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Stochastic control problems

Definition

Dynamic decision making problems under uncertainty
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Stochastic control problems

Definition

Dynamic decision making problems under uncertainty
» act on a time-dependent process to change its dynamics

» continuously: use the accelerator pedal in a car
» punctually: change gear

> in order to fulfill some objective: minimize/maximize some
crtiterion

» drive at the maximum authorized speed
» minimize fuel consumption

> in the presence of randomness
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» unknown route

cIMO Mayotte November 2018

3/44



Motivation: Stochastic control Dynamic optimization

Stochastic control problems

Questions of interest

Dynamic decision making problems under uncertainty

» value function: best mean performance

CIMOM Mayotte November 2018 4/44



Motivation: Stochastic control Dynamic optimization

Stochastic control problems

Questions of interest

Dynamic decision making problems under uncertainty

» value function: best mean performance

» regularity properties: continuity, differentiability, convexity
» characterization as the unique solution to some explicit
equation

CcIMO Mayotte November 2018

/44



Motivation: Stochastic control Dynamic optimization

Stochastic control problems

Questions of interest

Dynamic decision making problems under uncertainty

» value function: best mean performance
» regularity properties: continuity, differentiability, convexity
» characterization as the unique solution to some explicit
equation
» numerical approximation

CcIMO Mayotte November 2018

/44



Motivation: Stochastic control Dynamic optimization

Stochastic control problems

Questions of interest

Dynamic decision making problems under uncertainty

» value function: best mean performance
» regularity properties: continuity, differentiability, convexity
» characterization as the unique solution to some explicit
equation
» numerical approximation

» (near) optimal strategy

CIMOM Mayotte November 2018



Motivation: Stochastic control Dynamic optimization

Stochastic control problems

Questions of interest

Dynamic decision making problems under uncertainty

» value function: best mean performance
» regularity properties: continuity, differentiability, convexity
» characterization as the unique solution to some explicit
equation
» numerical approximation
» (near) optimal strategy
» existence? in which form?
> properties, sensitivity analysis

CcIMO Mayotte November 2018

/44



Motivation: Stochastic control Dynamic optimization

Stochastic control problems

Questions of interest

Dynamic decision making problems under uncertainty

» value function: best mean performance
» regularity properties: continuity, differentiability, convexity
» characterization as the unique solution to some explicit
equation
» numerical approximation
» (near) optimal strategy
» existence? in which form?
> properties, sensitivity analysis
» numerical approximation

CIMO Mayotte November 2018 4/44



Motivation: Stochastic control Examples

Example 1: Medical treatment optimization

[Pasin 18]

» Population: HIV patients

CIMOM Mayotte November 2018 5/44



Motivation: Stochastic control Examples

Example 1: Medical treatment optimization

[Pasin 18]

» Population: HIV patients
» Possible actions: cycles of injections of IL

» number of injections
> dose
» dates of injection

CIMOM Mayotte November 2018 5/44



Motivation: Stochastic control Examples

Example 1: Medical treatment optimization

[Pasin 18]

» Population: HIV patients
» Possible actions: cycles of injections of IL
» number of injections
> dose
» dates of injection
» Objective: minimize the time spent with low CD4T T
lymphocytes count

cIMO Mayotte November 2018



Motivation: Stochastic control Examples

Example 1: Medical treatment optimization

[Pasin 18]

v

Population: HIV patients
Possible actions: cycles of injections of IL

» number of injections
> dose
» dates of injection

v

v

Objective: minimize the time spent with low CD4"T T
lymphocytes count
Sources of randomness

v

» random response to injections
» individual variability between patients
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Motivation: Stochastic control Examples
Example 1: Medical treatment optimization

[Pasin 18]
Examples of optimally controlled CD4*" T trajectories

1100

1000 B
900 |
800 | ) ) .
700 \
600

500

400

300

200 (f-----

100 I I I I I I I
0 50 100 150 200 250 300 350

CcIMO Mayotte November 2018

/44



Motivation: Stochastic control Examples

Example 2: Maintenance optimization

[Geeraert 17|

> Object of interrest: multi-component optronic camera

CIMOM Mayotte November 2018 7/44



Motivation: Stochastic control Examples

Example 2: Maintenance optimization

[Geeraert 17]

