Numerical method for control of

piecewise deterministic Markov
processes

Benoite de Saporta, Francois Dufour

Adrien Brandejsky, Karen Gonzalez, Huilong Zhang

University of Bordeaux and Inria




Outline

Piecewise deterministic Markov processes
Control problem

Numerical procedure

Numerical results

Further results

Benoite de Saporta ICMC - USP 4 June 2013 2/47



PDMP'’s Definition

Definition of piecewise deterministic Markov processes

Davis (80's)
General class of non-diffusion dynamic stochastic hybrid models:
deterministic motion punctuated by random jumps.

Applications

Engineering systems, operations research, management science,
economics, internet traffic, neurosciences, biology, dependability
and safety,. ..
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PDMP's Definition

Dynamics

Hybrid process X; = (m;, y:)

» discrete mode m; € {1,2,...,p}
» Euclidean state variable y; € R”

Local characteristics for each mode m

» £, open subset of RY, 9E,, its boundary and E,, its closure

» Flow ¢t R x R — R? deterministic motion between jumps,
one-parameter group of homeomorphisms

> Intensity Ap: Ep — R intensity of random jumps

» Markov kernel @, on (Em, B(Em)) selects post-jump location
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PDMP's Definition

Two types of jumps

» t"(m, y) deterministic exit time starting from (m, y)
t*(m,y) =inf{t >0: ¢m(y,t) € O}

» law of the first jump time Tj starting from (m,y)

- t/\m ¢m bl d H *
P(m,y)(Tl > t) = € Jo ( v S)) ° If t<t (m,}/)
0 if t>t*(m,y)

T1 has a density on [0, t*(m, y)[ but has an atom at t*(m, y)

P(m,y)(Tl - t*(m7)/)) >0
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PDMP's Definition

Iterative construction
Starting point
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PDMP's Definition

Iterative construction
X; follows the deterministic flow until the first jump time T; = 5

Xt = (m’ (7m(}/7 t))7 t<Ty
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PDMP's Definition

Iterative construction
Post-jump location Z; = (M, Y1) selected by the Markov kernel

Qm (¢m(}/a Tl)? )
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PDMP's Definition

Iterative construction
X follows the flow until the next jump time To = T1 + 5>

XT1+t = (Mla C)Ml(ylv t))u t< 52
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PDMP's Definition

Iterative construction
Post-jump location 7> = (Ma, Y2) selected by Markov kernel

O (o (V1. 82), ) - .
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PDMP's Definition

Embedded Markov chain

{X:} strong Markov process [Davis 93|

Natural embedded Markov chain
» Zp starting point, S50 =0, 51 =T

» Z, new mode and location after n-th jump, S, = T, — Tp_1,
time between two jumps

Proposition

(Z,.5,) is a discrete-time Markov chain
Only source of randomness of the PDMP
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PDMP's Example

Industrial example from Astrium Space Transportation

Material subject to corrosion and randomly exposed to different
stressing ambiences

& Tenm
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PDMP's Example

Corrosion problem

Material subject to corrosion

support structure for other equipments
small size: one point of measure

long service life — monitor the thickness
loss due to corrosion
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PDMP's Example

Usage profile

Material subject to corrosion

Usage profile

Storage in 3 successive differents environments for random times
1. workshop
2. submarine in operation

3. submarine in dry dock
Strong safety requirements

4

Monitor the thickness loss
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PDMP's Example

Degradation process

» Deterministic succession of environments : 1—2—3—1---
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PDMP's Example

Degradation process

Deterministic succession of environments : 1—2—3—1---

Random time in environment i with distribution Exp()\;)
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PDMP's Example
Degradation process
Deterministic succession of environments : 1—2—3—1---

Random time in environment /i with distribution Exp();)

Initial protection against corrosion active for random time
with Weibull distribution
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PDMP's Example

Degradation process

Deterministic succession of environments : 1—2—3—1---

Random time in environment /i with distribution Exp();)

Initial protection against corrosion active for random time
with Weibull distribution

Equation of thickness loss in environment i

di = pi(t —ni + nfeXp(—t/m))

pi random corrosion rate in environment ;i with uniform
distribution
7; deterministic time in environnement i.
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PDMP's Example

Degradation process

Deterministic succession of environments : 1—2—3—1---

Random time in environment /i with distribution Exp();)

Initial protection against corrosion active for random time
with Weibull distribution

Equation of thickness loss in environment i

di = pi(t —ni + nfeXp(—t/n,-))

pi random corrosion rate in environment / with uniform
distribution
7; deterministic time in environnement i.

