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Introduction Maintenance optimization

Maintenance

From corrective actions to preventive and condition-based interventions

Equipments
» with several components

» subject to random degradation and failures

Maintenance policy: sequence of interventions
» when 7

» what type: change or repair ?

Examples of maintenance policies
» change a component at failure

» repair or change a component every n months

>
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Introduction Maintenance optimization

Maintenance optimization

From corrective actions to preventive and condition-based interventions

Maintenance optimization problem: find some optimal balance
between

» repairing/changing components too often

» do nothing and wait for the total failure of the system
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Introduction Maintenance optimization

Maintenance optimization

From corrective actions to preventive and condition-based interventions

Maintenance optimization problem: find some optimal balance
between

» repairing/changing components too often

» do nothing and wait for the total failure of the system

Optimize some criterion
> minimize a cost: functioning, maintenance, ...

» maximize a reward: availability, . ..
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Introduction Maintenance optimization

Our approach

» propose a general model for the evolution of the equipment
state based on PDMPs

» formalize the maintenance problem as an impulse control
problem for PDMPs

» compute the approximate optimal maintenance cost
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Introduction Maintenance optimization

Our approach

» propose a general model for the evolution of the equipment
state based on PDMPs

» formalize the maintenance problem as an impulse control
problem for PDMPs

» compute the approximate optimal maintenance cost

» <work in progress> propose a computable strategy close to
optimality
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Introduction Piecewise deterministic Markov processes

Piecewise deterministic Markov processes

[Davis 93] General class of non-diffusion dynamic stochastic hybrid
models: deterministic motion punctuated by random jumps.

Starting point

Xo = (m, x)

PGMO days 2018 EDF'LAB Paris Saclay 21/11/2018 6/31



Introduction Piecewise deterministic Markov processes

Piecewise deterministic Markov processes

[Davis 93] General class of non-diffusion dynamic stochastic hybrid
models: deterministic motion punctuated by random jumps.

X; follows the deterministic flow until the first jump time 71 = 53

Xe= (m 006, 1), Bn(S1 > 1) = I 2o (0ntesl) e
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Introduction Piecewise deterministic Markov processes

Piecewise deterministic Markov processes

[Davis 93] General class of non-diffusion dynamic stochastic hybrid
models: deterministic motion punctuated by random jumps.

Post-jump location (my, xT,) selected by the Markov kernel

Qm (¢m(X; Tl), )
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Introduction Piecewise deterministic Markov processes

Piecewise deterministic Markov processes

[Davis 93] General class of non-diffusion dynamic stochastic hybrid
models: deterministic motion punctuated by random jumps.

X; follows the flow until the next jump time T, = T1 + 5

XT1+t = (ml, Om, (XTl, t)), t< S

Em,
En
Qu (¢m(x, T1), -)
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Introduction Piecewise deterministic Markov processes

Piecewise deterministic Markov processes

[Davis 93] General class of non-diffusion dynamic stochastic hybrid
models: deterministic motion punctuated by random jumps.

Post-jump location (my, xT,) selected by Markov kernel

le (¢m1 (XT17 52)7 ) cee
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Introduction Piecewise deterministic Markov processes

Embedded Markov chain

{X:} strong Markov process [Davis 93|

Natural embedded Markov chain
» Zp starting point, S50 =0, 51 =T1

» Z, new mode and location after n-th jump, S, = T, — Tp_1,
time between two jumps

Proposition

(Z,,5,) is a discrete-time Markov chain
Only source of randomness of the PDMP
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Introduction Piecewise deterministic Markov processes

Examples of PDMPs

Applications of PDMPs

Engineering systems, operations research, management science,
economics, internet traffic, dependability and safety, neurosciences,
biology, ...

» mode: nominal, failures, breakdown, environment, number of
individuals, response to a treatment, ...

» Euclidean variable: pressure, temperature, time, size,
potential, protein level, ...
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Equipment model

Use case Equipment

Typical model with 4 components

» Component 1: 2 states — stable

Exponential .
PO, failed

Weibull .
» Component 2: 2 states — stable ——— failed

» Components 3 and 4: 3 states

Weibull Exponential .
stable —— ———— failed

r __________________________________ hl

|
| Component 2 |
| |
I stable—2 3 failed I
| Component 1 Component 4 |
| Wb Exp |
: stableXB 3 fajled Component 3 stable—> —> failed ||
| Wb Exp :
| stable—>» —>» failed |
I |
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Use case Equipment

Maintenance operations

Possible maintenance operations

» All components, all states: do nothing

» Components 1 and 2, all states: change

» Components 3 and 4: change in all states, repair only in

stable or states
[ o e e e — — — — — — — — — — ——— 1
| i |
| Component 2 |
| |
| stablew—b) failed |
| Component 1 Component 4 |
| Wb Exp |
: stable2XB 3 fajled Component 3 stable—> —> failed ||
| Wb Exp :
| stable—>» —>» failed |
I |
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Use case Equipment

Global state of the equipment

The equipment is globally

» stable if the 4 components are stable
if at leat one component is and the others
are stable or
» failed if at least one component is failed failed
» in the workshop if there is an ongoing maintenance operation
of change or repair