» Object of interrest: multi-component optronic camera
» Possible actions: maintenance

> repair or replace
» which components
» dates of intervention

cIMO Mayotte November 2018

/44



Motivation: Stochastic control Examples

Example 2: Maintenance optimization

[Geeraert 17]

» Object of interrest: multi-component optronic camera
» Possible actions: maintenance

> repair or replace
» which components
» dates of intervention

» Objective: minimize the unavailability + maintenance cost

cIMO Mayotte November 2018

/44



Motivation: Stochastic control Examples

Example 2: Maintenance optimization

[Geeraert 17]

» Object of interrest: multi-component optronic camera
» Possible actions: maintenance

> repair or replace
» which components
» dates of intervention

» Objective: minimize the unavailability + maintenance cost
» Sources of randomness
» random degradation or failure times for each component
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Motivation: Stochastic control Examples

Example 2: Maintenance optimization

[Geeraert 17]

Reference policy

» send camera to the workshop one day after failure or
deterioration

» replace failed components, repair degraded components

Minimal cost (value function)

» maintenance authorized only after failure or deterioration:

20% lower

» maintenance authorized at all times: 38% lower

CcIMO Mayotte November 2018
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Motivation: Stochastic control Examples

Common points

» family of underlying stochastic models PDMPs

> type of optimization problem: impulse control
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Piecewise deterministic Markov processes

Davis (80's)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

Starting point

Xo = (m, X)
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Motivation: Stochastic control Piecewise deterministic Markov Processes

Piecewise deterministic Markov processes

Davis (80's)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

X follows the flow until the next jump time To = T1 + 5

XT1+t = (mla ¢m1(XT17 t))v t<5
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Motivation: Stochastic control Piecewise deterministic Markov Processes

Piecewise deterministic Markov processes

DEVEREIY
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

Post-jump location (my, xT,) selected by Markov kernel

le (¢m1 (XT17 52), ) e
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Motivation: Stochastic control Piecewise deterministic Markov Processes

Applications

Applications of PDMPs

Engineering systems, operations research, management science,
economics, internet traffic, dependability and safety, neurosciences,
biology, ...

» mode: nominal, failures, breakdown, environment, number of
individuals, response to a treatment, ...

» Euclidean variable: pressure, temperature, time, size,
potential, protein level, ...

CIMOM Mayotte November 2018 11/44



Motivation: Stochastic control Impulse control

Impulse control problem

Impulse control

Select
> intervention dates
» new starting point for the process at interventions

to minimize a cost function

» repair a component before breakdown

» change treatment before relapse

> ..
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» based on a discretization of the state space and Markov kernel
> requires solving multiple optimal stopping problems

» [dSDZ 14] Numerical approximation of the value function
> based on a time-dependent discretization of an underlying
Markov chain
» work in progress for e-optimal strategy

» [Pasin 18] Numerical approximation of the value function and
e-optimal strategy
» based on a discretization of the state space and Markov kernel
» actions can be taken only at the boundary of the state space
> heuristics, no mathematical proof

In all cases, the process is perfectly observed at all times
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» [BdSD 12] Optimal stopping

> jump times observed
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Motivation: Stochastic control Impulse control

If the jump times are not observed?
Jump times can be
» date when CD4™ T count reach 500 threshold
» random failure/deterioration dates
Not observed!