Inefficient material if d¢ > 0.2mm
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PDMP's Example

Simulated trajectories

0251

0.2

0.15F
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PDMP's Example

Simulated trajectories
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Control problem Optimal stopping

Optimal stopping

» Reward function g

» Time horizon N-th jump Ty

Optimal stopping problem

» compute the value function
V = sup Elg(X,)]
TEM

M set of all stopping times 7 < Ty for the natural filtration
of the process (X;)

» find an (e-)optimal stopping time 7 that reaches V/(x)(—¢)
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Control problem Optimal stopping

Application to maintenance optimization

» X; = (mq, y:) state of a machine/material at time ¢t

» T, failure of some components/changes of environment

Optimal stopping

Find an optimal balance between
» changing the components too early/often

» no maintenance leading to a total breakdown
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Control problem Aim of the talk

Numerical methods

Very few numerical methods available for PDMP's
[Costa Davis 88, 89]

Propose numerical methods
» suitable for PDMP’s
» with proof of convergence and convergence rate

» that can work in practice
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Control problem Aim of the talk

Aim of the talk

Objective
Propose a numerical method

» to evaluate the value function

» to compute an e-optimal stopping rule

with error bounds

» Use dynamic programming
» Use the embedded Markov chain (Z,, S,)

» Adapt the methodology developed for diffusion processes
based on quantization
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Numerical procedure Quantization
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Numerical procedure Quantization

Numerical method for diffusion processes

[Pages 98], [Pages, Pham, Printems 04]. . .

Y; continuous-time Markov diffusion process
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Numerical procedure Quantization

Numerical method for diffusion processes

[Pages 98], [Pages, Pham, Printems 04]. ..
Y continuous-time Markov diffusion process

1. time discretization (Euler scheme) Y, =Yka: discrete-time
Markov chain with continuous state space
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Numerical procedure Quantization

Numerical method for diffusion processes

[Pages 98], [Pages, Pham, Printems 04]. . .

Y; continuous-time Markov diffusion process

1. time discretization (Euler scheme) Y, =Yka: discrete-time
Markov chain with continuous state space
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values in a finite state space
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Numerical procedure Quantization

Numerical method for diffusion processes

[Pages 98], [Pages, Pham, Printems 04]. . .

Y: continuous-time Markov diffusion process

time discretization (Euler scheme) Y. =Yjka; discrete-time
Markov chain with continuous state space

quantization replace Y) by a random variable \A/k taking
values in a finite state space

replace the conditional expectations in the dynamic
programming equation by finite sums
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Numerical procedure Quantization

Numerical method for diffusion processes

[Pages 98], [Pages, Pham, Printems 04]. . .

Y: continuous-time Markov diffusion process

time discretization (Euler scheme) Y. =Yjka; discrete-time
Markov chain with continuous state space

quantization replace Y) by a random variable \A/k taking
values in a finite state space

replace the conditional expectations in the dynamic
programming equation by finite sums

Lipschitz-continuity conditions = convergence rate of the
approximated value function to the original one
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Numerical procedure Quantization

Specificities of PDMP's

> jumps at random times

» indicator functions in the dynamic programming equation

» use the embedded Markov chain (Z,. 5,)

» be careful with the time grids
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Numerical procedure Quantization

Quantization

Quantization of a random variable X € LP(RY)

Approximate X by X taking finitely many values such that
|IX = X||p is minimum

» Find a finite weighted grid I with |['| =

> Set X = pr(X) closest neighbour projection

Asymptotic properties
If E[|X|P*"] < 400 for some i > 0 then

lim K9 m|n | X — Xer_ C
K—oo IFI<K
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Numerical procedure Quantization

Algorithms

There exist algorithms providing

r

law of X

transition probabilities for quantization of Markov chains
Example: N(0, h):
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Numerical procedure Quantization

Algorithms

There exist algorithms providing

> [

> law of X

» transition probabilities for quantization of Markov chains
Example: N(0, h):

Benoite de Saporta ICMC - USP 4 June 2013 22/47



Numerical procedure Quantization

Grids construction

Model —— simulator of trajectories —— grids
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Numerical procedure Quantization

Grids construction

Model —— simulator of trajectories —— grids
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Numerical procedure Quantization

Assets and drawbacks of quantization

» a simulator of the target law is enough to build the grids
» automatic contraction of grids
» convergence rate for E[|f(X) — f()A(|] if f lipschitz

» computation time
» curse of dimension

» open questions o conn thevergence of the algorithms
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Numerical procedure Optimal stopping for PDMP’s

Optimal stopping for PDMP's

[Gugerli, 1986]

Dynamic programming equation
Tvw=_g
v, =L(v,1,8) forn< N—1

VO(X) = sup EX[g(XT)] = V(X)
TEM

L(w,g)(x)

tAL* (x) .
= swp [ / AQw(¢(x, 5))e "%V ds + g (d(x, t A t*(x)))e "N <X”]
t>0 0

t*(x) )
V/ AQw(p(x, s))e " ds + Qw(g(x, t7(x)))e N )
0
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Numerical procedure Optimal stopping for PDMP’s

