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1 Introduction

Bifurcating autoregressive (BAR) processes are an adaptation of autoregressive (AR) processes to
binary tree structured data. They were first introduced by Cowan and Staudte [2] for cell lineage
data, where each individual in one generation gives birth to two offspring in the next generation.
Cell lineage data typically consist of observations of some quantitative characteristic of the cells over
several generations of descendants from an initial cell. BAR processes take into account both inher-
ited and environmental effects to explain the evolution of the quantitative characteristic under study.

More precisely, the original BAR process is defined as follows. The initial cell is labelled 1, and the
two offspring of cell n are labelled 2n and 2n+ 1. Denote by Xn the quantitative characteristic of
individual n. Then, the first-order BAR process is given, for all n≥ 1, by

¨
X2n = a + bXn + ε2n,
X2n+1 = a + bXn + ε2n+1.

The noise sequence (ε2n,ε2n+1) represents environmental effects while a, b are unknown real
parameters with |b| < 1. The driven noise (ε2n,ε2n+1) was originally supposed to be independent
and identically distributed with normal distribution. However, two sister cells being in the same
environment early in their lives, ε2n and ε2n+1 are allowed to be correlated, inducing a correlation
between sister cells distinct from the correlation inherited from their mother.

Several extensions of the model have been proposed. On the one hand, we refer the reader to
Huggins and Basawa [10] and Basawa and Zhou [1; 15] for statistical inference on symmetric
bifurcating processes. On the other hand, higher order processes, when not only the effects of
the mother but also those of the grand-mother and higher order ancestors are taken into account,
have been investigated by Huggins and Basawa [10]. Recently, an asymmetric model has been
introduced by Guyon [5; 6] where only the effects of the mother are considered, but sister cells are
allowed to have different conditional distributions. We can also mention a recent work of Delmas
and Marsalle [3] dealing with a model of asymmetric bifurcating Markov chains on a Galton Watson
tree instead of regular binary tree.

The purpose of this paper is to carry out a sharp analysis of the asymptotic properties of the
least squares (LS) estimators of the unknown parameters of general asymmetric pth-order BAR
processes. There are several results on statistical inference and asymptotic properties of estimators
for BAR models in the literature. For maximum likelihood inference on small independent trees, see
Huggins and Basawa [10]. For maximum likelihood inference on a single large tree, see Huggins
[9] for the original BAR model, Huggins and Basawa [11] for higher order Gaussian BAR models,
and Zhou and Basawa [15] for exponential first-order BAR processes. We also refer the reader to
Zhou and Basawa [14] for the LS parameter estimation, and to Hwang, Basawa and Yeo [12] for
the local asymptotic normality for BAR processes and related asymptotic inference. In all those
papers, the process is supposed to be stationary. Consequently, Xn has a time-series representation
involving an holomorphic function. In Guyon [5], the LS estimator is also investigated, but the
process is not stationary, and the author makes intensive use of the tree structure and Markov
chain theory. Our goal is to improve and extend the previous results of Guyon [5] via a martingale
approach. As previously done by Basawa and Zhou [1; 14; 15] we shall make use of the strong
law of large numbers [4] as well as the central limit theorem [7; 8] for martingales. It will allow
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us to go further in the analysis of general pth-order BAR processes. We shall establish the almost
sure convergence of the LS estimators together with the quadratic strong law and the central limit
theorem.

The paper is organised as follows. Section 2 is devoted to the presentation of the asymmetric
pth-order BAR process under study, while Section 3 deals with the LS estimators of the unknown
parameters. In Section 4, we explain our strategy based on martingale theory. Our main results
about the asymptotic properties of the LS estimators are given in Section 5. More precisely, we shall
establish the almost sure convergence, the quadratic strong law (QSL) and the central limit theorem
(CLT) for the LS estimators. The proof of our main results are detailed in Sections 6 to 10, the more
technical ones being gathered in the appendices.

2 Bifurcating autoregressive processes

In all the sequel, let p be a non-zero integer. We consider the asymmetric BAR(p) process given, for
all n≥ 2p−1, by (

X2n = a0 +
∑p

k=1 akX[ n
2k−1 ]

+ ε2n,

X2n+1 = b0 +
∑p

k=1 bkX[ n
2k−1 ]

+ ε2n+1,
(2.1)

where [x] stands for the largest integer less than or equal to x . The initial states {Xk, 1 ≤ k ≤
2p−1 − 1} are the ancestors while (ε2n,ε2n+1) is the driven noise of the process. The parameters
(a0, a1, . . . ap) and (b0, b1, . . . , bp) are unknown real numbers. The BAR(p) process can be rewritten
in the abbreviated vector form given, for all n≥ 2p−1, by

¨
X2n = AXn + η2n,
X2n+1 = BXn + η2n+1,

(2.2)

where the regression vector Xn = (Xn, X[ n
2
], . . . , X[ n

2p−1 ])
t , η2n = (a0+ε2n)e1, η2n+1 = (b0+ε2n+1)e1

with e1 = (1,0, . . . , 0)t ∈ Rp. Moreover, A and B are the p× p companion matrices

A=




a1 a2 · · · ap
1 0 · · · 0

0
... . . .

...
0 0 1 0




, B =




b1 b2 · · · ap
1 0 · · · 0

0
... . . .

...
0 0 1 0




.

This process is a direct generalization of the symmetric BAR(p) process studied by Huggins, Basawa
and Zhou [10; 14]. One can also observe that, in the particular case p = 1, it is the asymmetric
BAR process studied by Guyon [5; 6]. In all the sequel, we shall assume that E[X 8

k] < ∞ for all
1≤ k ≤ 2p−1− 1 and that matrices A and B satisfy the contracting property

β =max{‖A‖,‖B‖}< 1,

where ‖A‖= sup{‖Au‖, u ∈ Rp with ‖u‖= 1}.
As explained in the introduction, one can see this BAR(p) process as a pth-order autoregressive
process on a binary tree, where each vertex represents an individual or cell, vertex 1 being the
original ancestor, see Figure 1 for an illustration. For all n≥ 1, denote the nth generation by

Gn = {2n, 2n+ 1, . . . , 2n+1− 1}.
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Figure 1: The tree associated with the bifurcating auto-regressive process.

In particular, G0 = {1} is the initial generation and G1 = {2, 3} is the first generation of offspring
from the first ancestor. Let Grn

be the generation of individual n, which means that rn = log2(n).
Recall that the two offspring of individual n are labelled 2n and 2n+1, or conversely, the mother of
individual n is [n/2]. More generally, the ancestors of individual n are [n/2], [n/22], . . . , [n/2rn].
Furthermore, denote by

Tn =
n⋃

k=0

Gk

the sub-tree of all individuals from the original individual up to the nth generation. It is clear
that the cardinality |Gn| of Gn is 2n while that of Tn is |Tn| = 2n+1 − 1. Finally, we denote by
Tn,p = {k ∈ Tn, k ≥ 2p} the sub-tree of all individuals up to the nth generation without Tp−1. One
can observe that, for all n≥ 1, Tn,0 = Tn and, for all p ≥ 1, Tp,p =Gp.

3 Least-squares estimation

The BAR(p) process (2.1) can be rewritten, for all n≥ 2p−1, in the matrix form

Zn = θ
t Yn+ Vn (3.1)

where

Zn =

�
X2n
X2n+1

�
, Yn =

�
1
Xn

�
, Vn =

�
ε2n
ε2n+1

�
,
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and the (p+ 1)× 2 matrix parameter θ is given by

θ =




a0 b0
a1 b1
...

...
ap bp




.

Our goal is to estimate θ from the observation of all individuals up to the nth generation that is
the complete sub-tree Tn. Each new generation Gn contains half the global available information.
Consequently, we shall show that observing the whole tree Tn or only generation Gn is almost the
same. We propose to make use of the standard LS estimator bθn which minimizes

∆n(θ) =
1

2

∑
k∈Tn−1,p−1

‖ Zk − θ t Yk ‖2 .

Consequently, we obviously have for all n≥ p

bθn = S−1
n−1

∑
k∈Tn−1,p−1

YkZ t
k , (3.2)

where the (p+ 1)× (p+ 1) matrix Sn is defined as

Sn =
∑

k∈Tn,p−1

YkY t
k =

∑
k∈Tn,p−1

�
1 Xt

k
Xk XkXt

k

�
.

In the special case where p = 1, Sn simply reduces to

Sn =
∑
k∈Tn

�
1 Xk
Xk X 2

k

�
.

In order to avoid useless invertibility assumption, we shall assume, without loss of generality, that
for all n ≥ p− 1, Sn is invertible. Otherwise, we only have to add the identity matrix Ip+1 to Sn. In

all what follows, we shall make a slight abuse of notation by identifying θ as well as bθn to

vec(θ) =




a0
...

ap
b0
...

bp




and vec(bθn) =




ba0,n
...
bap,nbb0,n

...
bbp,n




.

The reason for this change will be explained in Section 4. Hence, we readily deduce from (3.2) that

bθn = (I2⊗ S−1
n−1)

∑
k∈Tn−1,p−1

vec
�

YkZ t
k

�

= (I2⊗ S−1
n−1)

∑
k∈Tn−1,p−1




X2k
XkX2k
X2k+1

XkX2k+1


 ,
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where ⊗ stands for the matrix Kronecker product. Consequently, it follows from (3.1) that

bθn− θ = (I2⊗ S−1
n−1)

∑
k∈Tn−1,p−1

vec
�

YkV t
k

�

= (I2⊗ S−1
n−1)

∑
k∈Tn−1,p−1




ε2k
ε2kXk
ε2k+1
ε2k+1Xk


 . (3.3)

Denote by F= (Fn) the natural filtration associated with the BAR(p) process, which means that Fn
is the σ-algebra generated by all individuals up to the nth generation, Fn = σ{Xk, k ∈ Tn}. In all
the sequel, we shall make use of the five following moment hypotheses.

(H.1) One can find σ2 > 0 such that, for all n≥ p− 1 and for all k ∈Gn+1, εk belongs to L2 with

E[εk|Fn] = 0 and E[ε2
k |Fn] = σ

2 a.s.

(H.2) It exists |ρ| < σ2 such that, for all n ≥ p− 1 and for all different k, l ∈ Gn+1 with [k/2] =
[l/2],

E[εkεl |Fn] = ρ a.s.

Otherwise, εk and εl are conditionally independent given Fn.

(H.3) For all n≥ p− 1 and for all k ∈Gn+1, εk belongs to L4 and

sup
n≥p−1

sup
k∈Gn+1

E[ε4
k |Fn]<∞ a.s.

(H.4) One can find τ4 > 0 such that, for all n≥ p− 1 and for all k ∈Gn+1,

E[ε4
k |Fn] = τ

4 a.s.

and, for ν2 < τ4 and for all different k, l ∈Gn+1 with [k/2] = [l/2]

E[ε2
2kε

2
2k+1|Fn] = ν

2 a.s.

(H.5) For all n≥ p− 1 and for all k ∈Gn+1, εk belongs to L8 with

sup
n≥p−1

sup
k∈Gn+1

E[ε8
k |Fn]<∞ a.s.

Remark 3.1. In contrast with [14], one can observe that we do not assume that (ε2n,ε2n+1) is a
sequence of independent and identically distributed bi-variate random vectors. The price to pay for
giving up this iid assumption is higher moments, namely assumptions (H.3) and (H.5). Indeed we need
them to make use of the strong law of large numbers and the central limit theorem for martingales.
However, we do not require any normality assumption on (ε2n,ε2n+1). Consequently, our assumptions
are much weaker than the existing ones in previous literature.
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We now turn to the estimation of the parameters σ2 and ρ. On the one hand, we propose to estimate
the conditional variance σ2 by

bσ2
n =

1

2|Tn−1|
∑

k∈Tn−1,p−1

‖ bVk ‖2=
1

2|Tn−1|
∑

k∈Tn−1,p−1

(bε2
2k + bε2

2k+1) (3.4)

where for all n≥ p− 1 and for all k ∈Gn, bV t
k = (bε2k, bε2k+1) with




bε2k = X2k − ba0,n − ∑p

i=1 bai,nX[ k
2i−1 ]

,

bε2k+1 = X2k+1 − bb0,n − ∑p
i=1
bbi,nX[ k

2i−1 ]
.

