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Motivation: Stochastic control Dynamic optimization

Stochastic control problems
Definition

Dynamic decision making problems

I act on a time-dependent process to change its dynamics
I continuously: use the accelerator pedal in a car
I punctually: change gear

I in order to fulfill some objective: minimize/maximize some
crtiterion

I drive at the maximum authorized speed
I minimize fuel consumption

I in the presence of randomness
I other cars
I unknown route
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Motivation: Stochastic control Dynamic optimization

Stochastic control problems
Definition

Dynamic decision making problems under uncertainty
I act on a time-dependent process to change its dynamics
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Motivation: Stochastic control Dynamic optimization

Stochastic control problems
Questions of interest

Dynamic decision making problems under uncertainty
I value function: best mean performance

I regularity properties: continuity, differentiability, convexity
I characterization as the unique solution to some explicit

equation
I numerical approximation

I (near) optimal strategy
I existence? in which form?
I properties, sensitivity analysis
I numerical approximation
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Motivation: Stochastic control Examples

Example 1: Medical treatment optimization

[Pasin 18]

I Population: HIV patients

I Possible actions: cycles of injections of IL
I number of injections
I dose
I dates of injection

I Objective: minimize the time spent with low CD4+ T
lymphocytes count

I Sources of randomness
I random response to injections
I individual variability between patients
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Motivation: Stochastic control Examples

Example 1: Medical treatment optimization
[Pasin 18]

Examples of optimally controlled CD4+ T trajectories

2366 C. Pasin et al.
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Fig. 3 Dynamics of CD4+ T lymphocytes in patient A. Straight line corresponds to the “best” outcome, i.e.,
when the effect of all injections lasts 7 days. Dashed line corresponds to other possible trajectories, when this
effect can last less than 7 days. a Dynamics of CD4+ T lymphocytes in patient A under P3, a 2-injections
cycles protocol (dose 20). b Dynamics of CD4+ T lymphocytes in patient A under the determined optimal
strategy

In terms of trajectories of the process, Fig. 3a, b show some trajectories obtained
with, respectively, the 2-injection cycles protocol (P3) and the optimal strategy for
patient A. We can note that even if CD4+ levels are globally lower in the optimal
strategy compared to the two injections cycles at dose 20 µg/kg, it still allows a
maintenance over the threshold of 500 cells/µL by using less injections: indeed, in
the best case scenario, the 2-injections cycle strategy implies 5 cycles of 2 injections

123
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Motivation: Stochastic control Examples

Example 2: Maintenance optimization

[Geeraert 17]

I Object of interrest: multi-component optronic camera

I Possible actions: maintenance
I repair or replace
I which components
I dates of intervention

I Objective: minimize the unavailability + maintenance cost
I Sources of randomness

I random degradation or failure times for each component
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Motivation: Stochastic control Examples

Example 2: Maintenance optimization

[Geeraert 17]

Reference policy
I send camera to the workshop one day after failure or

deterioration
I replace failed components, repair degraded components

Minimal cost (value function)
I maintenance authorized only after failure or deterioration:

20% lower
I maintenance authorized at all times: 38% lower

CIMOM Mayotte November 2018 8/44
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Motivation: Stochastic control Examples

Common points

I family of underlying stochastic models PDMPs
I type of optimization problem: impulse control
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Motivation: Stochastic control Piecewise deterministic Markov Processes

Piecewise deterministic Markov processes

Davis (80’s)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

Starting point

X0 = (m, x)

Em

x
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Motivation: Stochastic control Piecewise deterministic Markov Processes

Piecewise deterministic Markov processes

Davis (80’s)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

Xt follows the deterministic flow until the first jump time T1 = S1

Xt =
(
m, φm(x , t)

)
, P(m,x)(S1 > t) = e−

∫ t
0 λm
(
φm(x ,s)

)
ds

Em

x

T1
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Motivation: Stochastic control Piecewise deterministic Markov Processes

Piecewise deterministic Markov processes

Davis (80’s)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

Post-jump location (m1, xT1) selected by the Markov kernel

Qm
(
φm(x ,T1), ·

)

Em1

Em

x

T1

Qm

(
φm(x, T1), ·

)

xT1
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Motivation: Stochastic control Piecewise deterministic Markov Processes

