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Introduction

Cell division

film

Escherichia coli

Observation genealogical tree
Originality dependence structure
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Introduction

First BAR model

[Cowan & Staudte 1986] Bifurcating AutoRegressive model

{ Xok = a+ bXk+ ex
Xok+1 = a—+ bXk+ €241

(€2k, €2k+1) gaussian iid

e Elea+i] = 07, Eleakeans1] = p
() o

stationary regime if X1 ~ N(Z5, 25)
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Introduction

First BAR model

[Cowan & Staudte 1986] Bifurcating AutoRegressive model

{ Xok = a+ bXk+ ex
Xok+1 = a—+ bXk+ €241

(€2k, €2k+1) gaussian iid
2 ,
Eleak+i] = 07, Eleakeowna] =p
. .. R
stationary regime if X; ~ N (25, 1%52)
Estimate the parameters to measure corre-
lations

b mother-daughter correlation
¢ = b>+ (1 — b?)p/c? sister-sister
correlation

Benoite de Saporta University of Hong Kong 24 April 2013

4/40



Introduction

Asymmetry in cell division
[Stewart & al. 2005]
Do single cell organisms age 7
A
|
Pole—= (0 1) ~—Pule

:) Cell growth

( Beginning of cell division _
New pole cell = - - = Old pole cell =
Old pole —» EPNEW poles—»ﬂ =+——0id pole =

| |

'

| |
T O s [

/ \ cell for at / for two
leasttwo ¥ divisions

divisions
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Introduction

Asymmetric BAR process

[Guyon 2007] Asymmetric model

{ Xok = a+ bXk+ ex
Xok41 = C+ dXk+ enq1

(62k,62k+1) gaussian iid, ]E[62k+,'] = (72, E[62k62k+1] =p
no stationarity

Estimate the parameters to test symmetry
> (a,b) = (c,d)?
» a/(l—b)=c/(1—4d)?

Bifurcating Markov chains approach with generation-wise tree
structure
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Introduction

Generations

Generation 0:

Go ={1}
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Generations

Introduction

Tree up to Generation n:
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Introduction

Bifurcating Markov chains

definition of a Markov model on a binary tree
E | ] A0k Xoisa) | o € T)| = [T PAO)
keGp keGn

asymptotic behavior of (X,) given by an induced Markov chain

{ Yo = X,
YnJrl = An+1+Bn+1Yn

random lineage (A, Bp) iid with distribution
(a + €2, b)]l{gzl} + (C + €3, d)]l{czo}, ¢~ Bernoulli(1/2)
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Introduction

Induced Markov chain

Benoite de Saporta University of Hong Kong 24 April 2013 9/40



Introduction

First contribution
[Bercu, dS, Gégout-Petit 2009] Asymmetric model

{ Xok = a+ bXy+ e
Xok+1 = ¢+ dXk+ €2k41

Fn=0{Xk, k € Tp} generation-wise filtration
» moments of order 8 for the noise

» martingale difference sequence
E[€2k+i’-7'—n] =0 for all k € Gy, €ok+i independent of €2k +j
conditionnally to F, for all k # k' € G,

. E[€%k+i|fn] = 07, Eleakeaks1|Fn] = p for all k € G,

» convergence rate for the estimators

» martingale approach

Benoite de Saporta University of Hong Kong 24 April 2013 10/40



Introduction

Martingale approach

Convergence of martingales in L2

(M,) scalar martingale bounded in 2
<M == ko El(Mng1 — Mn)? | 73]

If limp_ooo < M >p= 400, then —/2— 0 a5

<M>,
n 2 log(<M
+ conditions on moments then (7" )" = O(%;”)) a.s.
n n

» identify a (vector) martingale for the generation-wise filtration
» compute the limit of the quadratic variation < M >~ |T,]

» apply the theorem of convergence with rate 7
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Introduction

Martingale approach

Convergence of martingales in L2

(M,) scalar martingale bounded in 2
<M == ko El(Mng1 — Mn)? | 73]

M

If imp_oo < M >,= 400, then —ms. — 0as.
" 2
+ conditions on moments then <<%">”> = O(%) a.s.

» identify a (vector) martingale for the generation-wise filtration
» compute the limit of the quadratic variation < M >~ |T,]

» prove the theorem of convergence with rate for martingales on
a binary tree
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Introduction

Real data

Escherichia coli data of [Stewart & al. 2005]
94 films = 94 genealogies
4 to 9 generations of cells in each genealogy
average growth rate 0.037

no complete genealogy: cells out of scope, overlapping, ...
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Introduction

Real data

Escherichia coli data of [Stewart & al. 2005]
94 films = 94 genealogies
4 to 9 generations of cells in each genealogy
average growth rate 0.037

no complete genealogy: cells out of scope, overlapping, ...