One can observe that, on the above equations, we make use of only the past observations for the
estimation of the parameters. This will be crucial in the asymptotic analysis. On the other hand, we
estimate the conditional covariance ρ by

bρn =
1

|Tn−1|
∑

k∈Tn−1,p−1

bε2kbε2k+1. (3.5)

4 Martingale approach

In order to establish all the asymptotic properties of our estimators, we shall make use of a martin-
gale approach. It allows us to impose a very smooth restriction on the driven noise (εn) compared
with the previous results in the literature. As a matter of fact, we only assume suitable moment
conditions on (εn) and that (ε2n,ε2n+1) are conditionally independent, while it is assumed in [14]
that (ε2n,ε2n+1) is a sequence of independent identically distributed random vectors. For all n ≥ p,
denote

Mn =
∑

k∈Tn−1,p−1




ε2k
ε2kXk
ε2k+1
ε2k+1Xk


 ∈ R

2(p+1).

Let Σn = I2⊗ Sn, and note that Σ−1
n = I2⊗ S−1

n . For all n≥ p, we can thus rewrite (3.3) as

bθn− θ = Σ−1
n−1Mn. (4.1)

The key point of our approach is that (Mn) is a martingale. Most of all the asymptotic results for
martingales were established for vector-valued martingales. That is the reason why we have chosen
to make use of vector notation in Section 3. In order to show that (Mn) is a martingale adapted
to the filtration F = (Fn), we rewrite it in a compact form. Let Ψn = I2 ⊗ Φn, where Φn is the
rectangular matrix of dimension (p+ 1)×δn, with δn = 2n, given by

Φn =

 
1 1 · · · 1

X2n X2n+1 · · · X2n+1−1

!
.
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It contains the individuals of generations Gn−p+1 up to Gn and is also the collection of all Yk, k ∈Gn.
Let ξn be the random vector of dimension δn

ξn =




ε2n

ε2n+2
...

ε2n+1−2
ε2n+1
ε2n+3

...
ε2n+1−1




.

The vector ξn gathers the noise variables of generation Gn. The special ordering separating odd and
even indices is tailor-made so that Mn can be written as

Mn =
n∑

k=p

Ψk−1ξk.

By the same token, one can observe that

Sn =
n∑

k=p−1

ΦkΦ
t
k and Σn =

n∑
k=p−1

ΨkΨ
t
k.

Under (H.1) and (H.2), we clearly have for all n≥ 0, E[ξn+1|Fn] = 0 and Ψn is Fn-measurable. In
addition, it is not hard to see that for all n≥ 0, E[ξn+1ξ

t
n+1|Fn] = Γ⊗ Iδn

where Γ is the covariance
matrix associated with (ε2n,ε2n+1)

Γ =

 
σ2 ρ

ρ σ2

!
.

We shall also prove that (Mn) is a square integrable martingale. Its increasing process is given for
all n≥ p+ 1 by

<M>n=
n−1∑

k=p−1

Ψk(Γ⊗ Iδk
)Ψt

k = Γ⊗
n−1∑

k=p−1

ΦkΦ
t
k = Γ⊗ Sn−1.

It is necessary to establish the convergence of Sn, properly normalized, in order to prove the asymp-
totic results for the BAR(p) estimators bθn, bσ2

n and bρn. One can observe that the sizes of Ψn and ξn
are not fixed and double at each generation. This is why we have to adapt the proof of vector-valued
martingale convergence given in [4] to our framework.

5 Main results

We now state our main results, first on the martingale (Mn) and then on our estimators.
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Proposition 5.1. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

lim
n→∞

Sn

|Tn|
= L a.s. (5.1)

where L is a positive definite matrix specified in Section 7.

This result is the keystone of our asymptotic analysis. It enables us to prove sharp asymptotic
properties for (Mn).

Theorem 5.1. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

M t
nΣ
−1
n−1Mn = O (n) a.s. (5.2)

In addition, we also have

lim
n→∞

1

n

n∑
k=p

M t
kΣ
−1
k−1Mk = 2(p+ 1)σ2 a.s. (5.3)

Moreover, if (εn) satisfies (H.4) and (H.5), we have the central limit theorem

1p
|Tn−1|

Mn
L−→N (0,Γ⊗ L). (5.4)

From the asymptotic properties of (Mn), we deduce the asymptotic behavior of our estimators. Our
first result deals with the almost sure asymptotic properties of the LS estimator bθn.

Theorem 5.2. Assume that (εn) satisfies (H.1) to (H.3). Then, bθn converges almost surely to θ with
the rate of convergence

‖ bθn− θ ‖2= O
�

log |Tn−1|
|Tn−1|

�
a.s. (5.5)

In addition, we also have the quadratic strong law

lim
n→∞

1

n

n∑
k=1

|Tk−1|(bθk − θ)tΛ(bθk − θ) = 2(p+ 1)σ2 a.s. (5.6)

where Λ = I2⊗ L.

Our second result is devoted to the almost sure asymptotic properties of the variance and covariance
estimators bσ2

n and bρn. Let

σ2
n =

1

2|Tn−1|
∑

k∈Tn−1,p

(ε2
2k + ε

2
2k+1) and ρn =

1

|Tn−1|
∑

k∈Tn−1,p

ε2kε2k+1.

Theorem 5.3. Assume that (εn) satisfies (H.1) to (H.3). Then, bσ2
n converges almost surely to σ2.

More precisely,

lim
n→∞

1

n

∑
k∈Tn−1,p

(bε2k − ε2k)
2+ (bε2k+1− ε2k+1)

2 = 2(p+ 1)σ2 a.s. (5.7)
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lim
n→∞

|Tn|
n
(bσ2

n−σ2
n) = 2(p+ 1)σ2 a.s. (5.8)

In addition, bρn converges almost surely to ρ

lim
n→∞

1

n

∑
k∈Tn−1,p

(bε2k − ε2k)(bε2k+1− ε2k+1) = (p+ 1)ρ a.s. (5.9)

lim
n→∞

|Tn|
n
(bρn−ρn) = 2(p+ 1)ρ a.s. (5.10)

Our third result concerns the asymptotic normality for all our estimators bθn, bσ2
n and bρn.

Theorem 5.4. Assume that (εn) satisfies (H.1) to (H.5). Then, we have the central limit theorem

p
|Tn−1|(bθn− θ) L−→N (0,Γ⊗ L−1). (5.11)

In addition, we also have

p
|Tn−1|(bσ2

n−σ2)
L−→N

�
0,
τ4− 2σ4+ ν2

2

�
(5.12)

and p
|Tn−1|(bρn−ρ) L−→N (0,ν2−ρ2). (5.13)

The rest of the paper is dedicated to the proof of our main results. We start by giving laws of large
numbers for the noise sequence (εn) in Section 6. In Section 7, we give the proof of Proposition 5.1.
Sections 8, 9 and 10 are devoted to the proofs of Theorems 5.2, 5.3 and 5.4, respectively. The more
technical proofs, including that of Theorem 5.1, are postponed to the Appendices.

6 Laws of large numbers for the noise sequence

We first need to establish strong laws of large numbers for the noise sequence (εn). These results
will be useful in all the sequel. We will extensively use the strong law of large numbers for locally
square integrable real martingales given in Theorem 1.3.15 of [4].

Lemma 6.1. Assume that (εn) satisfies (H.1) and (H.2). Then

lim
n→+∞

1

|Tn|
∑

k∈Tn,p

εk = 0 a.s. (6.1)

In addition, if (H.3) holds, we also have

lim
n→+∞

1

|Tn|
∑

k∈Tn,p

ε2
k = σ

2 a.s. (6.2)

and

lim
n→+∞

1

|Tn−1|
∑

k∈Tn−1,p−1

ε2kε2k+1 = ρ a.s. (6.3)
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Proof: On the one hand, let

Pn =
∑

k∈Tn,p

εk =
n∑

k=p

∑
i∈Gk

εi .

We have
∆Pn+1 = Pn+1− Pn =

∑
k∈Gn+1

εk.

Hence, it follows from (H.1) and (H.2) that (Pn) is a square integrable real martingale with increas-
ing process

<P>n= (σ
2+ρ)

n∑
k=p

|Gk|= (σ2+ρ)(|Tn| − |Tp−1|).

Consequently, we deduce from Theorem 1.3.15 of [4] that Pn = o(<P>n) a.s. which implies (6.1).
On the other hand, denote

Qn =
n∑

k=p

1

|Gk|
∑
i∈Gk

ei ,

where en = ε2
n −σ2. We have

∆Qn+1 =Qn+1−Qn =
1

|Gn+1|
∑

k∈Gn+1

ek.

First of all, it follows from (H.1) that for all k ∈Gn+1, E[ek|Fn] = 0 a.s. In addition, for all different
k, l ∈Gn+1 with [k/2] 6= [l/2],

E[ekel |Fn] = 0 a.s.

thanks to the conditional independence given by (H.2). Furthermore, we readily deduce from (H.3)
that

sup
n≥p−1

sup
k∈Gn+1

E[e2
k |Fn]<∞ a.s.

Therefore, (Qn) is a square integrable real martingale with increasing process

<Q>n ≤ 2 sup
p−1≤k≤n−1

sup
i∈Gk+1

E[e2
i |Fk]

n∑
j=p

1

|G j|
a.s.

≤ 2 sup
p−1≤k≤n−1

sup
i∈Gk+1

E[e2
i |Fk]

n∑
j=p

�1

2

� j
a.s.

≤ 2 sup
p−1≤k≤n−1

sup
i∈Gk+1

E[e2
i |Fk]<∞ a.s.

Consequently, we obtain from the strong law of large numbers for martingales that (Qn) converges
almost surely. Finally, as (|Gn|) is a positive real sequence which increases to infinity, we find from
Lemma A.1 in Appendix A that

n∑
k=p

∑
i∈Gk

ei = o(|Gn|) a.s.
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leading to
n∑

k=p

∑
i∈Gk

ei = o(|Tn|) a.s.

as |Tn| − 1 = 2|Gn|, which implies (6.2). We also establish (6.3) in a similar way. As a matter of
fact, let

Rn =
n∑

k=p

1

|Gk−1|
∑

i∈Gk−1

(ε2iε2i+1−ρ).

Then, (Rn) is a square integrable real martingale which converges almost surely, leading to (6.3). �

Remark 6.2. Note that via Lemma A.2

lim
n→+∞

1

|Gn|
∑
k∈Gn

ε2k = 0, lim
n→+∞

1

|Gn|
∑
k∈Gn

ε2k+1 = 0 a.s.

lim
n→+∞

1

|Gn|
∑
k∈Gn

ε2
2k = σ

2, lim
n→+∞

1

|Gn|
∑
k∈Gn

ε2
2k+1 = σ

2 a.s.

In fact, each new generation contains half the global available information, observing the whole tree Tn
or only generation Gn is essentially the same.

For the CLT, we will also need the convergence of higher moments of the driven noise (εn).

Lemma 6.3. Assume that (εn) satisfies (H.1) to (H.5). Then, we have

lim
n→+∞

1

|Tn|
∑

k∈Tn,p

ε4
k = τ

4 a.s.

and

lim
n→+∞

1

|Tn−1|
∑

k∈Tn−1,p−1

ε2
2kε

2
2k+1 = ν

2 a.s.

Proof : The proof is left to the reader as it follows essentially the same lines as the proof of
Lemma 6.1 using the square integrable real martingales

Qn =
n∑

k=p

1

|Gk|
∑
i∈Gk

(ε4
i −τ4)

and

Rn =
n∑

k=p

1

|Gk−1|
∑

i∈Gk−1

(ε2
2iε

2
2i+1− ν2).

Remark 6.4. Note that again via Lemma A.2

lim
n→+∞

1

|Gn|
∑
k∈Gn

ε4
2k = τ

4 and lim
n→+∞

1

|Gn|
∑
k∈Gn

ε4
2k+1 = τ

4 a.s.

2503



7 Proof of Proposition 5.1

Proposition 5.1 is a direct application of the two following lemmas which provide two strong laws
of large numbers for the sequence of random vectors (Xn).

Lemma 7.1. Assume that (εn) satisfies (H.1) and (H.2). Then, we have

lim
n→+∞

1

|Tn|
∑

k∈Tn,p

Xk = λ= a(Ip − A)−1e1 a.s. (7.1)

where a = (a0+ b0)/2 and A is the mean of the companion matrices

A=
1

2
(A+ B).

Lemma 7.2. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

lim
n→+∞

1

|Tn|
∑

k∈Tn,p

XkXt
k = `, a.s. (7.2)

where the matrix ` is the unique solution of the equation

`= T +
1

2
(A`At + B`B t)

T = (σ2+ a2)e1et
1+

1

2
(a0(Aλet

1+ e1λ
tAt) + b0(Bλet

1+ e1λ
t B t))

with a2 = (a2
0 + b2

0)/2.