» [BdSD 12] Optimal stopping

> jump times observed
» post-jump locations observed through noise

Numerical approximation of the value function and e-optimal
stopping time

» [BL 17] Continuous control
> jump times observed
» post-jump locations observed through noise

Optimality equation, existence of optimal policies

No information on the jump times = very difficult problem
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Motivation: Stochastic control Impulse control

Change-point detection

Simplest special case
» only one jump of the mode variable

» discrete noisy observations of the continuous variable on a
regular time grid

Optimal stopping = Change-point detection

Aim: numerical approximation to
» detect the change-point at best (not too early/late)

» estimate the new mode after the jump

cIMO Mayotte November 2018
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Motivation: Stochastic control Impulse control

Typical example

v

Population: cancer patients

v

Possible actions: change treatment
> treatment 1
> treatment 2
» dates of change

v

Objective: maximize life time of the patient with minimal
secondary effect
Sources of randomness

v

> relapse date
> relapse type

v

Observations: cancer cell loads (or proxy) at some regularly
spaced measurement times, e.g. every 3 month
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Change-point detection problem

Outline

Change-point detection problem
PDMP model
State of the art on change-point detection
MDP model
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Change-point detection problem PDMP model

Simple PDMP model

» State space £ x R=1{0,1,...,d} x R x R: mode, position,
time

» Starting point Xy = (0, x, 0), flow ®g

> time-dependent Jump intensity Ao(x, ) = ()

» Jump kernel: position and time continuous, switch to mode i
with probability p;

CcIMO Mayotte November 2018 18/44



Change-point detection problem PDMP model

Observations

» Observation times t, = dn

» Noisy observations of the positions Y, = F(x:,) + €p
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Change-point detection problem State of the art on change-point detection

Example: flat/exponential model

» d = 3 possible post-jump modes, same probability p; = 1/3,
starting from xg =1

> do(x, t) = x, D1(x,t) = xe’ !, Dy(x, t) = xe’°t,
®3(x, t) = xe't

CcIMO Mayotte November 2018
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Change-point detection problem State of the art on change-point detection

Segmentation

» data collected until the time horizon

» a posteriori reconstruction of the change point
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Change-point detection problem

Segmentation

State of the art on change-point detection

data collected until the time horizon

a posteriori reconstruction of the change point

.| Observations

observations
3
!

+ + +
.
< - + +
Lt +
.
« o + *
. + . P T
* true mode = 2
o ..
. . . . .
0 J 2 s . s s
time

Irrelevant in our medical context:

soon as possible

CcIMO Mayotte

change must be detected as
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Change-point detection problem State of the art on change-point detection

Moving average

» compute the average of past data over a moving window
> detect rupture when the average exceeds some threshold
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Change-point detection problem

Moving average

State of the art on change-point detection

» compute the average of past data over a moving window
» detect rupture when the average exceeds some threshold

Works well if
» data are centered before the rupture

date have a positive trend after the rupture

data have low variance

vy

v

mobile average

ciMO

small time interval between data

Mobile ave

rage

chosen mode =2

Mayotte

November 2018

T T
B 6
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Change-point detection problem

Kalman Filter

» discrete-time linear gaussian model observed throuh gaussian

additive noise

State of the art on change-point detection

» best mean squares approximation of the hidden variable given

the observations

» small time interval between data

—o—o0—0—86=06=0—0=0=0=0

. S
- \ Kalman filter P
o/o
el ot O/D/ — P(M=0lY_11)
s / \ o — PM=1IY_1%)
s \ )
< .| J g — P(M=2lY_11)
X;n>e/g/o/ o, P(M=31Y_11)
o o /0/0\ \"\o _0

VA =2 SN

.- e /. ., . . chosenmode=2
. ! : : ! : .
time
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Change-point detection problem State of the art on change-point detection

State of the art on change point detection

No generic method available if
» long interval between 2 observations
» non gaussian-linear model
» non additive noise

» aim is to detect rupture and new mode after rupture

cIMO Mayotte November 2018
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Change-point detection problem MDP model

Partially observed optimal stopping problem

» Finite horizon oV
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Change-point detection problem MDP model

Partially observed optimal stopping problem

» Finite horizon oV
» Admissible stopping times 7: FY-measurable
» Admissible decisions A: {0,1,...,d} valued, F.-measurable
» Cost per stage before stopping
» ¢(0,x,y) = 0 rightfully not stopped
» c(m#0,x,y) = B0 lateness penalty
» Terminal cost at stopping

v

C(m,x,y,0) = c(m, x,y) no stopping before the horizon
C(0,x,y,a # 0) = « early stopping penalty
C(m+#0,x,y,a=m) =0 good mode selection
C(m#£0,x,y,a# 0,m) =~ wrong mode penalty

v vy
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Change-point detection problem MDP model