Our test procedure does not apply to these data

— New procedure taking missing data into account
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Missing data BAR processes Observation process

Galton-Watson model

[Delmas & Marsalle 2010]
each cell has a type 0 (even — new pole) or 1 (odd — old pole)

probability p(jo. /1) for a cell to have jy daughter of type 0 and
j1 daughters of type 1, drawn independently for each cell

Z, number of observed cells in generation n Galton-\Watson
process

if a cell is not observed, its offspring are not observed either

inference for partially observed BAR process through the
bifurcating Markov chain framework
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Missing data BAR processes Observation process

Galton-Watson model

[Delmas & Marsalle 2010]
each cell has a type 0 (even — new pole) or 1 (odd — old pole)

probability p(jo. /1) for a cell to have jy daughter of type 0 and
j1 daughters of type 1, drawn independently for each cell

Z, number of observed cells in generation n Galton-\Watson
process

if a cell is not observed, its offspring are not observed either

inference for partially observed BAR process through the
bifurcating Markov chain framework

The number of daughters of each type should also depend on the
type of the mother
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Missing data BAR processes Observation process

Two-type Galton-Watson model

0, = 1 if cell k is observed, 0 otherwise

probability p(")(jo. j1) for a mother cell of type i to have j
daughter of type 0 et j; daughter of type 1, drawn
independently for each cell

7! number of cells of type i ingeneration n, (Z9, Z}) two-type
Galton-Watson process

if a cell is not observed, its offspring are not observed either
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Missing data BAR processes Observation process

Extinction

Descendants matrix
p— < Poo  Po1 )
P10 P11
pio = p(1,0) + p()(1,1): mean number of daughters of type 0

pin = p(0,1) + p)(1,1): mean number of daughters of type 1
for a mother of type i

Probability of extinction

7 spectral radius of P
» if 7 < 1, almost sure extinction

» if 7 > 1, extinction with probability < 1
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Missing data BAR processes Observation process

Observed generations

Observed generation n

Gh={keGp; 6 =1}
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Missing data BAR processes Observation process

Observed generations

Observed tree up to generation n

T, ={keTy; 0k =1} = UG
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Missing data BAR processes Estimation

Partially observed BAR process

{sz = a + bXk + ex
Xoky1 = ¢ + d Xk + €41

Assumptions
» independence between (dx) and Xi, (€xk, €2k+1)

» noise martingale difference sequence with moments up to
order 8

Least squares estimation of 8 = (a, b, ¢, d)*: minimize

1
An(e) = 5 Z 62k(X2k —a— ka)2 + 52k+1(X2k+1 —C— ka)z.
keT,—1

Empirical estimators for the moments of the noise

Benoite de Saporta University of Hong Kong 24 April 2013 18/40



Missing data BAR processes Estimation

Estimator of 0

Least squares estimator for 0

a ok Xok
S bn _ 02k X Xok
0,=1| ~ = S
" Cn ke; 1 02k+1Xok+1
d, ! Ook+1 Xk Xok+1

with

s 0
5"—(0 s,l,)

X X
Z5Qk( X%) 252k+1(X XS)

keT, keT,
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Missing data BAR processes Convergence

Convergence rate

_ log | T*_, |
Liicz1>0) | @n — 0 1= 16350y O (Hr—_lf)

Proof: martingale approach
» identify a (vector) martingale for the generation-wise filtration
with observations
» compute the limit of the quadratic variation

> theorem on the convergence rate of martingales on a
Galton-Watson binary tree

Benoite de Saporta University of Hong Kong 24 April 2013 20/40



Missing data BAR processes Convergence

Main martingale

5,, -0 = S;_lan, with (M) martingale for the generation-wise
filtration of the process and observations

dok€k
M. — Dok Xic€ak
n 1)
2k++1€2k+1
keT,—1
Ook+1Xk€2k+1

(M,)n>1 square integrable with quadratic variation
<M>=T,

250 501 1 X
I',, = <psgl 0_25,17> and Sgl _ kgj; 02402k+1 (Xk X2)
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Missing data BAR processes Convergence