Proof : The proofs are given in Appendix A. �

Remark 7.3. We shall see in Appendix A that

`=
∞∑

k=0

1

2k

∑

C∈{A;B}k
C T C t

where the notation {A; B}k means the set of all products of A and B with exactly k terms. For example,
we have {A; B}0 = {Ip}, {A; B}1 = {A, B}, {A; B}2 = {A2, AB, BA, B2} and so on. The cardinality of
{A; B}k is obviously 2k.

Remark 7.4. One can observe that in the special case p = 1,

lim
n→+∞

1

|Tn|
∑
k∈Tn

Xk =
a

1− b
a.s.

lim
n→+∞

1

|Tn|
∑
k∈Tn

X 2
k =

a2+σ2+ 2λab

1− b2
a.s.

where

ab =
a0a1+ b0 b1

2
, b =

a1+ b1

2
, b2 =

a2
1 + b2

1

2
.
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8 Proof of Theorems 5.1 and 5.2

Theorem 5.2 is a consequence of Theorem 5.1. The first result of Theorem 5.1 is a strong law of
large numbers for the martingale (Mn). We already mentioned that the standard strong law is
useless here. This is due to the fact that the dimension of the random vector ξn grows exponentially
fast as 2n. Consequently, we are led to propose a new strong law of large numbers for (Mn), adapted
to our framework.

Proof of result (5.2) of Theorem 5.1: For all n ≥ p, let Vn = M t
nΣ
−1
n−1Mn where we recall that

Σn = I2⊗ Sn, so that Σ−1
n = I2⊗ S−1

n . First of all, we have

Vn+1 = M t
n+1Σ

−1
n Mn+1 = (Mn+∆Mn+1)

tΣ−1
n (Mn+∆Mn+1),

= M t
nΣ
−1
n Mn+ 2M t

nΣ
−1
n ∆Mn+1+∆M t

n+1Σ
−1
n ∆Mn+1,

= Vn−M t
n(Σ

−1
n−1−Σ−1

n )Mn+2M t
nΣ
−1
n ∆Mn+1+∆M t

n+1Σ
−1
n ∆Mn+1.

By summing over this identity, we obtain the main decomposition

Vn+1+An = Vp +Bn+1+Wn+1, (8.1)

where

An =
n∑

k=p

M t
k(Σ

−1
k−1−Σ−1

k )Mk,

Bn+1 = 2
n∑

k=p

M t
kΣ
−1
k ∆Mk+1 and Wn+1 =

n∑
k=p

∆M t
k+1Σ

−1
k ∆Mk+1.

The asymptotic behavior of the left-hand side of (8.1) is as follows.

Lemma 8.1. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

lim
n→+∞

Vn+1+An

n
= (p+ 1)σ2 a.s. (8.2)

Proof: The proof is given in Appendix B. It relies on the Riccation equation associated to (Sn) and
the strong law of large numbers for (Wn). �

Since (Vn) and (An) are two sequences of positive real numbers, we infer from Lemma 8.1 that
Vn+1 = O (n) a.s. which ends the proof of (5.2). �

Proof of result (5.5) of Theorem 5.2: It clearly follows from (4.1) that

Vn = (bθn− θ)tΣn−1(bθn− θ).
Consequently, the asymptotic behavior of bθn − θ is clearly related to the one of Vn. More precisely,
we can deduce from convergence (5.1) that

lim
n→∞

λmin(Σn)
|Tn|

= λmin(Λ)> 0 a.s.
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since L as well as Λ = I2 ⊗ L are definite positive matrices. Here λmin(Λ) stands for the smallest
eigenvalue of the matrix Λ. Therefore, as

‖bθn− θ‖2 ≤
Vn

λmin(Σn−1)
,

we use (5.2) to conclude that

‖bθn− θ‖2 = O
�

n

|Tn−1|
�
= O

�
log |Tn−1|
|Tn−1|

�
a.s.

which completes the proof of (5.5). �

We now turn to the proof of the quadratic strong law. To this end, we need a sharper estimate of the
asymptotic behavior of (Vn).

Lemma 8.2. Assume that (εn) satisfies (H.1) to (H.3). Then, we have for all δ > 1/2,

‖ Mn ‖2= o(|Tn−1|nδ) a.s. (8.3)

Proof: The proof is given in Appendix C. �

A direct application of Lemma 8.2 ensures that Vn = o(nδ) a.s. for all δ > 1/2. Hence, Lemma 8.1
immediately leads to the following result.

Corollary 8.3. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

lim
n→+∞

An

n
= (p+ 1)σ2 a.s. (8.4)

Proof of result (5.3) of Theorem 5.1: First of all,An may be rewritten as

An =
n∑

k=p

M t
k(Σ

−1
k−1−Σ−1

k )Mk =
n∑

k=p

M t
kΣ
−1/2
k−1 ∆kΣ

−1/2
k−1 Mk

where ∆n = I2(p+1)−Σ1/2
n−1Σ

−1
n Σ

1/2
n−1. In addition, via Proposition 5.1

lim
n→∞

Σn

|Tn|
= Λ a.s. (8.5)

which implies that

lim
n→∞∆n =

1

2
I2(p+1) a.s. (8.6)

Furthermore, it follows from Corollary 8.3 that An = O (n) a.s. Hence, we deduce from (8.5) and
(8.6) that

An

n
=


 1

2n

n∑
k=p

M t
kΣ
−1
k−1Mk


+ o(1) a.s. (8.7)
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and convergence (5.3) directly follows from Corollary 8.3. �

We are now in position to prove the QSL.

Proof of result (5.6) of Theorem 5.2: The QSL is a direct consequence of (5.3) together with the
fact that bθn− θ = Σ−1

n−1Mn. Indeed, we have

1

n

n∑
k=p

M t
kΣ
−1
k−1Mk =

1

n

n∑
k=p

(bθk − θ)tΣk−1(bθk − θ)

=
1

n

n∑
k=p

|Tk−1|(bθk − θ)t
Σk−1

|Tk−1|
(bθk − θ)

=
1

n

n∑
k=p

|Tk−1|(bθk − θ)tΛ(bθk − θ) + o(1) a.s.

which completes the proof of Theorem 5.2. �

9 Proof of Theorem 5.3

The almost sure convergence of bσ2
n and bρn is strongly related to that of bVn− Vn.

Proof of result (5.7) of Theorem 5.3: We need to prove that

lim
n→∞

1

n

∑
k∈Tn−1,p−1

‖bVk − Vk‖2 = 2(p+ 1)σ2 a.s. (9.1)

Once again, we are searching for a link between the sum of ‖bVn − Vn‖ and the processes (An) and
(Vn) whose convergence properties were previously investigated. For all n≥ p, we have

∑
k∈Gn

‖bVk − Vk‖2 =
∑
k∈Gn

(bε2k − ε2k)
2+ (bε2k+1− ε2k+1)

2,

= (bθn− θ)tΨnΨ
t
n(bθn− θ),

= M t
nΣ
−1
n−1ΨnΨ

t
nΣ
−1
n−1Mn,

= M t
nΣ
−1/2
n−1 ∆nΣ

−1/2
n−1 Mn,

where

∆n = Σ
−1/2
n−1 ΨnΨ

t
nΣ
−1/2
n−1 = Σ

−1/2
n−1 (Σn−Σn−1)Σ

−1/2
n−1 .

Now, we can deduce from convergence (8.5) that

lim
n→∞∆n = I2(p+1) a.s.
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which implies that ∑
k∈Gn

‖bVk − Vk‖2 = M t
nΣ
−1
n−1Mn

�
1+ o(1)

�
a.s.

Therefore, we can conclude via convergence (5.3) that

lim
n→∞

1

n

∑
k∈Tn−1,p−1

‖bVk − Vk‖2 = lim
n→∞

1

n

n∑
k=p

M t
kΣ
−1
k−1Mk = 2(p+ 1)σ2 a.s.

Proof of result (5.8) of Theorem 5.3: First of all,

bσ2
n−σ2

n =
1

2|Tn−1|
∑

k∈Tn−1,p−1

�‖bVk‖2−‖Vk‖2
�
,

=
1

2|Tn−1|
∑

k∈Tn−1,p−1

�‖bVk − Vk‖2+ 2(bVk − Vk)
t Vk
�
.

Set

Pn =
∑

k∈Tn−1,p−1

(bVk − Vk)
t Vk =

n∑
k=p

∑
i∈Gk−1

(bVi − Vi)
t Vi .

We clearly have
∆Pn+1 = Pn+1− Pn =

∑
k∈Gn

(bVk − Vk)
t Vk.

One can observe that for all k ∈ Gn, bVk − Vk = (I2 ⊗ Yk)t(θ − bθn) which implies that bVk − Vk is
Fn-measurable. Consequently, (Pn) is a real martingale transform. Hence, we can deduce from the
strong law of large numbers for martingale transforms given in Theorem 1.3.24 of [4] together with
(9.1) that

Pn = o




∑
k∈Tn−1,p−1

||bVk − Vk)||2

= o(n) a.s.

It ensures once again via convergence (9.1) that

lim
n→∞

|Tn|
n
(bσ2

n−σ2
n) = lim

n→∞
1

n

∑
k∈Tn−1,p−1

‖bVk − Vk‖2 = 2(p+ 1)σ2 a.s.

We now turn to the study of the covariance estimator bρn. We have

bρn−ρn =
1

|Tn−1|
∑

k∈Tn−1,p−1

(bε2kbε2k+1− ε2kε2k+1),

=
1

|Tn−1|
∑

k∈Tn−1,p−1

(bε2k − ε2k)(bε2k+1− ε2k+1) +
1

|Tn−1|
Qn,

where
Qn =

∑
k∈Tn−1,p−1

(bε2k − ε2k)ε2k+1+ (bε2k+1− ε2k+1)ε2k =
∑

k∈Tn−1,p−1

(bVk − Vk)
tJ2Vk
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with

J2 =

�
0 1
1 0

�
.

Moreover, one can observe that J2ΓJ2 = Γ. Hence, as before, (Qn) is a real martingale transform
satisfying

Qn = o




∑
k∈Tn−1,p−1

||bVk − Vk)||2

= o(n) a.s.

We will see in Appendix D that

lim
n→∞

1

n

∑
k∈Tn−1,p−1

(bε2k − ε2k)(bε2k+1− ε2k+1) = (p+ 1)ρ a.s. (9.2)

Finally, we find from (9.2) that

lim
n→∞

|Tn|
n
(bρn−ρn) = 2(p+ 1)ρ a.s.

which completes the proof of Theorem 5.3. �

10 Proof of Theorem 5.4

In order to prove the CLT for the BAR(p) estimators, we will use the central limit theorem for
martingale difference sequences given in Propositions 7.8 and 7.9 of Hamilton [8].

Proposition 10.1. Assume that (Wn) is a vector martingale difference sequence satisfying

(a) For all n≥1, E[WnW t
n ]=Ωn where Ωn is a positive definite matrix and

lim
n→∞

1

n

n∑
k=1

Ωk = Ω

where Ω is also a positive definite matrix.

(b) For all n ≥ 1 and for all i, j, k, l, E[WinWjnWknWln] < ∞ where Win is the ith element of the
vector Wn.

(c)
1

n

n∑
k=1

WkW t
k
P−→ Ω.

Then, we have the central limit theorem

1p
n

n∑
k=1

Wk
L−→N (0,Ω).
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We wish to point out that for BAR(p) processes, it seems impossible to make use of the standard CLT
for martingales. This is due to the fact that Lindeberg’s condition is not satisfied in our framework.
Moreover, as the size of (ξn) doubles at each generation, it is also impossible to check condition (c).
To overcome this problem, we simply change the filtration. Instead of using the generation-wise
filtration, we will use the sister pair-wise one. Let

Gn = σ{X1, (X2k, X2k+1), 1≤ k ≤ n}

be the σ-algebra generated by all pairs of individuals up to the offspring of individual n. Hence
(ε2n,ε2n+1) is Gn-measurable. Note that Gn is also the σ-algebra generated by, on the one hand, all
the past generations up to that of individual n, i.e. the rnth generation, and, on the other hand, all
pairs of the (rn+ 1)th generation with ancestors less than or equal to n. In short,

Gn = σ
�
Frn
∪ {(X2k, X2k+1), k ∈Grn

, k ≤ n}
�

.

Therefore, (H.2) implies that the processes (ε2n,Xnε2n,ε2n+1,Xnε2n+1)t , (ε2
2n + ε

2
2n+1 − 2σ2) and

(ε2nε2n+1−ρ) are Gn-martingales.

Proof of result (5.4) of Theorem 5.1: First, recall that Yn = (1,Xn)t . We apply Propositions 10.1
to the Gn-martingale difference sequence (Dn) given by

Dn = vec(YnV t
n ) =




ε2n
Xnε2n
ε2n+1
Xnε2n+1


 .