PGMO days 2018 EDF'LAB Paris Saclay 21/11/2018 11/31



Use case Equipment

Criterion to optimize

Minimize the maintenance + unavailability costs
» unavailability cost proportional to time spend in failed state

» fixed cost for going to the workshop + repair < change costs
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Use case PDMP model

PDMP model of the equipment

» Euclidean variables: 6 time variables

» functioning time of components 2, 3 and 4
» calendar time
> time spent in the workshop

» Discrete variables: 225 modes
» state of the components / maintenance operations
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Use case Impulse control problem

Impulse control problem

Impulse control

Select
> intervention dates
> new starting point for the process at interventions

to minimize a cost function

> repair a component before failure
» change treatment before relapse

> ..

[CD 89], [Davis 93], [dSDZ 14], ...
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Use case Impulse control problem

Mathematical definition

Strategy S = (Th, Rn)n>1
» T, intervention times

> R, new positions after intervention

Value function

jS(X) = E;(S [/ e “*f(Ys)ds + Z e (Ve Yir)
0 1

i=1

V(x) = inf T5(x)

» f, ¢ cost functions, « discount factor

> Y: controlled process, S set of admissible strategies
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Use case Impulse control problem
Example of maintenance optimization

> T,: maintenance dates

» R,: which components are to be changed/repaired

Value function

i=1

jS(X) = E)}S [/ e "*f(Ys)ds + Z e "Te(Yr, Y,+)
0 )

V(x) = inf T5(x)

» f unavailability cost proportional to time spend in failed state
» ¢ fixed cost for going to the workshop + repair < change costs

» a = 0 (finite horizon)
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Use case Impulse control problem

Dynamic programming

Costa, Davis, 1988

For any function g > cost of the no-impulse strategy

| 2 Vo = g
> Vp = E(Vn—l)
Vn(x) — V(x)

de Saporta, Dufour 2012

Numerical scheme to compute an approximation of the value
function
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Use case Impulse control problem

Dynamic programming operator
Markov property

Va(Zn) = L(MVpyt, Voy1)(Zn)

1 —aS,
= (tgw(fzn) E |:F(Zn7 t) +e 7 Vi 1(Znr1) s, <ents(2)}

—i—e_o‘t/\t*(z”)l\/lvnH (¢(Zn, tA t*(Zn))) H{5n+12t/\t*(Z,,)} ’ Zn
NE|F(Zy £(Z0)) + €7 vay1(Zpia) | 2]
with
tAE*(x)
F(x,t) = / e_as_/\(x’s)f(qﬁ(x, s))ds
0

My, 1(x) = ;ren[; {c(x,y) + vara(y)}
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Use case Impulse control problem

Approximation scheme
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Use case Impulse control problem

Approximation scheme

in(y') = g(Z})

&) :g(
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Use case Impulse control problem

Approximation scheme

in(y') = g(Z})

0(Z)) = e(Z]) - n-1(y')
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Use case Impulse control problem

Approximation scheme

in(y') = g(Z})

uZ5) = g(Z}) -
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Use case Impulse control problem

Approximation scheme

in(y') = g(Z})

n-1(y')

In-2(y")

WZyo) = &(Z)y-2)
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Use case Impulse control problem

Approximation scheme

in(y') = g(Z})

n-1(y')

In-2(y")

W(Ziy 1) =&(Zl) =L
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Use case Impulse control problem

Approximation scheme

in(y') = g(Z})

n-1(y')

In-2(y")

- n(Z1) ¥o(xo)

i (Zn) = g(Zn)
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Numerical implementation

Step 1: Exact simulation of the PDMP
Reference policies
Implementation of an exact simulator for reference strategies to
serve as benchmark

1 2 3 4 5

intervention never 1 day 1 day 1 day degraded | 1 day degraded
failed failed or failed or failed

C1 failed nothing | change | change change change
C4 degraded nothing | change repair change repair
C4 failed nothing | change | change change change
C2 failed nothing | change | change change 244
and C3 stable 243 243 243 243
C2 failed nothing | change | change change change
and C3 degraded 243 243 243 243
C2 stable nothing | change repair change repair
and C3 degraded 243 3 243 3
C2 stable nothing | change | change change change
and C3 failed 243 243 243 243
Mean cost 19680 [ 11184 | 11114 | 11521 8359
PGMO days 2018 EDF'LAB Paris Saclay 21/11/2018 20/31



Numerical implementation

Step 1: Exact simulation of the PDMP

Sample trajectories under policy 2

Sample 1: C2 failed at 656 and C2+4C3 are changed, C3 is
degraded at 2152 and failed at 2372 and C24-C3 are changed

[
500 1000 7500 2000 2500 3000 300 000

000

000

500 1000 1500 2000 2500 3000 3500 000
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Numerical implementation

Step 1: Exact simulation of the PDMP

Sample trajectories under policy 2

Sample 2: C4 degraded at 763 and failed at 1028, then is changed,
Cl is failed at 3092 and changed

7500 2000

000

000

000
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Numerical implementation