Partially observed optimal stopping problem

Finite horizon o /V
Admissible stopping times 7: FY-measurable
Admissible decisions A: {0,1,...,d} valued, F,Y-measurable
Cost per stage before stopping

» ¢(0,x,y) = 0 rightfully not stopped

» c(m#£0,x,y) = (;d lateness penalty
Terminal cost at stopping
C(m,x,y,0) = c(m, x,y) no stopping before the horizon
C(0,x,y,a # 0) = « early stopping penalty
C(m+#0,x,y,a=m) =0 good mode selection
C(m+#0,x,y,a# 0,m) =~ wrong mode penalty

vy VYV

v

v

v vy

Cost of admissible strategy (7, A)

(T—1)AN

J(T«, A7 (m X, y)) = IE’(m,x,y) Z C(Xna Yn) + C(XT/\N7 YT/\N7 A)
n=0
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Change-point detection problem MDP model

Fully observed optimal stopping problem

> Filter process ©,(A x B) = P(g ,,)(Xsn € A x B|F))
» (©,,Y,) time inhomogeneous Markov chain with explicit
transition kernels 7, on P(E) x R

» cost functions ¢’(6,y) = [ ¢(m,x,y)df(m,x),
C'(0,y,a) = [ C(m,x,y,a)dd(m,x)

Fully observed optimal stopping problem
Minimize over all admissible strategies (7, a)

(T—1)AN
J/(T‘/ A7 (9/ y)) = E(e,}’) Cl(em Y") + C,(e"'/\/\h Y”'/\N’ A)

=
Il
o
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Change-point detection problem MDP model

Aim

» numerical approximation of the value function

» computable (optimal ?) strategy

Difficulties

» measure-valued filter process: recursive equations but not
simulatable

» curse of dimensionality

cIMO Mayotte November 2018

27/44



Numerical approximation

Outline

Numerical approximation
Approach
Optimal quantization
Convergence results
Computable strategy
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Numerical approximation Approach

Dynamic programming

Value function

V(0,y) = inf J(r, A, (0,
6,y) [t (1,A,(0,y))

(r—=1)AN

= By | Y0 €(0n Vo) + COrpm. Yrn.A)
T n=0

Dynamic programming

V[/\[(eay) = minOSan C/(97y7 a)
v/(6,y) = min {minlgagd C'(0,y,a);c'(0,y) + R,/(v,’(+1(0,y)}

Y
vp=V
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Numerical approximation Approach

Approach

» Discretize the kernels R; to discretize the Dynamic
programming operators

based on simulation-based discretization grids of the chain
(©n, Yn).

cIMO Mayotte November 2018
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Numerical approximation Approach

Approach

» Discretize the kernels R; to discretize the Dynamic
programming operators

based on simulation-based discretization grids of the chain
(©n, Yn).

Problems

» O, is not simulatable

fX Hy/ ILA)(m,x)d@n(m,x)
Jsx Pn(Hy,..)(m,x)d©,(m, x)

On:1(A) =

» approximation in 2 steps: approximate simulation of ©, +
discretization of the approximation

CcIMO Mayotte November 2018 30/44



Numerical approximation Approach

Discretization

Xt = (myvxtv t)
ExR, P
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Numerical approximation

Discretization

Xt = (my,xt, t)
ExR, P

J

Xn = (mtn’th)
E Py

observations J Yo = F(Xy) +¢n

(X, Yn)
ExR, R,

CIMOM Mayotte

Approach
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Numerical approximation Approach

Discretization

Xt = (myvxtv t)
ExR, P

Xn = (mt,,vxt,,)

E,
observations

(XIH

Pn
Yo = F(X:) +

Yn)

E xR, R,

filtering

\UJ

(©n, Yn)
P(E) xR, R,

dynamic
programming

Vn(©n, Y3)