We clearly have

DnDt
n =

�
ε2

2n ε2nε2n+1
ε2n+1ε2n ε2

2n+1

�
⊗ YnY t

n .

Hence, it follows from (H.1) and (H.2) that

E[DnDt
n] = Γ⊗E[YnY t

n ].

Moreover, we can show by a slight change in the proof of Lemmas 7.1 and 7.2 that

lim
n→∞

1

|Tn|
∑

k∈Tn−1,p−1

E[DkDt
k] = Γ⊗ lim

n→∞
1

|Tn|
E[Sn] = Γ⊗ L,

which is positive definite, so that condition (a) holds. Condition (b) also clearly holds under (H.3).
We now turn to condition (c). We have

∑
k∈Tn−1,p−1

DkDt
k = Γ⊗ Sn+ Rn

where

Rn =
∑

k∈Tn−1,p−1

�
ε2

2k −σ2 ε2kε2k+1−ρ
ε2k+1ε2k −ρ ε2

2k+1−σ2

�
⊗ YkY t

k .
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Under (H.1) to (H.5), we can show that (Rn) is a martingale transform. Moreover, we can prove that
Rn = o(n) a.s. using Lemma A.6 and similar calculations as in Appendix B where a more complicated
martingale transform (Kn) is studied. Consequently, condition (c) also holds and we can conclude
that

1p
|Tn−1|

∑
k∈Tn−1,p−1

Dk =
1p
|Tn−1|

Mn
L−→N (0,Γ⊗ L). (10.1)

Proof of result (5.11) of Theorem 5.4: We deduce from (4.1) that

p
|Tn−1|(bθn− θ) = |Tn−1|Σ−1

n−1

Mnp
|Tn−1|

.

Hence, (5.11) directly follows from (5.4) and convergence (8.5) together with Slutsky’s Lemma. �

Proof of results (5.12) and (5.13) of Theorem 5.4: On the one hand, we apply Propositions 10.1
to the Gn-martingale difference sequence (vn) defined by

vn = ε
2
2n+ ε

2
2n+1− 2σ2.

Under (H.4), one has E[v2
n] = 2τ4− 4σ4+ 2ν2 which ensures that

lim
n→∞

1

|Tn|
∑

k∈Tn,p−1

E[v2
k ] = 2τ4− 4σ4+ 2ν2 > 0.

Hence, condition (a) holds. Once again, condition (b) clearly holds under (H.5), and Lemma 6.3
together with Remark 6.4 imply condition (c),

lim
n→∞

1

|Tn|
∑

k∈Tn,p−1

v2
k = 2τ4− 4σ4+ 2ν2 a.s.

Therefore, we obtain that

1p
|Tn−1|

∑
k∈Tn−1,p−1

vk = 2
p
|Tn−1|(σ2

n−σ2)
L−→N (0, 2τ4− 4σ4+ 2ν2). (10.2)

Furthermore, we infer from (5.8) that

lim
n→∞

p
|Tn−1|(bσ2

n−σ2
n) = 0 a.s. (10.3)

Finally, (10.2) and (10.3) imply (5.12). On the other hand, we apply again Proposition 10.1 to the
Gn-martingale difference sequence (wn) given by

wn = ε2nε2n+1−ρ.

Under (H.4), one has E[w2
n] = ν

2−ρ2 which implies that condition (a) holds since

lim
n→∞

1

|Tn|
∑

k∈Tn,p−1

E[w2
k] = ν

2−ρ2 > 0.
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Once again, condition (b) clearly holds under (H.5), and Lemmas 6.1 and 6.3 yield condition (c),

lim
n→∞

1

|Tn|
∑

k∈Tn,p−1

w2
k = ν

2−ρ2 a.s.

Consequently, we obtain that

1p
|Tn−1|

∑
k∈Tn−1,p−1

wk =
p
|Tn−1|(ρn−ρ) L−→N (0,ν2−ρ2). (10.4)

Furthermore, we infer from (5.10) that

lim
n→∞

p
|Tn−1|(bρn−ρn) = 0 a.s. (10.5)

Finally, (5.13) follows from (10.4) and (10.5) which completes the proof of Theorem 5.4. �

Appendices

A Laws of large numbers for the BAR process

We start with some technical Lemmas we make repeatedly use of, the well-known Kronecker’s
Lemma given in Lemma 1.3.14 of [4] together with some related results.

Lemma A.1. Let (αn) be a sequence of positive real numbers increasing to infinity. In addition, let (xn)
be a sequence of real numbers such that

∞∑
n=0

|xn|
αn

<+∞.

Then, one has

lim
n→∞

1

αn

n∑
k=0

xk = 0.

Lemma A.2. Let (xn) be a sequence of real numbers. Then,

lim
n→∞

1

|Tn|
∑
k∈Tn

xk = x ⇐⇒ lim
n→∞

1

|Gn|
∑
k∈Gn

xk = x . (A.1)

Proof: First of all, recall that |Tn|= 2n+1− 1 and |Gn|= 2n. Assume that

lim
n→∞

1

|Tn|
∑
k∈Tn

xk = x .

We have the decomposition, ∑
k∈Tn

xk =
∑

k∈Tn−1

xk +
∑
k∈Gn

xk.
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Consequently,

lim
n→∞

1

|Gn|
∑
k∈Gn

xk = lim
n→∞

2

|Tn|+ 1

∑
k∈Tn

xk − lim
n→∞

1

|Tn−1|+ 1

∑
k∈Tn−1

xk,

= 2x − x = x .

Conversely, suppose that

lim
n→∞

1

|Gn|
∑
k∈Gn

xk = x .

A direct application of Toeplitz Lemma given in Lemma 2.2.13 of [4]) yields

lim
n→∞

1

|Tn|
∑
k∈Tn

xk = lim
n→∞

1

|Tn|
n∑

k=0

∑
i∈Gk

x i ,

= lim
n→∞

1

|Tn|
n∑

k=0

2k 1

|Gk|
∑
i∈Gk

x i = x .

Lemma A.3. Let (An) be a sequence of real-valued matrices such that
∑∞

n=0 ‖An‖<∞ and

lim
n→∞

n∑
k=0

Ak = A.

In addition, let (Xn) be a sequence of real-valued vectors which converges to a limiting value X . Then,

lim
n→∞

n∑
k=0

An−kXk = AX . (A.2)

Proof: For all n≥ 0, let

Un =
n∑

k=0

An−kXk.

We clearly have for all integer n0 with 1≤ n0 < n,

‖Un− AX‖ =





n∑
k=0

An−kXk −
n∑

k=0

AkX −
∞∑

k=n+1

AkX



,

≤
n∑

k=0

‖An−k‖‖Xk − X‖+
∞∑

k=n+1

‖Ak‖‖X‖,

≤
n0∑

k=0

‖An−k‖‖Xk − X‖+
n∑

k=n0+1

‖An−k‖‖Xk − X‖+
∞∑

k=n+1

‖Ak‖‖X‖.

We assume that (Xn) converges to a limiting value X . Consequently, we can choose n0 such that for
all k > n0, ‖Xk − X‖ < ε. Moreover, one can find M > 0 such that for all k ≥ 0, ‖Xk − X‖ ≤ M and
‖X‖ ≤ M . Therefore, we obtain that

‖Un− AX‖ ≤ (n0+ 1)M sup
k≥n−n0

‖Ak‖+ ε
n∑

k=n0+1

‖An−k‖+M
∞∑

k=n+1

‖Ak‖.
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On the one hand

sup
k≥n−n0

‖Ak‖ and
∞∑

k=n+1

‖Ak‖

both converge to 0 as n tends to infinity. On the other hand,

n∑
k=n0+1

‖An−k‖ ≤
∞∑

n=0

‖An‖<∞.

Consequently, ‖Un− AX‖ goes to 0 as n goes to infinity, as expected. �

Lemma A.4. Let (Tn) be a convergent sequence of real-valued matrices with limiting value T . Then,

lim
n→∞

n∑
k=0

1

2k

∑

C∈{A;B}k
C Tn−kC t = `

where the matrix

`=
∞∑

k=0

1

2k

∑

C∈{A;B}k
C T C t

is the unique solution of the equation

`= T +
1

2
(A`At + B`B t). (A.3)

Proof: First of all, recall that β = max{‖A‖,‖B‖} < 1. The cardinality of {A; B}k is obviously 2k.
Consequently, if

Un =
n∑

k=0

1

2k

∑

C∈{A;B}k
C(Tn−k − T )C t ,

it is not hard to see that

‖Un‖ ≤
n∑

k=0

1

2k
× 2kβ2k




Tn−k − T



=

n∑
k=0

β2(n−k)



Tk − T




.

Hence, (Un) converges to zero which completes the proof of Lemma A.4. �

We now return to the BAR process. We first need an estimate of the sum of the ‖Xn‖2 before being
able to investigate the limits.

Lemma A.5. Assume that (εn) satisfies (H.1) to (H.3). Then, we have
∑

k∈Tn,p

‖Xk‖2 = O (|Tn|) a.s. (A.4)
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Proof: In all the sequel, for all n ≥ 2p−1, denote A2n = A and A2n+1 = B. It follows from a recursive
application of relation (2.2) that for all n≥ 2p−1

Xn =
� rn−p∏

k=0

A[ n
2k ]

�
X[ n

2rn−p+1 ]+
rn−p∑
k=0

� k−1∏
i=0

A[ n
2i ]

�
η[ n

2k ]
(A.5)

with the convention that an empty product equals 1. Then, we can deduce from Cauchy-Schwarz
inequality that for all n≥ 2p−1




Xn−
� rn−p∏

k=0

A[ n
2k ]
�
X[ n

2rn−p+1 ]





2
=







rn−p∑
k=0

� k−1∏
i=0

A[ n
2i ]

�
η[ n

2k ]







2

≤
 

rn−p∑
k=0

� k−1∏
i=0

‖A[ n
2i ]
‖
�
‖η[ n

2k ]
‖
!2

≤
 

rn−p∑
k=0

β k


η[ n

2k ]




!2

≤
 

rn−p∑
k=0

β k

! 
rn−p∑
k=0

β k‖η[ n
2k ]
‖2
!

≤ 1

1− β

 
rn−p∑
k=0

β k‖η[ n
2k ]
‖2
!

.

Hence, we obtain that for all n≥ 2p,

‖Xn‖2 =






Xn−
� rn−p∏

k=0

A[ n
2k ]

�
X[ n

2rn−p+1 ]+
� rn−p∏

k=0

A[ n
2k ]

�
X[ n

2rn−p+1 ]







2

≤ 2

1− β

 
rn−p∑
k=0

β k‖η[ n
2k ]
‖2
!
+ 2β2(rn−p+1)‖X[ n

2rn−p+1 ]‖2.

Denote α =max{|a0|, |b0|} and X 1 =max{‖Xk‖, k ≤ 2p−1}. Summing up over the sub-tree Tn,p, we
find that

∑
k∈Tn,p

‖Xk‖2 ≤
∑

k∈Tn,p

2

1− β

 
rk−p∑
i=0

β i‖η[ k
2i ]
‖2
!
+
∑

k∈Tn,p

2β2(rk−p+1)‖X[ k
2rk−p+1 ]

‖2

≤ 4

1− β
∑

k∈Tn,p

rk−p∑
i=0

β i(α2+ ε2
[ k

2i ]
) +
∑

k∈Tn,p

2β2(rk−p+1)‖X[ k
2rk−p+1 ]

‖2

≤ 4

1− β
∑

k∈Tn,p

rk−p∑
i=0

β iε2
[ k

2i ]
+

4α2

1− β
∑

k∈Tn,p

rk−p∑
i=0

β i

+2X1
2 ∑

k∈Tn,p

β2(rk−p+1),

≤ 4Pn

1− β +
4α2Qn

1− β + 2X
2
1Rn, (A.6)
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where

Pn =
∑

k∈Tn,p

rk−p∑
i=0

β iε2
[ k

2i ]
, Qn =

∑
k∈Tn,p

rk−p∑
i=0

β i , Rn =
∑

k∈Tn,p

β2(rk−p+1).

The last two terms of (A.6) are readily evaluated by splitting the sums generation-wise. As a matter
of fact,

Qn =
n∑

k=p

∑
i∈Gk

1− β k

1− β ≤
1

(1− β)
n∑

k=p

2k = O (|Tn|), (A.7)

and

Rn =
n∑

k=p

∑
i∈Gk

β k−p+1 ≤
n∑

k=p

(2β)k = O (|Tn|). (A.8)

It remains to control the first term Pn. One can observe that εk appears in Pn as many times as it has
descendants up to the nth generation, and its multiplicative factor for its ith generation descendant
is (2β)i . Hence, one has

Pn =
∑

k∈Tn,p

n−rk∑
i=0

(2β)iε2
k .