Probabilistic interpretation

Interpretation of operator L

L(w,g)(x)

tAL"(x) "
= sup [/ AQw(o(x, s))e M) ds + g(o(x, tnt” (X)))e_l\(x’mt (X))]
0

t>0

t(x) )
V/ AQw(d(x, s))e " Vds + Quw(g(x, t"(x)))e ")
0
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Numerical procedure Optimal stopping for PDMP’s

Probabilistic interpretation

Interpretation of operator L

L(w, g)(x)
= sup {Ex [W(Zl)1{51<u} + g(dJ(X, u)) 1{51211}] }

u<t*(x)

VvV Ex [W(Zl)]
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Numerical procedure Optimal stopping for PDMP’s

Probabilistic interpretation

Interpretation of operator L

L(w,g)(x)

- sup ]E[W(Zn+l)1{5n+1<u} + g(¢(Z”’ u))1{5n+1ZU} ’ Zn= X] }
u<t*(Z,)

Vv E[W(Zn+1) | e x]
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Numerical procedure Optimal stopping for PDMP’s

Recursive computation

Backward dynamic programming equation
> vu(Zn) = &(2Zn)
> vi(Z,) = L(vii1,8)(Zp) forn < N -1

v(Zo) = sup Ex[g(X7)]
TEMp

(Z,) = L(vns1. 8)(Z0)

= sup {E[Vn+1(zn+1)1{5n+1<u}+g(¢(Zn7U))1{5n+12u} | Zn”
u<t*(Zp)

\ IE|:Vn+1(Zn+1) | Zn]
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Numerical procedure Optimal stopping for PDMP’s

Discretization

Approximation of the value function
| VN(ZN) = g(ZN)
» vn(Zn) = L(vat1,8)(Zp) forn < N —1

L(Vn+17g)(zn)
T el ){E[V(Zn+1)1{5m<u}+g (6(Zos ) 15,20 | Z0] }

u<t*(Z

N E[V(Zn-‘rl) | Zn]

Benoite de Saporta ICMC - USP 4 June 2013 28/47



Numerical procedure Optimal stopping for PDMP’s

Discretization

» wn(2n) = g(2n)
> Vvo(Zp) = L(Vny1,8)(Zp) forn < N —1

Ld(v,,_H,g)(Z,,)
- uemGa(én){E[V(Z"+1)1{5n+1<“} +&(6(Zn, 1)) 15,120 | Z"”

\Y% E[V(Z,,H) | Zn]
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Numerical procedure Optimal stopping for PDMP’s

Discretization

> vw(Zn) = g(2n)
» vn(Zn) = L(vat1,8)(Zp) forn < N —1

Lo(Vat1,8)(Z0)
S GRS { CEAD L R )

V ]E[V(Z,H_l) | 2,,]
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Numerical procedure Optimal stopping for PDMP’s

Discretization

Approximation of the value function

> Wn(Zn) = &(Zw)
> Vn(Zn) = Lg(Vnt1,8)(Zn) for n < N —1

Li(Vas1,8)(20)

- uengzén){E[V(Z”“)1{§nﬂ<u} +8(0(Zn )1z 5 | Z}}

V E[v(Znt1) | 2]
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Numerical procedure Optimal stopping for PDMP’s

Convergence rate

[An. Appl. Proba. 2010]

Theorem

Lipschitz assumptions on ¢, A, Q, t* and g

[vo(x) = W(x)| < CVEQ

C explicit constant,
EQ quantization error

./ due to the indicator functions
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Numerical procedure Optimal stopping for PDMP’s

Optimal stopping time

Optimal stopping time : 7*

Ex[g(X:-)] = wo(x) = sup. Ex[g(X7)]

Existence?
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Numerical procedure Optimal stopping for PDMP’s

Optimal stopping time

Optimal stopping time : 7*

Ex[g(X:-)] = wo(x) = sup. Ex[g(X7)]

Existence?

e-optimal stopping time : 7

vo(x) ¢ < Ex[g(X:)] < wo(x)
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Numerical procedure  Optimal stopping for PDMP’s
Optimal stopping time
Ex[g(X:)] = vo(x) = sup Ex[g(X-)]

Existence?

e-optimal stopping time : 7

vo(x) ¢ < Ex[g(X:)] < wo(x)

Proposition of a computable stopping rule 7

» explicit iterative construction

» no extra computation
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Numerical procedure  Optimal stopping for PDMP’s
Optimal stopping time
Ex[g(X:)] = vo(x) = sup Ex[g(X-)]

Existence?

e-optimal stopping time : 7

vo(x) ¢ < Ex[g(X:)] < wo(x)

Proposition of a computable stopping rule 7

» explicit iterative construction

» no extra computation

> true stopping time in M
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Numerical procedure Optimal stopping for PDMP’s

Optimality

[An. Appl. Proba. 2010]