Convergence of the quadratic variation

Laws of large numbers for the observations (0 ), the noise (0,¢y)
processes

scalar martingales for various filtrations

Laws of large numbers for the BAR (-, ;X,') processes

specific form of the autoregression

assumption max{|b|, |d|} <1

Benoite de Saporta University of Hong Kong 24 April 2013 22/40



Missing data BAR processes Convergence

Central limit theorem

Conditionally to non extinction

T (0, —0) 5 N(0, SIS

Two main difficulties
» random [T | normalization

» result only valid conditionally to non extinction: on the non
extinction set & = N{|G}| > 0} endowed with the probability
Fe() =P(-n&)/P(E)
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Missing data BAR processes Convergence

Symmetry tests: Escherichia coli data

p-values for the 51 genealogies with 8 or 9 generations

10—

05—

00 t + T + U + t + + T + T + T
00 01 02 03 0a 0s 08 01 08 05

Test (a.b) = (c.d)
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Missing data BAR processes Convergence

Symmetry tests: Escherichia coli data

p-values for the 51 genealogies with 8 or 9 generations

T A m sl

Test a/(1 —b) =c/(1—d)
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Missing data BAR processes Multiple-tree estimation

New model

Simulations => low power of the tests for 8 or 9 generations

Multiple-tree estimation

» use several genealogies (in fixed number) for inference

» genealogies are iid samples of the partially observed BAR
process with the same parameters

new estimator (# average of single-tree estimators)
union of non-extinction sets

new proofs of convergence with the same ideas

vV v.v Vv

inference and symmetry test for the Galton \Watson process
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Missing data BAR processes Multiple-tree estimation

Multiple-tree estimator

Least squares estimator for 6

07,2k Xj 2k

ho=(Lsma0) D ¥ |

= i 2k+1Xj 2k+1
= N
0j 2k+1 Xk Xj 2641

Snli) = ( Sgo(j) S%OU) )

i 1 X'k
OED SURRI
J

keT, />

with
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Missing data BAR processes

Multiple-tree estimation

Multiple-tree analysis of E. coli data: BAR

Estimation of & = assumption max{|b|,|d|} < 1 holds true

a

0.0203 [0.0197;0.0210]

C

0.0195 [0.0188;0.0201]

b

0.4615 [0.4437;0.4792]

d

0.4782 [0.4605; 0.4950)]

Estimation of the moments of the noise

Tests

0?]1.81-107°[1.12-1075;2.50 - 107]

p | 0.48-107°[0.44-10>,0.52-1077]

hypothesis (a, b) = (c, d) rejected (p-value = 107°),

hypothesis a/(1 — b) = ¢/(1 — d) rejected (p-value =2 -1073)

Benoite de Saporta University of Hong Kong

24 April 2013
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Missing data BAR processes Multiple-tree estimation

Multiple-tree analysis of E. coli data: Galton-Watson

Estimation of the reproduction laws

p@(0,0) | 0.35579 [0.35574;0.35583] [[ p™@ 0.35611 [0.35606; 0.35616]

p@(0,1) | 0.04740 [0.04739;0.04741] || p® 0.03755 [0.03754; 0.03756]

(0,0)

p@(1,0) | 0.03621 [0.03620;0.03622] || p™(1,0) | 0.04707 [0.04706;0.04708]
(0,1)
(1,1)

p©@(1,1) | 0.56060 [0.56055;0.56065] | p™ 0.55928 [0.55923; 0.55933]

Estimation of 7: 1.204 [1.191; 1.217]
= assumption 7 > 1 holds true

Tests

hypothesis of equality of the means of the reproduction laws not
rejected (p-value = 0.9),

assumption of equality between the vectors rejected (p-value
=2-1079)
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Random coefficient BAR processes
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Random coefficient BAR processes Model

Random coefficient model

{ ng = (a+€2k) -+ (b+7]2k) Xk
Xokr1 = (c+eawqr) + (d+7m0001) X

> (2K, M2k E2k+1, N2k+1) iid
» moments up to order 32

» missing data modeled by a simple supercritical Galton Watson
process
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Random coefficient BAR processes Model

Estimators

Least squares estimator of @ : same formula

modified least squares estimators for the moments of the
noise: minimize

*Z Z (€ — Ele5, |70 1)? +(52k+1 Ele5x 1175 1)

(=1 keGy

1 n—1

5 >N @rarsr — Eleorcor 1| 711)
=1 keGy,

where (F9) generation-wise filtration with observations and

€2k = Ou(eak + M2 Xi), €2k = Ou(Xok —an — BnXk),
ekt1 =  Ooks+1(€2kt1 + M2xr1Xk), k1 = Ou(Xokg1 — Cn — tA:InXk).
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Random coefficient BAR processes Model