The evaluation of Pn depends on the value of 0< β < 1. On the one hand, if β = 1/2, Pn reduces to

Pn =
∑

k∈Tn,p

(n+ 1− rk)ε
2
k =

n∑
k=p

(n+ 1− k)
∑
i∈Gk

ε2
i .

Hence,

Pn

|Tn|+ 1
=

n∑
k=p

�
(n+ 1− k)

2n+1−k

� 1

|Gk|
∑
i∈Gk

ε2
i


 .

However, it follows from Remark 6.2 that

lim
n→+∞

1

|Gn|
∑
k∈Gn

ε2
k = σ

2 a.s.

In addition, we also have

lim
n→∞

n∑
k=1

k

2k
= 2.

Consequently, we infer from Lemma A.3 that

lim
n→+∞

Pn

|Tn|
= 2σ2 a.s. (A.9)

On the other hand, if β 6= 1/2, we have

Pn =
∑

k∈Tn,p

1− (2β)n−rk+1

1− 2β
ε2

k =
1

1− 2β

n∑
k=p

(1− (2β)n−k+1)
∑
i∈Gk

ε2
i .
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Thus,

Pn

|Tn|+ 1
=

1

1− 2β

n∑
k=p

��1

2

�n−k+1− βn−k+1
� 1

|Gk|
∑
i∈Gk

ε2
i


 .

Furthermore,

lim
n→∞

1

1− 2β

n∑
k=1

��1

2

�k − β k
�
=

1

1− β .

As before, we deduce from Lemma A.3 that

lim
n→+∞

Pn

|Tn|
=

σ2

1− β . a.s. (A.10)

Finally, Lemma A.5 follows from the conjunction of (A.6), (A.7), (A.8) together with (A.9) and
(A.10). �

Proof of Lemma 7.1 : First of all, denote

Hn =
∑

k∈Tn,p−1

Xk and Pn =
∑

k∈Tn,p

εk,

As |Tn|= 2n+1− 1, we obtain from Equation (2.2) the recursive relation

Hn = Hp−1+
∑

k∈Tn,p

�
AkX[ k

2
]+ηk

�
,

= Hp−1+ 2AHn−1+ 2a(2n− 2p−1)e1+ Pne1 (A.11)

where e1 = (1, 0, . . . , 0)t ∈ Rp, a = (a0+ b0)/2 and the matrix

A=
A+ B

2
.

By induction, we deduce from (A.11) that

Hn

2n+1 =
Hp−1

2n+1 + A
Hn−1

2n + a
�2n− 2p−1

2n

�
e1+

Pn

2n+1 e1,

= (A)n−p+1
Hp−1

2p +
n∑

k=p

(A)n−k

�
Hp−1

2k+1
+ a
�2k − 2p−1

2k

�
e1+

Pk

2k+1
e1

�
.

We have already seen via convergence (6.1) of Lemma 6.1 that

lim
n→+∞

Pn

2n+1 = 0 a.s.

Finally, as ‖A‖< 1,
∞∑

n=0

‖(A)n‖<∞ and (Ip − A)−1 =
∞∑

n=0

(A)n,
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it follows from Lemma A.3 that

lim
n→∞

Hn

2n+1 = a(Ip − A)−1e1 a.s.

which ends the proof of Lemma 7.1. �

Proof of Lemma 7.2 : We shall proceed as in the proof of Lemma 7.1 and use the same notation.
Let

Kn =
∑

k∈Tn,p−1

XkXt
k and Ln =

∑
k∈Tn,p

ε2
k .

We infer again from (2.2) that

Kn = Kp−1+
∑

k∈Tn,p

�
AkX[ k

2
]+ηk

��
AkX[ k

2
]+ηk

�t

= Kp−1+
∑

k∈Tn,p

ε2
k e1et

1+
∑

k∈Tn−1,p−1

�
AXkXt

kAt + BXkXt
kB t
�

+
∑

k∈Tn−1,p−1

�
(a0+ ε2k)Uk(A) + (b0+ ε2k+1)Uk(B) + 2(a2+ ζ2k)e1et

1

�

where Uk(A) = AXket
1 + e1Xt

kAt and Uk(B) = BXket
1 + e1Xt

kB t . In addition, a2 = (a2
0 + b2

0)/2 and
ζ2k = (a0ε2k + b0ε2k+1). Therefore, we obtain that

Kn

2n+1 =
1

2

�
A

Kn−1

2n At + B
Kn−1

2n B t
�
+ Tn (A.12)

where

Tn =


 Ln

2n+1 + a2
�2n− 2p−1

2n

�
+

1

2n

∑
k∈Tn−1,p−1

ζ2k


 e1et

1

+
1

2

�
a0

�
A

Hn−1

2n et
1+ e1

H t
n−1

2n At
�
+ b0

�
B

Hn−1

2n et
1+ e1

H t
n−1

2n B t
��

+
1

2n+1

∑
k∈Tn−1,p−1

�
ε2kUk(A) + ε2k+1Uk(B)

�
.

The two first results (6.1) and (6.2) of Lemma 6.1 together with Remark 6.2 and Lemma A.2 readily
imply that

lim
n→+∞

Ln

2n+1 = σ
2 a.s.

and

lim
n→+∞

1

2n

∑
k∈Tn−1,p−1

ζ2k = 0 a.s.

In addition, Lemma 7.1 gives

lim
n→+∞

Hn−1

2n = λ a.s.

2518



Furthermore, denote
Un =

∑
k∈Tn−1,p−1

�
ε2kUk(A) + ε2k+1Uk(B)

�
.

For all u ∈ Rp, let Un(u) = ut Unu. The sequence
�
Un(u)

�
is a real martingale transform. Moreover,

it follows from Lemma A.5 that

∑
k∈Tn−1,p−1

���utUk(A)u
���
2
+
���utUk(B)u

���
2
= O (|Tn|) a.s.

Consequently, we deduce from the strong law of large numbers for martingale transforms given in
Theorem 1.3.24 of [4] that Un(u) = o(|Tn|) a.s. for all u ∈ Rp which leads to Un = o(|Tn|) a.s.
Therefore, we obtain that (Tn) converges a.s. to T given by

T = (σ2+ a2)e1et
1+

1

2

�
Aλa0et

1+ a0e1λ
tAt + Bλb0et

1+ b0e1λ
t B t
�

.

Finally, iteration of the recursive relation (A.12) yields

Kn

2n+1 =
1

2n−p+1

∑

C∈{A;B}n−p+1

C
Kp−1

2p C t +
n−p∑
k=0

1

2k

∑

C∈{A;B}k
C Tn−kC t .

On the one hand, the first term on the right-hand side converges a.s. to zero as its norm is bounded
β2(n−p+1)‖Kp−1‖/2p. On the other hand, thanks to Lemma A.4, the second term on the right-hand
side converges to ` given by (A.3), which completes the proof of Lemma 7.2. . �

We now state a convergence result for the sum of ‖Xn‖4 which will be useful for the CLT.

Lemma A.6. Assume that (εn) satisfies (H.1) to (H.5). Then, we have
∑

k∈Tn,p

‖Xk‖4 = O (|Tn|) a.s. (A.13)

Proof : The proof is almost exactly the same as that of Lemma A.5. Instead of Equation (A.6), we
have ∑

k∈Tn,p

‖Xk‖4 ≤
64Pn

(1− β)3 +
64α4Qn

(1− β)3 + 8X
4
1Rn

where

Pn =
∑

k∈Tn,p

rk−p∑
i=0

β iε4
[ k

2i ]
, Qn =

∑
k∈Tn,p

rk−p∑
i=0

β i , Rn =
∑

k∈Tn,p

β4(rk−p+1) .

We already saw that Qn = O (|Tn|). In addition, it is not hard to see that Rn = O (|Tn|). Therefore,
we only need a sharper estimate for un. Via the same lines as in the proof of Lemma A.5 together
with the sharper results of Lemma 6.3, we can show that Pn = O (|Tn|) a.s. which leads to (A.13). �
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B On the quadratic strong law

We start with an auxiliary lemma closely related to the Riccation Equation for the inverse of the
matrix Sn.

Lemma B.1. Let hn and ln be the two following symmetric square matrices of order δn

hn = Φ
t
nS−1

n Φn and ln = Φ
t
nS−1

n−1Φn.

Then, the inverse of Sn may be recursively calculated as

S−1
n = S−1

n−1− S−1
n−1Φn(Iδn

+ ln)
−1Φt

nS−1
n−1. (B.1)

In addition, we also have (Iδn
− hn)(Iδn

+ ln) = Iδn
.

Remark B.2. If fn =Ψt
nΣ
−1
n Ψn, it follows from Lemma B.1 that

Σ−1
n = Σ

−1
n−1−Σ−1

n−1Ψn(I2δn
− fn)Ψ

t
nΣ
−1
n−1. (B.2)

Proof : As Sn = Sn−1+ΦnΦt
n, relation (B.1) immediately follows from Riccati Equation given e.g. in

[4] page 96. By multiplying both side of (B.1) by Φn, we obtain

S−1
n Φn = S−1

n−1Φn− S−1
n−1Φn(Iδn

+ ln)
−1ln,

= S−1
n−1Φn− S−1

n−1Φn(Iδn
+ ln)

−1(Iδn
+ ln− Iδn

),

= S−1
n−1Φn(Iδn

+ ln)
−1.

Consequently, multiplying this time on the left by Φt
n, we obtain that

hn = ln(Iδn
+ ln)

−1 = (ln+ Iδn
− Iδn

)(Iδn
+ ln)

−1,

= Iδn
− (Iδn

+ ln)
−1

leading to (Iδn
− hn)(Iδn

+ ln) = Iδn
. �

In order to establish the quadratic strong law for (Mn), we are going to study separately the asymp-
totic behaviour of (Wn) and (Bn) which appear in the main decomposition (8.1).

Lemma B.3. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

lim
n→+∞

1

n
Wn = 2σ2 a.s. (B.3)

Proof : First of all, we have the decomposition Wn+1 = Tn+1+Rn+1 where

Tn+1 =
n∑

k=p

∆M t
k+1Λ

−1∆Mk+1

|Tk|
,

Rn+1 =
n∑

k=p

∆M t
k+1(|Tk|Σ−1

k −Λ−1)∆Mk+1

|Tk|
.
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We claim that

lim
n→+∞

1

n
Tn = (p+ 1)σ2 a.s.

It will ensure via (8.5) that Rn = o(n) a.s. leading to (B.3). One can observe that Tn+1 =
t r(Λ−1/2Hn+1Λ−1/2) where

Hn+1 =
n∑

k=p

∆Mk+1∆M t
k+1

|Tk|
.

Our goal is to make use of the strong law of large numbers for martingale transforms, so we start by
adding and subtracting a term involving the conditional expectation of ∆Hn+1 given Fn. We have
already seen in Section 4 that for all n ≥ p − 1, E[∆Mn+1∆M t

n+1|Fn] = Γ⊗ ΦnΦt
n. Consequently,

we can split Hn+1 into two terms

Hn+1 =
n∑

k=p

Γ⊗ΦkΦt
k

|Tk|
+ Kn+1

where

Kn+1 =
n∑

k=p

∆Mk+1∆M t
k+1−Γ⊗ΦkΦt

k

|Tk|
.

On the one hand, it follows from convergence (5.1) and Lemma A.2 that

lim
n→+∞

ΦnΦt
n

|Tn|
=

1

2
L a.s.

Thus, Cesaro convergence yields

lim
n→+∞

1

n

n∑
k=p

Γ⊗ΦkΦt
k

|Tk|
=

1

2
(Γ⊗ L) a.s. (B.4)

On the other hand, the sequence (Kn) is obviously a matrix martingale transform satisfying

∆Kn+1 = Kn+1− Kn =
1

|Tn+1|
∑

i, j∈Gn

Γi j ⊗
�

1 Xt
j

Xi XiXt
j

�

where

Γi j =

�
ε2iε2 j − 1Ii= jσ

2 ε2iε2 j+1− 1Ii= jρ

ε2i+1ε2 j − 1Ii= jρ ε2i+1ε2 j+1− 1Ii= jσ
2

�
.