Piecewise deterministic Markov processes

Davis (80’s)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

Xt follows the flow until the next jump time T2 = T1 + S2

XT1+t =
(
m1, φm1(xT1 , t)

)
, t < S2

Em1

Em

x

T1

Qm

(
φm(x, T1), ·

)

xT1

S2
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Motivation: Stochastic control Piecewise deterministic Markov Processes

Piecewise deterministic Markov processes

Davis (80’s)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

Post-jump location (m2, xT2) selected by Markov kernel

Qm1

(
φm1(xT1 , S2), ·

)
. . .

Em1

Em

x

T1

Qm

(
φm(x, T1), ·

)

xT1

S2
Qm1

(
φm1

(xT1
, S2), ·

)
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Motivation: Stochastic control Piecewise deterministic Markov Processes

Applications

Applications of PDMPs
Engineering systems, operations research, management science,
economics, internet traffic, dependability and safety, neurosciences,
biology, . . .

I mode: nominal, failures, breakdown, environment, number of
individuals, response to a treatment, . . .

I Euclidean variable: pressure, temperature, time, size,
potential, protein level, . . .
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Motivation: Stochastic control Impulse control

Impulse control problem

Impulse control
Select

I intervention dates
I new starting point for the process at interventions

to minimize a cost function

I repair a component before breakdown
I change treatment before relapse
I . . .
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Motivation: Stochastic control Impulse control

Impulse control - State of the art
Lots of works on theoretical problems

Few works on numerical approximations
I [CD 89] Numerical approximation of the value function and
ε-optimal strategy

I based on a discretization of the state space and Markov kernel
I requires solving multiple optimal stopping problems

I [dSDZ 14] Numerical approximation of the value function
I based on a time-dependent discretization of an underlying

Markov chain
I work in progress for ε-optimal strategy

I [Pasin 18] Numerical approximation of the value function and
ε-optimal strategy

I based on a discretization of the state space and Markov kernel
I actions can be taken only at the boundary of the state space
I heuristics, no mathematical proof

In all cases, the process is perfectly observed at all times
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Motivation: Stochastic control Impulse control

If the jump times are not observed?
Jump times can be

I date when CD4+ T count reach 500 threshold
I random failure/deterioration dates

Not observed!

I [BdSD 12] Optimal stopping
I jump times observed
I post-jump locations observed through noise

Numerical approximation of the value function and ε-optimal
stopping time

I [BL 17] Continuous control
I jump times observed
I post-jump locations observed through noise

Optimality equation, existence of optimal policies

No information on the jump times ⇒ very difficult problem
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Motivation: Stochastic control Impulse control

Change-point detection

Simplest special case
I only one jump of the mode variable
I discrete noisy observations of the continuous variable on a

regular time grid

Optimal stopping = Change-point detection

Aim: numerical approximation to
I detect the change-point at best (not too early/late)
I estimate the new mode after the jump

CIMOM Mayotte November 2018 15/44



Motivation: Stochastic control Impulse control

Typical example

I Population: cancer patients

I Possible actions: change treatment
I treatment 1
I treatment 2
I dates of change

I Objective: maximize life time of the patient with minimal
secondary effect

I Sources of randomness
I relapse date
I relapse type

I Observations: cancer cell loads (or proxy) at some regularly
spaced measurement times, e.g. every 3 month
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Change-point detection problem

Outline

Motivation: Stochastic control

Change-point detection problem
PDMP model
State of the art on change-point detection
MDP model

Numerical approximation

Simulation study

Conclusion and perspectives
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Change-point detection problem PDMP model

Simple PDMP model
I State space E × R = {0, 1, . . . , d} × R× R: mode, position,

time
I Starting point X0 = (0, x , 0), flow Φ0
I time-dependent Jump intensity λ0(x , u) = λ(u)

I Jump kernel: position and time continuous, switch to mode i
with probability pi

tT

X0

Φ0

Φ1

Φ2
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Change-point detection problem PDMP model

Observations

I Observation times tn = δn
I Noisy observations of the positions Yn = F (xtn ) + εn

tT

X0

Φ0

Φ1

Φ2
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Change-point detection problem PDMP model