CIMOM

Mayotte November 2018
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Numerical approximation Approach

Discretization

Xt = (fTTy,Xt7 t)
ExR, P

Xn = (mtn’th)
E Py

observations | Yi= F(Xy) +¢n

(Xns Ya)
ExR, R,
filtering | W
(©n, Yn)
P(E) xR, R,
dynamic
programming
Vp(©n, Yn)
CIMOM Mayotte

(Mtys Xe,) = Xn
Qn! Pn

quantization
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Numerical approximation Approach

Discretization

Xt = (m,V7XI‘7 t)

ExR, P
Xn = (me,, xt,) (e, %e,) = X,
E, Pp———Q,, P,
quantization .
observations | Yi= F(X,)+en
(Xn, Yn) (X, Yn)
EXRan """""""""" >Q,,><§{ I_?n
filtering | W
(©n, Yn) CA
P(E) xR, Ry oo »P(Qn) x Y, R,
dynamic
programming :
V;",(ena Yn) """""""""" > V,/,(én, \_/,,)
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(Xns Ya) (Xns Yn)
EXR, Ry oo ' Qy x Y, R,
filtering | W :
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Numerical approximation Approach

Discretization

Xt = (myvxtv t)

ExR, P
Xn = (me,, xt,) (me,, Xe,) = Xn
E: Pn —_— Qm 'Dn
quantization .
observations | Y»= F(Xn) +en
(Xn, Yn) (Xns Ya)
EXR, Ry oo ' Qy x Y, R,
filtering | W
(@na Yn) (ém ?n) _ (ém \A/n)
P(E) x R, Rp oo »P(Q) x Y, Ry ————— T, R,
. quantization .
dynamic
programming : B
V(O Vo) I 0460, V)
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Numerical approximation Optimal quantization

Quantization

[P 98], [PPP 04], [PRS05], ...

Quantization of a random variable X € L?(IR9)

Approximate X by X taking finitely many values such that
|X — X||2 is minimum
» Find a finite weighted grid I with || = K
> Set X = pr(X) closest neighbor projection
Asymptotic properties
If E[|X|?*"] < +o0 for some 1 > 0 then
lim K /q|m|n X — Xr||2—

K—oo

CIMOM Mayotte November 2018 32/44



Numerical approximation Optimal quantization
Algorithms

There exist algorithms providing

>

> law of X

» transition probabilities for quantization of Markov chains
Example: N(0, h):

CcIMO Mayotte November 2018
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Numerical approximation Optimal quantization

Grids construction

Model — simulator of trajectories — grids
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Numerical approximation Optimal quantization

Assets and drawbacks of quantization

» a simulator of the target law is enough to build the grids
» automatic construction of grids

> convergence rate for E[|f(X) — £(X)|] if f lipschitz

» empirical error measure by Monte Carlo

» computation time
» curse of dimension

» open questions of convergence of the algorithms

CIMOM Mayotte November 2018 35/44



Numerical approximation Convergence results

Convergence

Technical assumptions
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Numerical approximation Computable strategy

Candidate computable strategy

Dynamic programming

~

> U)(6,9) = ming<aca C'(0, 7, a)
0.y

> vk(O,y) = min {m|n1<a<d c'(0,y,a); ’(é,f/) + IA?LOLH(QA,}A/)}

Set
> mn(:) =0, an() = 0if Oy (projry(+)) = C'(projry(+). 0)
> mn(-) =1, an () = 7 if Oy(projry (1)) = C'(projry(+), /)
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Numerical approximation Computable strategy

Candidate computable strategy

Dynamic programming
> U1(0,9) = ming<a<a C'(0, 3
> 7(0.5) = min {mini<,ca C'(0,5,2): ¢'(0.9) + R, %.1(0.9)}

Set
> rv(-) =0, an() = 0if Uy (projry(+)) = C'(projry,(+), 0)
> rv() =1, an() = 7if Uy (projr, (1)) = C'(projry(+), 1)
> 1) = 0if U(projr, () = Ry0p41(projr, ()
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Numerical approximation Computable strategy