For all u ∈ R2(p+1), let Kn(u) = ut Knu. It follows from tedious but straightforward calculations,
together with (A.4), (A.13) and the strong law of large numbers for martingale transforms given in
Theorem 1.3.24 of [4] that Kn(u) = o(n) a.s. for all u ∈ R2(p+1) leading to Kn = o(n) a.s. Hence, we
infer from (B.4) that

lim
n→+∞

1

n
Hn =

1

2
(Γ⊗ L) a.s. (B.5)
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Finally, we find from (B.5) that

lim
n→+∞

1

n
Tn =

1

2
t r(Λ−1/2(Γ⊗ L)Λ−1/2) a.s.

=
1

2
t r((Γ⊗ L)Λ−1) a.s.

=
1

2
t r(Γ⊗ Ip+1) = (p+ 1)σ2 a.s.

which completes the proof of Lemma B.3 �

Lemma B.4. Assume that (εn) satisfies (H.1) to (H.3). Then, we have

Bn+1 = o(n) a.s.

Proof : Recall that

Bn+1 = 2
n∑

k=p

M t
kΣ
−1
k ∆Mk+1 = 2

n∑
k=p

M t
kΣ
−1
k Ψkξk+1.

The sequence (Bn) is a real martingale transform satisfying

∆Bn+1 =Bn+1−Bn = 2M t
nΣ
−1
n Ψnξn+1.

Consequently, via the strong law of large numbers for martingale transforms [4], we find that either
(Bn) converges a.s. orBn+1 = o(νn) a.s. where

νn =
n∑

k=p

M t
kΣ
−1
k ΨkΨ

t
kΣ
−1
k Mk.

However, for all n≥ 2p−1, ΨnΨt
n = I2⊗ΦnΦt

n which implies that

νn =
n∑

k=p

M t
kΣ
−1
k (I2⊗ΦkΦ

t
k)Σ

−1
k Mk =

n∑
k=p

M t
k(I2⊗ S−1

k ΦkΦ
t
kS−1

k )Mk.

Furthermore, it follows from Lemma B.1 that

S−1
n−1− S−1

n = S−1
n Φn(Iδn

+ ln)Φ
t
nS−1

n ≥ S−1
n ΦnΦ

t
nS−1

n

as the matrix ln is definite positive. Therefore, we obtain that

νn ≤
n∑

k=p

M t
k(Σ

−1
k−1−Σ−1

k )Mk =An.

Finally, we deduce from the main decomposition (8.1) that

Vn+1+An = o(An) +O (n) a.s.

leading to Vn+1 = O (n) and An = O (n) a.s. as Vn+1 and An are non-negative, which implies in
turn thatBn = o(n) a.s. completing the proof of Lemma B.4. �

Proof of Lemma 8.1 : Convergence (8.2) immediately follows from (8.1) together with Lemmas B.3
and B.4. �
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C On Wei’s Lemma

In order to prove (8.3), we shall apply Wei’s Lemma given in [13] page 1672, to each entry of the
vector-valued martingale

Mn =
n∑

k=p

∑
i∈Gk−1




ε2i
Xiε2i
ε2i+1
Xiε2i+1


 .

We shall only carry out the proof for the first (p+1) of Mn inasmuch as the proof for the (p+1) last
components follows exactly the same lines. Denote

Pn =
n∑

k=p

∑
i∈Gk−1

ε2i and Qn =
n∑

k=p

∑
i∈Gk−1

Xiε2i .

On the one hand, Pn can be rewritten as Pn =
n∑

k=p

p
|Gk−1|vk where

vn =
1p
|Gn−1|

∑
i∈Gn−1

ε2i .

We clearly have E[vn+1|Fn] = 0, E[v2
n+1|Fn] = σ2 a.s. Moreover, it follows from (H.1) to (H.3)

together with Cauchy-Schwarz inequality that

E[v4
n+1|Fn] =

1

|Gn|2
∑
i∈Gn

E[ε4
2i|Fn] +

3

|Gn|2
∑
i∈Gn

∑
j 6=i

E[ε2
2i|Fn]E[ε2

2 j|Fn]

≤ 3 sup
i∈Gn

E[ε4
2i|Fn] a.s.

which implies that supE[v4
n+1|Fn] < +∞ a.s. Consequently, we deduce from Wei’s Lemma that for

all δ > 1/2,
P2

n = o(|Tn−1|nδ) a.s.

On the other hand, we also have Qn =
n∑

k=p

p
|Gk−1|wk where

wn =
1p
|Gn−1|

∑
i∈Gn−1

Xiε2i .

It is not hard to see that E[wn+1|Fn] = 0 a.s. Moreover, for all 1 ≤ k ≤ p, let wn(k) be the kth
coordinate of the vector wn. It follows from (H.1) to (H.3) and Cauchy-Schwarz inequality that for
all 1≤ k ≤ p,

E[wn+1(k)
4|Fn] ≤

1

|Gn|2
∑
i∈Gn

X 4
[ i

2k−1 ]
E[ε4

2i|Fn]+
3σ4

|Gn|2
∑
i∈Gn

∑
j 6=i

X 2
[ i

2k−1 ]
X 2
[ j

2k−1 ]

≤ 3 sup
i∈Gn

E[ε4
2i|Fn]


 1

|Gn|
∑
i∈Gn

X 2
[ i

2k−1 ]




2

a.s.
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Hence, we obtain from Lemma 7.2 that for all 1 ≤ k ≤ p, supE[wn+1(k)4|Fn] < +∞ a.s. Once
again, we deduce from Wei’s Lemma applied to each component of Qn that for all δ > 1/2,

‖Qn‖2 = o(|Tn−1|nδ) a.s.

which completes the proof of (8.3). �

D On the convergence of the covariance estimator

It remains to prove that

lim
n→∞

1

n

∑
k∈Tn−1,p−1

(bε2k − ε2k)(bε2k+1− ε2k+1) = lim
n→∞

Rn

2n
= (p+ 1)ρ a.s.

where
Rn =

∑
k∈Tn−1,p−1

(bVk − Vk)
tJ2(bVk − Vk).

It is not possible to make use of the previous convergence (9.1) because the matrix

J2 =

�
0 1
1 0

�

is not positive definite. Hence, it is necessary to rewrite our proofs. Denote

V ′n = M t
nΣ
−1/2
n−1 (J2⊗ Ip+1)Σ

−1/2
n−1 Mn.

As in the proof of Theorem 5.2, we have the decomposition

V ′n+1+A ′n = V ′1 +B ′n+1+W ′n+1 (D.1)

where

A ′n =
n∑

k=p

M t
k

�
J2⊗ (S−1

k−1− S−1
k )
�

Mk,

B ′n+1 = 2
n∑

k=p

M t
k(J2⊗ S−1

k )∆Mk+1,

W ′n+1 =
n∑

k=p

∆M t
k+1(J2⊗ S−1

k )∆Mk+1.

First of all, via the same lines as in Appendix B, we obtain that

lim
n→+∞

1

n
W ′n =

1

2
t r((J2⊗ L−1)1/2(Γ⊗ L)(J2⊗ L−1)1/2) a.s.

=
1

2
t r(ΓJ2⊗ Ip+1) = (p+ 1)ρ a.s.
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Next, (B ′n) is a real martingale transform satisfyingB ′n+1 = o(n) a.s. Hence, we find the analogous
of convergence (8.2)

lim
n→+∞

V ′n+1+A ′n
n

= (p+ 1)ρ a.s. (D.2)

Furthermore, it follows from Wei’s Lemma that for all δ > 1/2,

V ′n = o(nδ) a.s. (D.3)

Therefore, we infer (D.1), (D.2) and (D.3) that

lim
n→+∞

1

n
A ′n = (p+ 1)ρ a.s. (D.4)

Finally, by the same lines as in the proof of the first part of Theorem 5.3, we find that

lim
n→∞

Rn

n
= 2 lim

n→∞
A ′n
n
= 2(p+ 1)ρ a.s.

which completes the proof of convergence (9.2). �
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1. Introduction

Bifurcating autoregressive processes (BAR) generalize autoregressive (AR) pro-
cesses, when the data have a binary tree structure. Typically, they are involved
in modeling cell lineage data, since each cell in one generation gives birth to two
offspring in the next one. Cell lineage data usually consist of observations of
some quantitative characteristic of the cells, over several generations descended

1313



1314 B. de Saporta et al.

from an initial cell. BAR processes take into account both inherited and environ-
mental effects to explain the evolution of the quantitative characteristic under
study. They were first introduced by Cowan and Staudte [4]. In their paper,
the original BAR process was defined as follows. The initial cell is labelled 1,
and the two offspring of cell k are labelled 2k and 2k + 1. If Xk denotes the
quantitative characteristic of individual k, then the first-order BAR process is
given, for all k ≥ 1, by

{
X2k = a + bXk + ε2k,
X2k+1 = a + bXk + ε2k+1.

The noise sequence (ε2k, ε2k+1) represents environmental effects, while a, b are
unknown real parameters, with |b| < 1, related to the inherited effects. The
driven noise (ε2k, ε2k+1) was originally supposed to be independent and identi-
cally distributed with normal distribution. But since two sister cells are in the
same environment at their birth, ε2k and ε2k+1 are allowed to be correlated, in-
ducing a correlation between sister cells, distinct from the correlation inherited
from their mother.

Recently, experiments made by biologists on aging of Escherichia coli [15],
motivated mathematical and statistical studies of the asymmetric BAR process,
that is when the quantitative characteristics of the even and odd sisters are al-
lowed to depend on their mother’s through different sets of parameters (a, b),
see Equation (2.1) below. In [9, 8], Guyon proposes an interpretation of the
asymmetric BAR process as a bifurcating Markov chain, which allows him to
derive laws of large numbers and central limit theorems for the least squares
estimators of the unknown parameters of the process. This Markov chain ap-
proach was further developed by Bansaye [2] in the context of cell division with
parasite infection, and by Delmas and Marsalle [5], where the cells are allowed
to die. Another approach based on martingales theory was proposed by Bercu,
de Saporta and Gégout-Petit [3], to sharpen the asymptotic analysis of Guyon
under weaker assumptions.

The originality of this paper is that we take into account possibly missing
data in the estimation procedure of the parameters of the asymmetric BAR
process, see Figure 1 for an example. This is a problem of practical interest,
as experimental data are often incomplete, either because some cells died, or
because the measurement of the characteristic under study was impossible or
faulty. For instance, among the 94 colonies dividing up to 9 times studied in
[15], in average, there are about 47% of missing data. It is important to take
this phenomenon into account in the model for a rigorous statistical study.

Missing data in bifurcating processes were first modeled by Delmas and
Marsalle [5]. They defined the genealogy of the cells through a Galton-Watson
process, but they took into account the possible asymmetry problem only by
differentiating the reproduction laws according to the daughter’s type (even or
odd). The bifurcating process was thus still a Markov chain. However, consid-
ering the biological issue of aging in E. coli naturally leads to introduce the
possibility that two cells of different types may not have the same reproduc-
tion law. In this paper, we thus introduce a two-type Galton-Watson process to
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Fig 1. A tree associated with the bifurcating auto-regressive process up to the 4th generation.
The dashed cells are not observed.

model the genealogy, and lose the Markovian structure of the bifurcating chain,
so that we cannot use the same approach as [5]. Instead, we use the martingale
approach introduced in [3]. It must be pointed out that missing data are not
dealt with in [3], so that we cannot directly use their results either. In particular,
the observation process is another source of randomness that requires stronger
moment assumptions on the driven noise of the BAR process and careful choice
between various filtrations. In addition, the normalizing terms are now random
and the convergences are only available on the random non-extinction set of the
observed process.

The naive approach to handle missing data would be to replace the sums over
all data in the estimators by sums over the observed data only. Our approach is
slightly more subtle, as we distinguish whether a cell has even or odd daughters.
We propose a joint model where the structure for the observed data is based
on a two-type Galton-Watson process consistent with the possibly asymmetric
structure of the BAR process. See e.g. [12, 1, 10] for a presentation of multi-type
Galton-Watson processes and general branching processes. Note also that our
estimation procedure does not require the previous knowledge of the parameters
of the two-type Galton-Watson process.

This paper is organized as follows. In Section 2, we first introduce our BAR
model as well as related notation, then we define and recall results on the two-
type Galton-Watson process used to model the observation process. In Section 3,
we give the least square estimator for the parameters of observed BAR process
and we state our main results on the convergence and asymptotic normality of
our estimators as well as estimation results on data. The proofs are detailed in
the following sections.

2. Joint model

We now introduce our joint model, starting with the asymmetric BAR process
for the variables of interest.
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Fig 2. The tree associated with the bifurcating auto-regressive process.

2.1. Bifurcating autoregressive processes

On the probability space (Ω,A, P), we consider the first-order asymmetric BAR
process given, for all k ≥ 1, by

{
X2k = a + bXk + ε2k,
X2k+1 = c + dXk + ε2k+1.

