Predictive maintenance for the heated hold-up tank

B. de Saporta, F. Dufour, H. Zhang

INRIA Bordeaux and Université de Bordeaux ANR-09-SEGI-004 Fautocoes GIS 3SGS APPRODYN

PSAM11-ESREL2012, Helsinki, June 2012

Problem

- Maintenance problem
 - The heated hold-up tank
 - Optimization problem
- Numerical solution
 - Mathematical solution
 - Numerical scheme
- Numerical results
- 4 Conclusion

000000000

The heated hold-up tank

Test case

- continuous variables liquid level h, temperature θ
- discrete variables state of the 3 units and controller

in closed loop interaction

The heated hold-up tank

Dynamics: units

Possible states for each unit: ON, OFF, Stuck ON, Stuck OFF

Transitions for unit i

Jump intensity depending on the temperature

$$\lambda^i = \mathsf{a}(\theta)\ell^i$$

Dynamics: liquid level

Liquid level depends on the units positions

$$\frac{dh}{dt} = nG$$

n = number of inlet pumps ON or Stuck ON - number of outlet valves ON or Stuck ON

Control laws if controller ON

- if $h \ge 8m$ turn pumps OFF and valve ON if unstuck
- if $h \le 6m$ turn pumps ON and valve OFF if unstuck

Dynamics: temperature and controller

Temperature depends on the liquid level and units positions

$$\frac{d\theta}{dt} = \frac{mG(\theta_{in} - \theta) + K}{h}$$

m: number of inlet pumps ON or Stuck ON

Controller succeeds with probability p at each solicitation. Once failed stays failed.

Top events

Problem

Starting point

Unit 1 ON, Unit 2 OFF, Unit 3 ON, Controller ON, h = 7m, $\theta = 30.9261^{\circ}C$ equilibrium point

Top events: systems stops

- dry out h < 4m
- overflow h > 10m
- hot temperature $\theta > 100^{\circ}C$

00000●000 The heated hold-up tank

Problem

Examples of trajectories

00000●000 The heated hold-up tank

Problem

Examples of trajectories

The heated hold-up tank

Problem

000000000

Examples of trajectories

Maintenance

Maintenance optimization

Find the best time to stop the process

- before reaching the top events
- letting the system evolve in the operational states as long as possible

Mathematical formulation

Optimal stopping problem

 (X_t) stochastic process, T optimization horizon

$$V = \sup_{ au \leq T} \mathbb{E}[g(X_{ au}, au)]$$

Find

- the optimal performance V
- ullet the optimal stopping time au^* such that $\mathbb{E}[g(X_{ au^*}, au^*)]=V$

00000000

Optimal stopping for the tank

Horizon T = 1000h

gain function

$$g(h, \theta, t) = f(h, \theta)t^{\alpha}$$

$$f(h, \theta) =$$

- 1 if $6 \le h \le 8$ and $\theta < 50$
- 0 if top events

Modeling

Problem

Piecewise deterministic Markov process

$$X_t = (m_t, x_t)$$

- m_t discrete mode: state of the units and controller
- $x_t = (h_t, \theta_t)$ euclidean variable

Underlying Markov chain

$$(S_n, Z_n)$$

 S_n time between jumps n-1 and n Z_n value of the process after jump n

Problem

Iterative theoretical resolution

Dynamic programming

- \bullet $v_N = g$
- $v_n = L(v_{n+1}, g)$ for $n \le N 1$

$$v_0 = \sup_{\tau < T} \mathbb{E}[g(X_\tau)] = V$$

$$L(v_{n+1}, g)(Z_n) = \sup_{u \le t^*(Z_n)} \left\{ \mathbb{E} \left[v_{n+1}(Z_{n+1}) \mathbb{1}_{\{S_{n+1} < u\}} + g(\phi(Z_n, u)) \mathbb{1}_{\{S_{n+1} \ge u\}} \mid Z_n \right] \right\} \\ \vee \mathbb{E} \left[v_{n+1}(Z_{n+1}) \mid Z_n \right]$$

Quantization

Strategy

Discretize the Markov chain (S_n, Z_n) using quantization

Standard gaussian random variable $\mathcal{N}(0, I_2)$:

Problem

Quantization

Strategy

Discretize the Markov chain (S_n, Z_n) using quantization

Standard gaussian random variable $\mathcal{N}(0, I_2)$:

Problem

Quantization

Strategy

Discretize the Markov chain (S_n, Z_n) using quantization

Standard gaussian random variable $\mathcal{N}(0, I_2)$:

Simulation

- closed-loop interactions
- high cardinality of the mode
- rare events

$$h = 7m$$
, $\theta = 30.9261^{\circ}C$, ON, OFF, ON

Results 00000

Optimal stopping time

$$h = 7m$$
, $\theta = 30.9261^{\circ}C$, ON, OFF, Stuck OFF

$$h = 8m$$
, $\theta = 30.9261^{\circ}C$, OFF, OFF, Stuck OFF

Problem

$$h = 8m$$
, $\theta = 78.25^{\circ}C$, OFF, Stuck ON, Stuck OFF

$$h = 8.86m$$
, $\theta = 73.66^{\circ}$ C, gain = 10.20

Results

$$h = 7m$$
, $\theta = 30.9261^{\circ} C$, ON, OFF, ON

Problem

$$h = 7m$$
, $\theta = 30.9261^{\circ}C$, Stuck OFF, OFF, ON

Optimal stopping time

$$h = 6m$$
, $\theta = 33.38^{\circ}C$, Stuck OFF, ON, OFF

$$h = 8m$$
, $\theta = 32.77^{\circ}C$, Stuck OFF, OFF, ON

Results

Optimal stopping time

$$h = 6m$$
, $\theta = 37.35^{\circ}C$, Stuck OFF, ON, OFF

$$h = 7.66m$$
, $\theta = 35.96^{\circ}C$, Stuck OFF, Stuck ON, OFF

Results

$$h = 8m$$
, $\theta = 35.74$ °C, Stuck OFF, Stuck ON, ON

Results

Problem

h = 8m, $\theta = 30.9261^{\circ}C$, Stuck OFF, Stuck ON, Stuck OFF

Problem

$$h = 8.75 m$$
, $\theta = 30.9261^{\circ} C$, gain= 99.07

Mean optimal performance

Problem

Disc. points	Value function	MC
200	334.34	305.55
300	333.04	319.45
400	332.95	322.20
800	330.43	323.63
1000	330.87	324.04

Distribution at optimality

Distribution of the computed stopping time

Distribution at optimality

Distribution of the computed stopping time (zoom)

- No analytic solution to compare
- Theoretical proof of convergence of the algorithm

	without maintenance	with maintenance
mean performance	211.80	330.87
gain=0	80.33%	0.02%
$6 \le h \le 8$	28.25%	90.02%
<i>θ</i> ≤ 50° <i>C</i>	80.33%	95.09%

Conclusion and perspectives

- powerful numerical method
- stopping time adapted to each trajectory
- rigorous mathematical context
- impulse control: maintenance with partial repair

Conclusion and perspectives

Problem

- powerful numerical method
- stopping time adapted to each trajectory
- rigorous mathematical context
- impulse control: maintenance with partial repair