Step 1: Exact simulation of the PDMP

Sample trajectories under policy 2

Sample 3: C3is degraded at 651 and failed at 719 and C2+4C3 are

changed, C1 failed at 1864 and is changed

7500 2000

000

000

000
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Numerical implementation
Step 2 : Discretisation of the control set U

Control set U(x): possible points to restart from after an
intervention from state x. For the numerical computation, must be

» finite

» the same at any point
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Numerical implementation
Step 2 : Discretisation of the control set U

Control set U(x): possible points to restart from after an
intervention from state x. For the numerical computation, must be

» finite

» the same at any point
For the equipment model, the control set is

» infinite

» point dependent as some actions are forbidden in some modes
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Numerical implementation

Step 2 : Discretisation of the control set U

Control set U(x): possible points to restart from after an
intervention from state x. For the numerical computation, must be

» finite

» the same at any point
For the equipment model, the control set is

» infinite

» point dependent as some actions are forbidden in some modes

discretize the control set

v

v

manage the point dependency with infinite costs
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Numerical implementation

Step 2 : Discretisation of the control set U

Finite control set U

— discretize the functioning times
at interventions

— project the real times on the
grid feasibly

Compromise between precision and
computation time

PGMO days 2018 EDF'LAB Paris Saclay

Tests on strategy 5

Number | relative
Grid | of points error
3x3x3x5 419 | 0.1458
4x4x4x5 627 0.1331
5x5x5x5 1055 0.1235
3x3x3x11 788 | 0.0962
4x4x4x11 1219 | 0.0819
5x5x5x11 1855 0.0730
6x6x6x11 2790 | 0.0672
TXTx7x11 3570 0.0634
8x8x8x11 4647 | 0.0604
3x3x3x21 1403 | 0.0775
4 x4x4x21 2195 0.0626
5x5x5x21 3423 | 0.0534
6X6x6x21 4900 | 0.0436
TXTx7x21 6489 | 0.0384
8x8x8x21 8399 | 0.0350
21/11/2018 23/31



Numerical implementation

Step 3: Discretizing the embedded Markov chain

Quantization

Example: N(0, h):

) -2 - 0 1 2 3
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Numerical implementation

Step 3: Discretizing the embedded Markov chain

Quantization

Example: N(0, h):
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Numerical implementation

Step 3: Discretizing the embedded Markov chain

Quantization

Example: N(0, h):
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Numerical implementation

Step 3: Discretizing the embedded Markov chain

Number of points in the grids

» calibration on reference strategies

Compromise between precision and computation time

Number | Strategy  Strategy Strategy Strategy Strategy
of points 1 2 3 4 5
50 19680 11145 11075 11485 8326

100 19680 11207 11134 11509 8367

200 19680 11173 11104 11531 8361

400 19680 11193 11124 11531 8366

1000 19680 11180 11109 11517 8355
Exact cost 19680 11184 11114 11521 8359
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Numerical implementation

Step 4: Calibrating N the number of allowed jumps +

interventions

Horizon N (number of iterations)
> 5 for Strategy 1
> up to 30 for Strategies 2 and 3 (mean 6)
> up to 25 for Strategiess 4 and 5 (mean 6)

9000

T T
—©6— x0=(SSS8, 0,0,0,0)

8500
8000
7500

7000

6500
6
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Numerical implementation

Step 5: Approximation of the value function

Maintenance operations allowed only in and failed states
Strategy Strategy Strategy Strategy Strategy Approx.
1 2 3 4 5 | Value function
19680 11184 11114 11521 8359 6720

» relative gain of 19.6% vs Strategy 5

» numerical validation of the algorithm with various starting
points: consistent results
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Numerical implementation

Step 5: Approximation of the value function

Maintenance operations also llowed only in stable state

Strategy Strategy Strategy Strategy Strategy Approx.
1 2 3 4 5 | Value function
19680 11184 11114 11521 8359 5159

» relative gain of 38.3% vs Strategy 5

» relative gain of 23.2% vs value function with interventions in

or failed states

» numerical validation of the algorithm with various starting

points: consistent results
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Conclusion and perspectives

Conclusion and perspective

Numerical method to approximate the value function

» rigorously constructed, with mathematically guaranteed
convergence

» numerically validated through heavy sensibility analysis
» numerical demanding but viable in low dimensional examples

» evaluates the gain from corrective to preventive maintenance
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Conclusion and perspectives

Conclusion and perspective

Numerical method to approximate the value function

» rigorously constructed, with mathematically guaranteed
convergence

» numerically validated through heavy sensibility analysis
» numerical demanding but viable in low dimensional examples

» evaluates the gain from corrective to preventive maintenance

Work in progress

» Approximation of this strategy: numerical study - PGMO
grant 2018-2019
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Conclusion and perspectives

Dissemination of results

» Invited talk at the Xl|Ve colloque franco-roumain de
mathématiques, Bordeaux, August 2018

» Seminar MAD /Stat, Toulouse School of Economics, October
2018

» PGMO days, November 2018
» submission to ESREL 2019 conference,
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Conclusion and perspectives
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