Convergence

Convergence rate

~ log [T _,|
L0} | On = 0 °= Ljc; 50,0 ( Ty )
n—1

Central limit theorem

Conditionally to non extinction

VT 18, —6) & N(0,57TS™Y)

» identify a (vector) martingale for the generation-wise filtration
with observations

» compute the limit of the quadratic variation

» theorem on the convergence rate of martingales on a
Galton-Watson binary tree
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Random coefficient BAR processes Laws of large numbers

Main martingale

0,— 0= S 1. M, with (M,) martingale for the generation -wise
filtration with observations

dokcork
M. — 0ok Xkcok
" Ook+162k 11
KeToo | 4 12k
k1 Xk 2k 11
ek = Ole2k + M2k Xs),
eok+1 = Ooky1(€2k41 + M2k+1Xk),

quadratic variation < M >,=I,_1, 4 X 4 matrix with terms of
the form 37, cp Ok X/, 0 < g <4
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Random coefficient BAR processes Laws of large numbers

Convergence of the quadratic variation

We do not want to suppose
max{|b+ 1z|,|d + 13|} <1

= no majoration to make asymmetry vanish
impossible to use the martingale approach martingale directly
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Random coefficient BAR processes Laws of large numbers

Convergence of the quadratic variation

We do not want to suppose

max{|b+ x|, |d + 15|} <1

= no majoration to make asymmetry vanish
impossible to use the martingale approach martingale directly

= laws of large numbers by bifurcating Markov chain approach
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Random coefficient BAR processes  Laws of large numbers
Bifurcating Markov chain on a Galton-Watson tree
Bifurcating Markov chain on RU 0
X = Xilgs,—1) + 0Lys,—0)
bifurcating Markov kernel on (R U 0) Pf(9) = f(0,0,0) and

Pf(x) = p(L,LE[f(x,(b+m)x+a+ez(d+n3)x+c+es3)]
+p(1,0)E [f(x,(b+m)x + a+¢e2,0)]
+p(0,1)E [f(x,0,(d +n3)x + c + €3)]
+p(0,0)f(x,d,0)

Sub-Markovian kernels on R

Po(x, A) = (p(1,1) + p(1,0))E [Ta((2 + £2) + (b + m2)x) ]

Benoite de Saporta University of Hong Kong 24 April 2013 35/40
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Bifurcating Markov chain on RU 0
X = Xilgs,—1) + 0Lys,—0)
bifurcating Markov kernel on (R U 0) Pf(9) = f(0,0,0) and

Pf(x) = p(L,LE[f(x,(b+m)x+a+ez(d+n3)x+c+es3)]
+p(1,0)E [f(x,(b+m)x + a+¢e2,0)]
+p(0,1)E [f(x,0,(d +n3)x + c + €3)]
+p(0,0)f(x,d,0)

Sub-Markovian kernels on R

PI(X’ A) = (P(L 1) + ,D(O, 1))E []LA((C + 53) + (d + 773)X)]
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Random coefficient BAR processes

Induced Markov chain

(An, B ) iid ~ (a + €3, b+ I/2) {¢=1} + (C + €3, d+ I}3)]l{§_0},

¢ ~ Bernoulli((p(1,1) + p(1,0))/7) where = mean of the
reproduction law

Laws of large numbers

YO X17
{ Y1 = App1+ Bas1 Vs
Markov kernel @ = (Po + P1)/7
Many to one formula

S EIF(X0) L gkensy] = EIF(Y,)
keG,

Law of large numbers: v distribution of X3

5 anz 2 n—1
Lz_ 7/7Tn 2277/Qé (Qn —f— 1f®Qn —f— 1f)
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Random coefficient BAR processes Laws of large numbers

Ergodicity of the induced chain

invariant distribution 1 ~ > By --- B,_1A,
geometric ergodicity for polynomials up to degree q if

_ p(1,0) +p(1,1) p(0,1) + p(1,1)

E[|B]7] = E[|b+m2|7+ Efld +ns|]< 1

replace assumption max{|b|, |d|} <1
law of large numbers for X,f requires moments of order 4q
convergence of the quadratic variation

rate of convergence of the estimators via martingale approach

Benoite de Saporta University of Hong Kong 24 April 2013 37/40
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Conclusion

Bifrucating Markov chain vs martingale approach

Martingale Markov chain
martingale difference sequence iid
noise moments of order g moments of order 4g
b and d max < 1 weighted mean <1
two-type simple
observations Galton-Watson process Galton-Watson process
two-type ?

Benoite de Saporta University of Hong Kong 24 April 2013 39/40



Conclusion
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