Observations

I Observation times tn = δn
I Noisy observations of the positions Yn = F (xtn ) + εn

tt0 t1 t2 t3 t4 t5

y0

y1
y2

y3

y4

y5

T

X0

Φ0

Φ1

Φ2
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Change-point detection problem State of the art on change-point detection

Example: flat/exponential model
I d = 3 possible post-jump modes, same probability pi = 1/3,

starting from x0 = 1
I Φ0(x , t) = x , Φ1(x , t) = xe0.1t , Φ2(x , t) = xe0.5t ,

Φ3(x , t) = xe1t
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Change-point detection problem State of the art on change-point detection

Segmentation

I data collected until the time horizon
I a posteriori reconstruction of the change point

0 1 2 3 4 5 6

0
2

4
6

8
10

12

time

ob
se

rv
at

io
ns

Observations

true mode = 2

0 1 2 3 4 5 6

2
4

6
8

10

time

m
ob

ile
 a

ve
ra

ge

Mobile average

chosen mode = 2

●

●

●

●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

P(
M

|Y
)

●

●

●

● ●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●
●

●

●

●
●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

● ● ● ● ●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

P(M=0|Y_1:t)
P(M=1|Y_1:t)
P(M=2|Y_1:t)
P(M=3|Y_1:t)

Kalman filter

chosen mode = 2

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

time

de
cis

io
n

PDMP

chosen mode = 2

Irrelevant in our medical context: change must be detected as
soon as possible
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Change-point detection problem State of the art on change-point detection

Segmentation

I data collected until the time horizon
I a posteriori reconstruction of the change point
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Irrelevant in our medical context: change must be detected as
soon as possible

CIMOM Mayotte November 2018 21/44



Change-point detection problem State of the art on change-point detection

Moving average
I compute the average of past data over a moving window
I detect rupture when the average exceeds some threshold

Works well if
I data are centered before the rupture
I date have a positive trend after the rupture
I data have low variance
I small time interval between data
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Change-point detection problem State of the art on change-point detection

Kalman Filter

I discrete-time linear gaussian model observed throuh gaussian
additive noise

I best mean squares approximation of the hidden variable given
the observations

I small time interval between data
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Change-point detection problem State of the art on change-point detection

State of the art on change point detection

No generic method available if
I long interval between 2 observations
I non gaussian-linear model
I non additive noise
I aim is to detect rupture and new mode after rupture
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Change-point detection problem MDP model

Partially observed optimal stopping problem
I Finite horizon δN

I Admissible stopping times τ : FY -measurable
I Admissible decisions A: {0, 1, . . . , d} valued, FY

τ -measurable
I Cost per stage before stopping

I c(0, x , y) = 0 rightfully not stopped
I c(m 6= 0, x , y) = βiδ lateness penalty

I Terminal cost at stopping
I C(m, x , y , 0) = c(m, x , y) no stopping before the horizon
I C(0, x , y , a 6= 0) = α early stopping penalty
I C(m 6= 0, x , y , a = m) = 0 good mode selection
I C(m 6= 0, x , y , a 6= 0,m) = γ wrong mode penalty

Cost of admissible strategy (τ,A)

J(τ,A, (m, x , y)) = E(m,x ,y)




(τ−1)∧N∑

n=0
c(Xn,Yn) + C(Xτ∧N ,Yτ∧N ,A)



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Change-point detection problem MDP model

Fully observed optimal stopping problem

I Filter process Θn(A× B) = P(0,x ,y)(Xδn ∈ A× B|FY
n )

I (Θn,Yn) time inhomogeneous Markov chain with explicit
transition kernels R ′n on P(E )× R

I cost functions c ′(θ, y) =
∫

c(m, x , y)dθ(m, x),
C ′(θ, y , a) =

∫
C(m, x , y , a)dθ(m, x)

Fully observed optimal stopping problem
Minimize over all admissible strategies (τ, a)

J ′(τ,A, (θ, y)) = E(θ,y)




(τ−1)∧N∑

n=0
c ′(Θn,Yn) + C ′(Θτ∧N ,Yτ∧N ,A)



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Change-point detection problem MDP model