(2.1)

The initial state X1 is the characteristic of the ancestor, while (ε2k, ε2k+1) is the
driven noise of the process. In all the sequel, we shall assume that E[X8

1 ] < ∞.
Moreover, as in the previous literature, the parameters (a, b, c, d) belong to R4

with
0 < max(|b|, |d|) < 1.

This assumption ensures the stability (non explosion) of the BAR process. As
explained in the introduction, one can see this BAR process as a first-order au-
toregressive process on a binary tree, where each vertex represents an individual
or cell, vertex 1 being the original ancestor, see Figure 2 for an illustration. We
use the same notation as in [3]. For all n ≥ 1, denote the n-th generation by
Gn = {2n, 2n + 1, . . . , 2n+1 − 1}. In particular, G0 = {1} is the initial genera-
tion, and G1 = {2, 3} is the first generation of offspring from the first ancestor.
Let Grk

be the generation of individual k, which means that rk = [log2(k)],
where [x] denotes the largest integer less than or equal to x. Recall that the
two offspring of individual k are labelled 2k and 2k + 1, or conversely, the
mother of individual k is [k/2]. More generally, the ancestors of individual k
are [k/2], [k/22], . . . , [k/2rk ]. Denote by Tn =

⋃n
ℓ=0 Gℓ,the sub-tree of all indi-

viduals from the original individual up to the n-th generation. Note that the
cardinality |Gn| of Gn is 2n, while that of Tn is |Tn| = 2n+1 − 1. Next, T de-
notes the complete tree, so to speak T =

⋃
n≥0 Gn =

⋃
n≥0 Tn = N∗ = N\{0}.
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Finally, we need to distinguish the individuals in Gn and Tn according to their
type. Since we are dealing with the types even and odd, that we will also label 0
and 1, we set

G0
n = Gn ∩ (2N), G1

n = Gn ∩ (2N + 1), T0
n = Tn ∩ (2N),

T1
n = Tn ∩ (2N + 1), T0 = T ∩ (2N) and T1 = T ∩ (2N + 1). (2.2)

We now state our assumptions on the noise sequence. Denote by F = (Fn)
the natural filtration associated with the first-order BAR process, which means
that Fn is the σ-algebra generated by all individuals up to the n-th generation,
Fn = σ{Xk, k ∈ Tn}. In all the sequel, we shall make use of the following
moment and independence hypotheses.

(HN.1) For all n ≥ 0 and for all k ∈ Gn+1, εk belongs to L8. Moreover, there
exist (σ2, τ4, κ8) ∈ (0, +∞)3, (|ρ′|, ν2, λ4) ∈ [0, 1)3 such that:

• ∀n ≥ 0 and k ∈ Gn+1,

E[εk|Fn] = 0, E[ε2
k|Fn] = σ2, E[ε4

k|Fn] = τ4, E[ε8
k|Fn] = κ8 a.s.

• ∀n ≥ 0 ∀k 6= l ∈ Gn+1 with [k/2] = [l/2],

E[εkεl|Fn] = ρ = ρ′σ2, E[ε2
2kε2

2k+1|Fn] = ν2τ4, E[ε4
2kε4

2k+1|Fn] = λ4κ8 a.s.

(HN.2) For all n ≥ 0 the random vectors {(ε2k, ε2k+1), k ∈ Gn} are condition-
ally independent given Fn.

2.2. Observation process

We now turn to the modeling of the observation process. The observation process
is intended to encode if a datum is missing or not. The natural property it has
thus to satisfy is the following: if the datum is missing for some individual, it is
also missing for all its descendants. Indeed, the datum may be missing because
of the death of the individual, or because the individual is the last of its lineage
at the end of the data’s gathering, see Figure 3 for an example of partially
observed tree.

2.2.1. Definition of the observation process

Mathematically, we define the observation process, (δk)k∈T, as follows. We set
δ1 = 1 and define recursively the sequence through the following equalities:

δ2k = δkζ0
k and δ2k+1 = δkζ1

k , (2.3)

where (ζk = (ζ0
k , ζ1

k)) is a sequence of independent random vectors of {0, 1}2,
ζi
k standing for the number (0 or 1) of descendants of type i of individual k.

The sequences (ζk, k ∈ 2N∗) and (ζk, k ∈ 2N + 1) are sequences of identically
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Fig 3. The tree associated with the observed data of the tree in Figure 1.

distributed random vectors. We specify the common laws of these two sequences
using their generating functions, f (0) and f (1) respectively:

f (0)(s0, s1) = p(0)(0, 0) + p(0)(1, 0)s0 + p(0)(0, 1)s1 + p(0)(1, 1)s0s1,

f (1)(s0, s1) = p(1)(0, 0) + p(1)(1, 0)s0 + p(1)(0, 1)s1 + p(1)(1, 1)s0s1,

where p(i)(j0, j1) is the probability that an individual of type i gives birth to j0
descendants of type 0, and j1 of type 1. The sequence (δk) is thus completely
defined. We also assume that the observation process is independent from the
BAR process.

(HI) The sequences (δk) and (ζk) are independent from the sequences (Xk)
and (εk).

Remark that, since both ζ0
k and ζ1

k take values in {0, 1} for all k, the observation
process (δk) is itself taking values in {0, 1}. Finally, Equation (2.3) ensures that
if δk = 0 for some k ≥ 2, then for all its descendants j, δj = 0. In relation with
the observation process (δk), we introduce two filtrations: Zn = σ{ζk, k ∈ Tn},
On = σ{δk, k ∈ Tn}, and the sigma field O = σ{δk, k ∈ T}. Notice that
On+1 ⊂ Zn. We also define the sets of observed individuals as follows:

G∗
n = {k ∈ Gn : δk = 1} and T∗n = {k ∈ Tn : δk = 1}.

Finally, let E be the event corresponding to the cases when there are no indi-
vidual left to observe. More precisely,

E =
⋃

n≥1

{|G∗
n| = 0}. (2.4)

We will denote E the complementary set of E .
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2.2.2. Results on the observation process

Let us introduce some additional notation. For n ≥ 1, we define the number
of observed individuals among the n-th generation, distinguishing according to
their types:

Z0
n = |G∗

n ∩ 2N| and Z1
n = |G∗

n ∩ (2N + 1)|, (2.5)

and we set, for all n ≥ 1, Zn = (Z0
n, Z1

n). Note that for i ∈ {0, 1} and n ≥ 1 one
has

Zi
n =

∑

k∈Gn−1

δ2k+i.

One has G∗
0 = G0 = {1}, but, even if 1 is odd, the individual whose lineage we

study may as well be of type 0 as of type 1. Consequently, we will work with
possibly two different initial laws: P(·|Z0 = ei), for i ∈ {0, 1}, where e0 = (1, 0)
and e1 = (0, 1). The process (Zn, n ≥ 0) is thus a two-type Galton-Watson
process, and all the results we are giving in this section mainly come from [12].
Notice that the law of ζk, for even k, is the law of reproduction of an individual
of type 0, the first component of ζk giving the number of children of type 0, the
second the number of children of type 1. The same holds for ζk, with odd k,
mutatis mutandis. This ensures the existence of moments of all order for these
reproduction laws, and we can thus define the descendants matrix P

P =
(

p00 p01

p10 p11

)
,

where pi0 = p(i)(1, 0)+p(i)(1, 1) and pi1 = p(i)(0, 1)+p(i)(1, 1), for i ∈ {0, 1}. The
quantity pij = E[ζj

2+i] is thus the expected number of descendants of type j of an
individual of type i. We also introduce the variance of the laws of reproduction:
σ2

ij = E[(ζj
2+i − pij)2], for (i, j) ∈ {0, 1}2. Note that σ2

ij = pij(1 − pij). It is
well-known (see e.g. Theorem 5.1 of [12]) that when all the entries of the matrix
P are positive, P has a positive strictly dominant eigenvalue, denoted π, which
is also simple. We make the following main assumptions on the matrix P .

(HO) All entries of the matrix P are positive: for all (i, j) ∈ {0, 1}2, pij > 0,
and the dominant eigenvalue is greater than one: π > 1.

Hence, still following Theorem 5.1 of [12], we know that there exist left and
right eigenvectors for π which are positive, in the sense that each component
of the vector is positive. We call y = (y0, y1)t such a right eigenvector, and
z = (z0, z1) such a left one; without loss of generality, we choose z such that
z0 + z1 = 1. Regarding the two-type Galton-Watson process (Zn), π plays the
same role as the expected number of offspring, in the case of standard Galton-
Watson processes. In particular, π is related to the extinction of the process,
where the set of extinction of (Zn) is defined as ∪n≥1{Zn = (0, 0)}. Notice that
{Zn = (0, 0)} = {Z0

n + Z1
n = 0} = {|G∗

n| = 0}, so that this set coincides with E ,
defined by Eq. (2.4). Now let q = (q0, q1), where, for i ∈ {0, 1},

qi = P(E|Z0 = ei).
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The probability qi is thus the extinction probability if initially there is one
individual of type i. These two probabilities allow to compute the extinction
probability under any initial distribution, since P(E) = E[(q0)Z0

0 (q1)Z1
0 ], thanks

to the branching property. Hypothesis (HO) means that the Galton-Watson
process (Zn) is super-critical, and ensures that 0 ≤ qi < 1, for both i = 0 and
i = 1. This immediately yields

P(E) < 1. (2.6)

Under that condition, we also have the existence of a non-negative random
variable W such that for any initial distribution of Z0

lim
n→+∞

Zn

πn
= lim

n→+∞
π − 1

πn+1 − 1

n∑

ℓ=0

Zℓ = Wz a.s. (2.7)

It is well-known that {W = 0} = E a.s., so that the set {W > 0} can be
viewed as the set of non-extinction E of (Zn), up to a negligible set. These
results give the asymptotic behavior of the number of observed individuals,
since |G∗

n| = Z0
n + Z1

n, and |T∗n| =
∑n

ℓ=0(Z
0
ℓ + Z1

ℓ ):

lim
n→+∞

|G∗
n|

πn
= lim

n→+∞
π − 1

πn+1 − 1
|T∗n| = W a.s.

Roughly speaking, this means that πn is a deterministic equivalent of |T∗n| and
Eq. (2.7) implies that zi is the asymptotic proportion of cells of type i in a given
generation. We will thus very often replace |T∗n| by πn for computations, and
the next lemma will be used frequently to replace πn by |T∗n|.
Lemma 2.1. Under assumption (HO), we have

lim
n→+∞

1{|G∗n|>0}
πn

|T∗n|
=

π − 1
π

1
W

1E a.s.

2.3. Joint model

The model under study in this paper is therefore the observed BAR process
defined by

{
δ2kX2k = δ2k (a + bXk + ε2k),

δ2k+1X2k+1 = δ2k+1 (c + dXk + ε2k+1).

The aim of this paper is to study the sharp asymptotic properties of the least-
squares estimators of the parameters (a, b, c, d) and the variance matrix of the
noise process.

3. Least-squares estimation

Our goal is to estimate θ = (a, b, c, d)t from the observed individuals up to the
n-th generation, that is the observed sub-tree T∗n.
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3.1. Definition of the estimators

We propose to make use of the standard least-squares (LS) estimator θ̂n which
minimizes

∆n(θ) =
∑

k∈Tn−1

δ2k(X2k − a− bXk)2 + δ2k+1(X2k+1 − c− dXk)2.

Consequently, we obviously have for all n ≥ 1

(θ̂n) =




ân

b̂n

ĉn

d̂n


 = Σ−1

n−1

∑

k∈Tn−1




δ2kX2k

δ2kXkX2k

δ2k+1X2k+1

δ2k+1XkX2k+1


 , (3.1)

where, for all n ≥ 0,

Σn =
(

S0
n 0

0 S1
n

)
, and Si

n =
∑

k∈Tn

δ2k+i

(
1 Xk

Xk X2
k

)
,

for i ∈ {0, 1}. In order to avoid intricate invertibility assumption, we shall
assume, without loss of generality, that for all n ≥ 0, Σn is invertible. Otherwise,
we only have to add the identity matrix I4 to Σn, as Proposition 4.2 states that
the normalized limit of Σn is positive definite.

Remark 3.1. Note that when all data are observed, that is when all δk equal 1,
this is simply the least squares estimator described in the previous literature.
However, one must be careful here with the indices in the normalizing matrix,
as there are now two different matrices S0

n and S1
n, while there was only one in

the fully observed problem. The intuitive way to deal with missing data would
be to restrict the sums to the observed data only. Note that our estimator is
more complex as it involves sums depending on the absence or presence of even-
or odd-type daughters of the available data.