Theorem

Same assumptions

w(x) —~ Exlg(X)ll < GEV + GVEQ

C1, G explicit constants
EV value function error
EQ quantization error

Provides another approximation of the value function via Monte
Carlo simulations
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Numerical results Maintenance optimization problem

Outline

Piecewise deterministic Markov processes
Control problem
Numerical procedure

Numerical results
Maintenance optimization problem
Validation

Further results

Benoite de Saporta ICMC - USP 4 June 2013 32/47



Numerical results Maintenance optimization problem

Maintenance policy for the corrosion model

One intervention before = structure as good as new

Maintenance optimization : balance between

» early intervention unnecessary and costly

» late intervention dangerous and costly

Margin optimization

During conception

» ensure with 95% confidence that no maintenance will be
required before a given date
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Numerical results Maintenance optimization problem

Reward function

0 0.05 0.1 0.15 0.2 0.25
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Numerical results Maintenance optimization problem

lterative stopping rule
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Numerical results Maintenance optimization problem
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Numerical results Maintenance optimization problem
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Numerical results
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Numerical results

lterative stopping rule
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Numerical results

lterative stopping rule
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Numerical results

lterative stopping rule
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Numerical results

lterative stopping rule
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Numerical results

Margin optimization

2000

[ 20 40

Benoite de Saporta

60 80 100 120 140 160 180 200

ICMC - USP

4 June 2013

Maintenance optimization problem

Date | Probability
5 ans 0.0002
10 ans 0.0304
15 ans 0.0524
20 ans 0.0793
40 ans 0.2647
60 ans 0.6048
80 ans 0.8670
100 ans 0.9691
150 ans 0.9997
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Numerical results Validation

Computation of the value function

Numerical results (true value : 4)

Number of points in | Approximated | Monte Carlo
quantization grids | value function | value function

10 2.48 0.94

50 2.70 1.84

100 2.94 2.10

200 3.09 2.63

500 3.39 3.15

1000 3.56 3.43

2000 3.70 3.60

5000 3.82 3.73

8000 3.86 3.75

Benoite de Saporta ICMC - USP

4 June 2013
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Numerical results Validation

Comparison with theoretical optimal stopping time

[J. Risk Reliability 2012]
Optimal stopping time 7% = inf{t : d; > 0.02}

2000

1800 1800
1600 1600
1400 1400
1200 1200

1000 1000
800
600
400

200 9 200

20 40 60 80 100 120 140 160 180  20( 40 60 80 100 120 140 160 180 200

our stopping rule theoretical stopping time
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Further results Optimal stopping under partial observation

Partial observations

Only a noisy observation of (X;) is available

Optimal stopping problem

» compute the value function
V = sup Elg(X,)]
TEM

M set of all stopping times 7 < Ty for natural filtration
(FO) of an observation process

» find an (e-)optimal stopping time 7 that reaches V/(x)(—¢)
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Further results Optimal stopping under partial observation

Observation process

S, perfectly observed
Z,, observed through a noise

Yn = (yb(Zn) + Wn

continuous time observation process

Yi= Z L7, 7ia[ () Ya
n=0

filtration FO = o(Ys,s < t)

Benoite de Saporta ICMC — USP 4 June 2013
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Further results Optimal stopping under partial observation

From partial observations to complete observations

Methodology

» introduce the filter process My = E[X; | fto]

» transform the initial problem into a completely observed one
for the filter process

Main drawbacks

» infinite dimension of the filter

> the new optimal stopping problem involves a process that is
not a PDMP
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Further results Optimal stopping under partial observation

Optimal stopping under partial observation

[Stoch. Proc. Appl. 2013]

> Study the filter process M}, = P[Z, = x; | F2]
» recursive computation M, = W(M,_1, Y5, S,)
» Markov property

» Derive the dynamic programming equation for the new
completely observed problem

» Replace (M,, S,) by its quantized approximation
» Same kind of results for the convergence with rate
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Further results Impulse control

Impulse control

Impulse control

Choose
» intervention times
» new starting points for the process after the interventions

in order to minimize a cost function

Application: maintenance of a complex system

Machine subject to failure of its components. Choose
» the intervention dates to perform a maintenance

» the nature of the maintenance: full or partial repair
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Further results Impulse control

Simplified mathematical definition

Strategy S = (Th, Rn)n>1
» T, intervention times

» R, new positions after intervention

Value function

jS(X) = E}S [/oo e "*f(Ys)ds + Z e (Ve Yor)

0 =il
V= inf J°
SeS

» f, ¢ cost functions, « discount factor

> Y: controlled process, S set of admissible strategies
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Further results Impulse control

Results

[Automatica 2012]

Convergence results for the value function only

more involved numerical scheme as the recurrence not he
value functions does not yield an autonomous recurrence on
random variables
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Further results Impulse control
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