Aim

I numerical approximation of the value function
I computable (optimal ?) strategy

Difficulties
I measure-valued filter process: recursive equations but not

simulatable
I curse of dimensionality
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Numerical approximation

Outline

Motivation: Stochastic control

Change-point detection problem

Numerical approximation
Approach
Optimal quantization
Convergence results
Computable strategy

Simulation study

Conclusion and perspectives
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Numerical approximation Approach

Dynamic programming

Value function

V ′(θ, y) = inf
(τ,A)

J ′(τ,A, (θ, y))

= inf
(τ,A)

E(θ,y)




(τ−1)∧N∑

n=0
c ′(Θn,Yn) + C ′(Θτ∧N ,Yτ∧N ,A)




Dynamic programming
v ′N(θ, y) = min0≤a≤d C ′(θ, y , a)
v ′k(θ, y) = min

{
min1≤a≤d C ′(θ, y , a); c ′(θ, y) + R ′kv ′k+1(θ, y)

}

v ′0 = V ′
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Numerical approximation Approach

Approach

I Discretize the kernels R ′k to discretize the Dynamic
programming operators

based on simulation-based discretization grids of the chain
(Θn,Yn).

Problems
I Θn is not simulatable

Θn+1(A) =

∫
X Pn(HYn+11A)(m, x)dΘn(m, x)∫
X Pn(HYn+1)(m, x)dΘn(m, x)

I approximation in 2 steps: approximate simulation of Θn +
discretization of the approximation
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Numerical approximation Approach

Discretization

Xt = (my , xt , t)

E × R, P

Xn = (mtn , xtn )

E , Pn

(Xn,Yn)

E × R, Rn

observations Yn = F (Xn) + εn

(Θn,Yn)

P(E )× R, R ′n

v ′n(Θn,Yn)

filtering Ψ

dynamic
programming

(m̄tn , x̄tn ) = X̄n
Ωn, P̄nquantization

(X̄n, Ȳn)

Ωn × Y, R̄n

(Θ̄n, Ȳn)

P(Ωn)× Y, R̄ ′n

v̄ ′n(Θ̄n, Ȳn)

(Θ̂n, Ŷn)

Γn, R̂ ′nquantization

v̂ ′n(Θ̂n, Ŷn)

CIMOM Mayotte November 2018 31/44



Numerical approximation Approach

Discretization

Xt = (my , xt , t)

E × R, P

Xn = (mtn , xtn )

E , Pn

(Xn,Yn)

E × R, Rn

observations Yn = F (Xn) + εn

(Θn,Yn)

P(E )× R, R ′n

v ′n(Θn,Yn)

filtering Ψ

dynamic
programming

(m̄tn , x̄tn ) = X̄n
Ωn, P̄nquantization

(X̄n, Ȳn)
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Γn, R̂ ′nquantization

v̂ ′n(Θ̂n, Ŷn)
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Γn, R̂ ′nquantization

v̂ ′n(Θ̂n, Ŷn)
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Numerical approximation Optimal quantization

Quantization

[P 98], [PPP 04], [PRS05], . . .

Quantization of a random variable X ∈ L2(Rq)

Approximate X by X̂ taking finitely many values such that
‖X − X̂‖2 is minimum

I Find a finite weighted grid Γ with |Γ| = K
I Set X̂ = pΓ(X ) closest neighbor projection

Asymptotic properties
If E [|X |2+η] < +∞ for some η > 0 then

lim
K→∞

K 1/q min
|Γ|≤K

‖X − X̂ Γ‖2 = C
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Numerical approximation Optimal quantization

Algorithms

There exist algorithms providing
I Γ

I law of X̂
I transition probabilities for quantization of Markov chains

Example: N (0, I2):
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Numerical approximation Optimal quantization

Grids construction

Model −→ simulator of trajectories −→ grids

0 1 2 3 4 5 6
0

1

2

3

4

5

6
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Numerical approximation Optimal quantization

Assets and drawbacks of quantization

Assets
I a simulator of the target law is enough to build the grids
I automatic construction of grids
I convergence rate for E[|f (X )− f (X̂ )|] if f lipschitz
I empirical error measure by Monte Carlo