Path-adapted computable strategy

a0
0,
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Numerical approximation Computable strategy

Path-adapted computable strategy

n «< 0
—
a0
ro+ r(f,y)

yes Stop at time n
Choose decision a = a,(0, y)
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Simulation study

Outline

Simulation study
Linear model
Non linear model
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Simulation study Linear model

Flat/exponential model

s d=3p=1/3 x=1

> Oo(x, t) = x, P1(x,t) = xe”'t, &y(x, t) = xe"°F,
P3(x, t) = xe't

» B =1 (late detection), v = 1.5 (wrong mode), § =1/6
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Flat /ex

>

> ®o(x,t) = x, P1(x, t) = xe”'t, dy(x, t)

Simulation study

ponential model

d=3p=1/3 x=1

P3(x, t) = xe't

Linear model

= Xe

0.5t

» (B =1 (late detection), v = 1.5 (wrong mode), § = 1/6
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Simulation study Linear model

Flat/exponential model

> d:3, p,':]./3,X0:l
> ®o(x, t) = x, D1(x,t) = xe’ 1, Dy(x, t) = xe’ -,
®3(x, t) = xe't

» B =1 (late detection), v = 1.5 (wrong mode), § =1/6

z
2 a
Mobile average »
% a
g .
[ a
3 a
© © L8
2 .
8~ L e
£ s 8 ®
e
o a b a
fata ettt chosen mode =2
0 1 2 3 4 5 6
time

CcIMO Mayotte November 2018 40/44



Simulation study

Flat/exponential model

»d=3p=1/3 x=1

Linear model

> dg(x, t) = x, D1(x,t) = xe’ !, Dy(x, t) = xe’t,

P3(x, t) = xe't

» (B =1 (late detection), v = 1.5 (wrong mode), § = 1/6

B o ] //0//”””’
o | \ Kalman filter o~or /|
o/o
. ot i — P(M=0IY_11)
g / \ o — P(M=1IY_1%)
s . s 3 gt — P(M=2lY_11)
378575 Ne P(M=31Y_1:)
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Simulation study Linear model

Flat/exponential model

>

>

>

decision

ciMO

d=3,p=1/3 x =1
Po(x, t) = x, D1(x,t) = xe’ !, dy(x, t) = xe” -,
P3(x, t) = xe't

B =1 (late detection), v = 1.5 (wrong mode), § = 1/6
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Simulation study Linear model

Flat/exponential model

» d =3, p,-:1/3,xo:1
> do(x,t) = x, P1(x, t) = xe”'t, dy(x, t) = xet,
P3(x, t) = xe't
» [ =1 (late detection), v = 1.5 (wrong mode), § = 1/6
| MA' KF  PDMP

linear link function F(x) =x | 1.42 1.60 1.00
inverse link function F(x) =1/x | 217 1.81 1.17
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Simulation study Non linear model

Non-linear model

v

d=1, xp=(0,0)

bo((x, u), t) = (sin(37(u+t)), u+t),
&1((x,u),t) = (sin(57(u+t)),u+t)
d =1/6, noise variance 1

v

v

obs
obs

3 4 2 s
time time
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Simulation study Non linear model

Non-linear model
> d=1, x = (0,0)
> do((x,u),t) = (sin(37(u+t)),u+t),
&1((x,u),t) = (sin(57(u+t)),u+t)
» § =1/6, noise variance 1
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Boxplot of time to jump detection for different values of § over
10000 simulation
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Conclusion and perspectives

Outline

Conclusion and perspectives
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Conclusion and perspectives

Conclusion and perspectives

» Change-point detection method for continuous-time jump
dynamics, able to detect a jump and select the post-jump
mode

» For general flows but dimension 1
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Conclusion and perspectives

» Change-point detection method for continuous-time jump
dynamics, able to detect a jump and select the post-jump
mode

» For general flows but dimension 1

To be done

Real data applications

v

v

Theoretical validity of the stopping rule

v

Allow to stop between observations

v

Several jumps and detections

v

Impulse control: select an action that changes the dynamics

v

Optimally decide the next observation date
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