \delta_{a'})$

$$a = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \qquad a' = \begin{pmatrix} -\frac{1}{5} & -\frac{1}{5} \\ -\frac{1}{5} & 0 \end{pmatrix}$$

- $\sqrt{\ \mathbb{E}\log\|A_1\|} < 0$ donc existence d'une loi stationnaire
- √ conditions d'intégrabilité
- √ condition i-p par étude des valeurs propres et espaces propres, et dilatant
- $\sqrt{}$ un seul ensemble limite différent de \mathbb{S}^{d-1}
- $\sqrt{}$ loi de A_n discrète, loi de B_n continue, donc pas de point fixe

Un exemple qui ne vérifie pas les hypothèses de Le Page

32/35

Benoîte de Saporta

Introduction

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

i-p L'ensemble limi

Nouveau

résultat

Eléments de preuve

Exemples en

 $B_n \sim \mathcal{N}(0,1)$, $A_n \sim \mu$ avec $\mu = rac{1}{2}(\delta_a + \delta_{a'})$

$$a = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$
 $a' = \begin{pmatrix} -\frac{1}{5} & -\frac{1}{5} \\ -\frac{1}{5} & 0 \end{pmatrix}$

- $\sqrt{\mathbb{E} \log \|A_1\|} < 0$ donc existence d'une loi stationnaire
- √ conditions d'intégrabilité
- \surd condition i-p par étude des valeurs propres et espaces propres, et dilatant
- $\sqrt{}$ un seul ensemble limite différent de \mathbb{S}^{d-1}
- $\sqrt{}$ loi de A_n discrète, loi de B_n continue, donc pas de point fixe

Un exemple qui ne vérifie pas les hypothèses de Le Page

32/35

Benoîte de Saporta

Introduction

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

i-p L'ensemble lim

Nouveau

résultat

Eléments de preuve

Exemples en

 $B_n \sim \mathcal{N}(0,1),\, A_n \sim \mu ext{ avec } \mu = rac{1}{2}(\delta_{a} + \delta_{a'})$

$$a = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$
 $a' = \begin{pmatrix} -\frac{1}{5} & -\frac{1}{5} \\ -\frac{1}{5} & 0 \end{pmatrix}$

- $\sqrt{\ \mathbb{E}\log\|A_1\|} < 0$ donc existence d'une loi stationnaire
- √ conditions d'intégrabilité
- \surd condition i-p par étude des valeurs propres et espaces propres, et dilatant
- $\sqrt{}$ un seul ensemble limite différent de \mathbb{S}^{d-1}
- $\sqrt{}$ loi de A_n discrète, loi de B_n continue, donc pas de point fixe

Un exemple qui ne vérifie pas les hypothèses de Le Page

32/35

Benoîte de Saporta

Introductio

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

i-p

L'ensemble limit

Nouveau
résultat
Eléments de preuve
Exemples en

 $B_n \sim \mathcal{N}(0,1),\, A_n \sim \mu ext{ avec } \mu = rac{1}{2}(\delta_{m{a}} + \delta_{m{a}'})$

$$a = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$
 $a' = \begin{pmatrix} -\frac{1}{5} & -\frac{1}{5} \\ -\frac{1}{5} & 0 \end{pmatrix}$

- $\sqrt{\ \mathbb{E}\log\|A_1\|} < 0$ donc existence d'une loi stationnaire
- √ conditions d'intégrabilité
- \checkmark condition i-p par étude des valeurs propres et espaces propres, et dilatant
- $\sqrt{}$ un seul ensemble limite différent de \mathbb{S}^{d-1}
- $\sqrt{}$ loi de A_n discrète, loi de B_n continue, donc pas de point fixe

Exemple II Un modèle AR(2)

33/35

Exemples en dimension 2

$$X_n = a_{1,n}X_{n-1} + a_{2,n}X_{n-2} + b_n \iff Y_n = A_nY_{n-1} + B_n$$

avec

$$Y_n = {}^{t}(X_n, X_{n-1})$$

 $B_n = {}^{t}(b_n, 0)$
 $A_n = \begin{pmatrix} a_{1,n} & a_{2,n} \\ 1 & 0 \end{pmatrix}$

Ex: $\mu = \frac{1}{4}\delta_a + \frac{3}{4}\delta_{a'}$ avec

$$a = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \qquad a' = \begin{pmatrix} -1/4 & 1/8 \\ 1 & 0 \end{pmatrix}$$

 $b_1 \sim \mathcal{N}(0,1)$ ou discrète prenant des valeurs autres que 2 et 9/8

Exemple de Kesten

34/35

Benoîte d Saporta

Introduction

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

i-p L'ensemble lim

L'ensemble limi

résultat Eléments de preuv Exemples en

Problème posé dans KESTEN 1973

- dimension d=2
- m_1 et m_2 matrices à coefficients strictement positifs telles que $\log \rho(m_1)$ et $\log \rho(m_2)$ engendrent un sous-goupe dense dans $\mathbb R$
- $m_3 = r_\theta$ une rotation d'angle θ
- $\mu = p_1 \delta_{m_1} + p_2 \delta_{m_2} + p_3 \delta_{m_3}$ avec $p_i > 0$ et $p_1 + p_2 + p_3 = 1$

Est-ce-que cette μ peut donner une loi invariante à queue polynômiale ?

Exemple de Kesten Réponse

35/35

Benoîte d Saporta

Introductio

Travaux antérieurs Les résultats de Kesten Les résultats de Le Page

La conditior i-p

Nouveau résultat

Eléments de preuve Exemples en dimension 2 • Irréductibilité dès que $\theta \neq 0[\pi]$

- Proximalité dès que $\theta \neq 0[\frac{\pi}{2}]$
- Unique fermé invariant minimal dès que $\frac{\theta}{\pi} \notin \mathbb{Q}$ ou $\frac{\theta}{\pi} = \frac{2k+1}{n}$

Si
$$\theta = \frac{\pi}{2}$$

$$m_1 = \left(egin{array}{cc} rac{e^1+1}{2} & rac{e^1-1}{2} \ rac{e^1-1}{2} & rac{e^1+1}{2} \end{array}
ight) \qquad m_2 = \left(egin{array}{cc} rac{e^{\pi}+1}{2} & rac{e^{\pi}-1}{2} \ rac{e^{\pi}+1}{2} \end{array}
ight)$$

 Γ_{μ} ne vérifie pas la condition i-p