Drawbacks
I computation time
I curse of dimension
I open questions of convergence of the algorithms
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Numerical approximation Convergence results

Convergence
Technical assumptions

|v ′0(δ(0,x0), y0)− v̄ ′0(δ(0,x0), y0)| ≤
N−1∑

n=0
anE[|X̄n − Xn|]

= O(N−1
Ω )

|v̂ ′0(δ(0,x0), y0)− v̄ ′0(δ(0,x0), y0)|

≤
N∑

n=0
cn
(
E
[∣∣∣Ŷn − Ȳn

∣∣∣
]

+ E
[
‖Θ̂n − Θ̄n‖n,1

])

= O(N−1/NΩ

Γ )
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Numerical approximation Computable strategy

Candidate computable strategy

Dynamic programming
I v̂ ′N(θ̂, ŷ) = min0≤a≤d C ′(θ̂, ŷ , a)

I v̂ ′k(θ̂, ŷ) = min
{

min1≤a≤d C ′(θ̂, ŷ , a); c ′(θ̂, ŷ) + R̂ ′k v̂ ′k+1(θ̂, ŷ)
}

Set
I rN(·) = 0, aN(·) = 0 if v̂ ′N(projΓN (·)) = C ′(projΓN (·), 0)

I rN(·) = 1, aN(·) = i if v̂ ′N(projΓN (·)) = C ′(projΓN (·), i)

I rn(·) = 0 if v̂ ′n(projΓn (·)) = R̂ ′nv̂ ′n+1(projΓn (·))

I rn(·) = 1, an(·) = i if v̂ ′n(projΓn (·)) = C ′(projΓn (·), i)
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Numerical approximation Computable strategy

Path-adapted computable strategy
n ← 0
y ← y0
θ̄ ← δ(0,x0)

r ← r0(θ̄, y)

Observation y0

r = 1 ?
Stop at time n

Choose decision a = an(θ̄, y)

yes

n = N ?

no

Choose decision a = 0
yes

n ← n + 1
y ← yn

θ̄ ← Ψn−1(θ̄, y)
r ← rn(θ̄, y)

no

Observation yn
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Simulation study

Outline

Motivation: Stochastic control

Change-point detection problem

Numerical approximation

Simulation study
Linear model
Non linear model

Conclusion and perspectives
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Simulation study Linear model

Flat/exponential model
I d = 3, pi = 1/3, x0 = 1
I Φ0(x , t) = x , Φ1(x , t) = xe0.1t , Φ2(x , t) = xe0.5t ,

Φ3(x , t) = xe1t

I β = 1 (late detection), γ = 1.5 (wrong mode), δ = 1/6
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Simulation study Linear model

Flat/exponential model

I d = 3, pi = 1/3, x0 = 1
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Simulation study Linear model

Flat/exponential model

I d = 3, pi = 1/3, x0 = 1
I Φ0(x , t) = x , Φ1(x , t) = xe0.1t , Φ2(x , t) = xe0.5t ,

Φ3(x , t) = xe1t

I β = 1 (late detection), γ = 1.5 (wrong mode), δ = 1/6

MA KF PDMP
linear link function F (x) = x 1.42 1.60 1.00

inverse link function F (x) = 1/x 2.17 1.81 1.17
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Simulation study Non linear model

Non-linear model

I d = 1, x0 = (0, 0)

I Φ0((x , u), t) = (sin(3π(u + t)), u + t),
Φ1((x , u), t) = (sin(5π(u + t)), u + t)

I δ = 1/6, noise variance 1
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Simulation study Non linear model

Non-linear model
I d = 1, x0 = (0, 0)
I Φ0((x , u), t) = (sin(3π(u + t)), u + t),

Φ1((x , u), t) = (sin(5π(u + t)), u + t)
I δ = 1/6, noise variance 1
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Conclusion and perspectives

I Change-point detection method for continuous-time jump
dynamics, able to detect a jump and select the post-jump
mode

I For general flows but dimension 1

To be done
I Real data applications
I Theoretical validity of the stopping rule
I Allow to stop between observations
I Several jumps and detections
I Impulse control: select an action that changes the dynamics
I Optimally decide the next observation date
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