We now turn to the estimation of the parameters σ2 and ρ. We propose to
estimate the conditional variance σ2 and the conditional covariance ρ by

σ̂2
n =

1
|T∗n|

∑

k∈T∗n−1

(ε̂2
2k + ε̂2

2k+1), ρ̂n =
1

|T∗01n−1|
∑

k∈Tn−1

ε̂2kε̂2k+1,

where for all k ∈ Gn,
{

ε̂2k = δ2k(X2k − ân − b̂nXk),

ε̂2k+1 = δ2k+1(X2k+1 − ĉn − d̂nXk).
,

and
T∗01n = {k ∈ Tn : δ2kδ2k+1 = 1},

so to speak T∗01n−1 is the set of the cells of the tree Tn−1 which have exactly two
offspring.
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3.2. Main results

We can now state the sharp convergence results we obtain for the estimators
above. We introduce additional notation. For i ∈ {0, 1}, let us denote:

Li =

(
πzi hi

hi ki

)
L0,1 =

(
p̄(1, 1) h0,1

h0,1 k0,1

)

where z = (z0, z1) is the left eigenvector for the dominant eigenvalue π of
the descendants matrix P introduced in section 2.2.2, hi, ki are defined in
Propositions 6.3 and 6.5 and the four terms of L0,1 defined in Proposition 6.6.
We also define the 4× 4 matrices

Σ =
(

L0 0
0 L1

)
, and Γ =

(
σ2L0 ρL0,1

ρL0,1 σ2L1

)
. (3.2)

Our first result deals with the strong consistency of the LS estimator θ̂n.

Theorem 3.2. Under assumptions (HN.1), (HN.2), (HO) and (HI), θ̂n con-
verges to θ almost surely on E with the rate of convergence1{|G∗n|>0}‖θ̂n − θ‖2 = O

(
log |T∗n−1|
|T∗n−1|

) 1E a.s. (3.3)

In addition, we also have the quadratic strong law

lim
n→∞

1{|G∗n|>0}
1
n

n∑

ℓ=1

|T∗ℓ−1|(θ̂ℓ − θ)tΣ(θ̂ℓ − θ) = 4
π − 1

π
σ21E a.s. (3.4)

Our second result is devoted to the almost sure asymptotic properties of the
variance and covariance estimators σ̂2

n and ρ̂n. Let

σ2
n =

1
|T∗n|

∑

k∈T∗n−1

(δ2kε2
2k + δ2k+1ε

2
2k+1), ρn =

1
|T∗01n−1|

∑

k∈T∗n−1

δ2kε2kδ2k+1ε2k+1.

Theorem 3.3. Under assumptions (HN.1), (HN.2), (HO) and (HI), σ̂2
n con-

verges almost surely to σ2 on E. More precisely, one has

lim
n→∞

1{|G∗n|>0}
1
n

∑

k∈Tn−1

1∑

i=0

δ2k+i(ε̂2k+i − ε2k+i)2 = 4(π − 1)σ21E a.s. (3.5)

lim
n→∞

1{|G∗n|>0}
|T∗n|
n

(σ̂2
n − σ2

n) = 4(π − 1)σ21E a.s. (3.6)

In addition, ρ̂n converges almost surely to ρ on E and one has

lim
n→∞

1{|G∗n|>0}
1
n

∑

k∈Tn−1

δ2k(ε̂2k − ε2k)δ2k+1(ε̂2k+1 − ε2k+1)

= ρ
π − 1

π
tr
(
(L1)−1(L0,1)2(L0)−1

)1E a.s. (3.7)
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lim
n→∞

1{|G∗n|>0}
|T∗n|
n

(ρ̂n − ρn) = ρ
π − 1
p̄(1, 1)

tr
(
(L1)−1(L0,1)2(L0)−1

)1E a.s.

(3.8)

Our third result concerns the asymptotic normality for all our estimators θ̂n, σ̂2
n

and ρ̂n given the non-extinction of the underlying Galton-Watson process. For
this, using the fact that P(E) 6= 0 thanks to Eq. (2.6), we define the probability
PE by

PE(A) =
P(A ∩ E)

P(E)
for all A ∈ A.

Theorem 3.4. Under assumptions (HN.1), (HN.2), (HO) and (HI), we have
the central limit theorem

√
|T∗n−1|(θ̂n − θ) L−→ N (0,Σ−1ΓΣ−1) on (E , PE). (3.9)

In addition, we also have

√
|T∗n|(σ̂2

n − σ2) L−→ N
(
0,

π(τ4 − σ4) + 2p̄(1, 1)(ν2τ4 − σ4)
π

)
on (E , PE),

(3.10)
where p̄(1, 1) is defined in Eq. (6.6) and

√
|T∗01n−1|(ρ̂n − ρ) L−→ N (0, ν2τ4 − ρ2) on (E , PE). (3.11)

The proof of our main results is going to be detailed in the next sections.
It is based on martingale properties, and we will exhibit our main martingale
(Mn) in Section 4. Sections 5 to 7 are devoted proving to the sharp asymptotic
properties of (Mn). Finally, in Section 8 we prove our main results. Before
turning to the definition of the martingale (Mn), we present a short application
of our estimation procedure on data.

3.3. Results on real data

The biological issue addressed by Stewart et al. in [15] is aging in the single cell
organism Escherichia coli, see also [7] for further biological details. E. coli is a
rod-shaped bacterium that reproduces by dividing in the middle. Each cell has
thus a new end (or pole), and an older one. The cell that inherits the old pole
of its mother is called the old pole cell, the cell that inherits the new pole of
its mother is called the new pole cell. Therefore, each cell has a type: old pole
(even) or new pole (odd) cell, inducing asymmetry in the cell division.

Stewart et al. filmed colonies of dividing cells, determining the complete lin-
eage and the growth rate of each cell. Their statistical study of the averaged
genealogy and pair-wise comparison of sister cells showed that the old pole cells
exhibit cumulatively slowed growth, less offspring biomass production and an
increased probability of death. Note that their test assumes independence be-
tween the averaged pairs of sister cells which is not verified in the lineage.
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Table 1
Estimation on the data set penna-2002-10-04-4

parameter a c
estimation 0.03627 0.03058

C.I. [0.03276; 0.03979] [0.02696; 0.03420]
parameter b d
estimation 0.02662 0.17055

C.I. [−0.06866; 0.12191] [0.07247; 0.26863]

Another analysis was proposed in [9]. They model the growth rate by a
Markovian bifurcating process, allowing single-experiment statistical analysis
instead of averaging all the genealogical trees. Asymptotic properties of a more
general asymmetric Markovian bifurcating autoregressive process are then in-
vestigated in [8], where a Wald’s type test is rigorously constructed to study
the asymmetry of the process. These results cannot be compared to ours be-
cause this model does not take into account the possibly missing data from the
genealogies, and it is not clear how the author manages them, as not a single
tree from the data of [15] is complete. In [5], the authors take missing data into
account but, contrary to our approach, they allow different sets of parameters
for cells with two, one or no offspring, making the direct comparison with our
estimator again impossible.

We have applied our methodology on the set of data penna-2002-10-04-4
from the experiments of [15]. It is the largest data set of the experiment. It
contains 663 cells up to generation 9 (note that there would be 1023 cells in a
full tree up to generation 9). In particular, we have performed

• point estimation of the vector θ,
• interval estimation for the coefficients (a, b, c, d),
• Wald’s type symmetry tests for the entries of θ̂n.

Table 1 gives the estimation θ̂9 of θ with the 95% Confidence Interval (C.I.)
of each coefficient. The variance given by the CLT for θ in Eq. (3.9), is ap-
proximated by Σ−1

n ΓnΣ−1
n thanks to the convergence given in Corollary 4.3.

The confidence intervals of b and d show that the non explosion assumption
(|b| < 1 and |d| < 1) is satisfied. Some empirical computation on the process
(δk) gives the following estimation for the highest eigenvalue of the Galton-
Watson process: π̂ = 1.35669 (with confidence interval [1.27979, 1.43361], see
[14]), also satisfying the super-criticality assumption. Wald tests of comparison
between the coefficients of θ have been deduced of the CLT. The null hypotheses
(a, b) = (c, d) (resp. a = c, b = d) are rejected with p-values p= 0.0211 (resp.
p= 0.0158 and p=0.0244). Hence on this data set the cell division is indeed
statistically asymmetric.

4. Martingale approach

To establish all the asymptotic properties of our estimators, we shall make
use of a martingale approach, similar to [3]. However, their results cannot be



Estimation for missing data BAR 1325

used in our framework, since the randomness comes now not only from the state
process, but also from the time space (genealogy). These two mixed randomness
sources require careful choice between various filtrations, and stronger moment
assumptions on the driven noise of the BAR process. For all n ≥ 1, denote

Mn =
∑

k∈Tn−1

(δ2kε2k, δ2kXkε2k, δ2k+1ε2k+1, δ2k+1Xkε2k+1)
t
.

Thus, for all n ≥ 2, we readily deduce from Equations (3.1) and (2.1) that

θ̂n − θ = Σ−1
n−1

∑

k∈Tn−1




δ2kε2k

δ2kXkε2k

δ2k+1ε2k+1

δ2k+1Xkε2k+1


 = Σ−1

n−1Mn. (4.1)

The key point of our approach is that (Mn) is a martingale for a well chosen
filtration.

4.1. Martingale property

Recall that O = σ{δk, k ∈ T} is the σ-field generated by the observation process.
We shall assume that all the history of the process (δk) is known at time 0 and
use the filtration FO = (FO

n ) defined for all n by

FO
n = O ∨ σ{δkXk, k ∈ Tn} = O ∨ σ{Xk, k ∈ T∗n},

where F ∨ G denotes the σ-field generated by both F and G. Note that for all
n, FO

n is a sub σ-field of O ∨ Fn.

Proposition 4.1. Under assumptions (HN.1), (HN.2) and (HI), the process
(Mn) is a square integrable FO-martingale with increasing process given, for all
n ≥ 1, by

< M >n= Γn−1 =
(

σ2S0
n−1 ρS0,1

n−1

ρS0,1
n−1 σ2S1

n−1

)
,

where S0
n and S1

n are defined in section 3.1 and

S0,1
n =

∑

k∈Tn

δ2kδ2k+1

(
1 Xk

Xk X2
k

)
.

Proof. First, notice that for all n ≥ 1, one has

∆Mn = Mn −Mn−1 =
∑

k∈Gn−1




δ2kε2k

δ2kXkε2k

δ2k+1ε2k+1

δ2k+1Xkε2k+1


 .
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Now, we use the fact that for all n, FO
n is a sub-σ field of O∨Fn, the indepen-

dence between O and Fn under assumption (HI) and the moment hypothesis
(HN.1) to obtain

E[δ2kε2k | FO
n−1] = δ2kE

[
E[ε2k | O ∨ Fn−1] | FO

n−1

]

= δ2kE
[
E[ε2k | Fn−1] | FO

n−1

]
= 0.

We obtain similar results for the other entries of ∆Mn as δ2k+1 and Xk are
also FO

n−1-measurable. Hence, (Mn) is a FO-martingale. It is clearly square in-
tegrable from assumption (HN.1). The same measurability arguments together
with assumption (HN.2) yield

E[∆Mn(∆Mn)t | FO
n−1]

=
∑

k∈Gn−1




σ2δ2k σ2δ2kXk ρδ2kδ2k+1 ρδ2kδ2k+1Xk

σ2δ2kXk σ2δ2kX2
k ρδ2kδ2k+1Xk ρδ2kδ2k+1X

2
k

ρδ2kδ2k+1 ρδ2kδ2k+1Xk σ2δ2k+1 σ2δ2k+1Xk

ρδ2kδ2k+1Xk ρδ2kδ2k+1X
2
k σ2δ2k+1Xk σ2δ2k+1X

2
k


 .

Hence the result as < M >n=
∑n

ℓ=1 E[∆M ℓ(∆M ℓ)t | FO
ℓ−1].

Our main results are direct consequences of the sharp asymptotic properties
of the martingale (Mn). In particular, we will extensively use the strong law of
large numbers for locally square integrable real martingales given in Theorem
1.3.15 of [6]. Throughout this paper, we shall also use other auxiliary martin-
gales, either with respect to the same filtration FO, or with respect to other
filtrations naturally embedded in our process, see Lemma 5.1.

4.2. Asymptotic results

We first give the asymptotic behavior of the matrices S0
n, S1

n and S0,1
n . This is

the first step of our asymptotic results.

Proposition 4.2. Suppose that assumptions (HN.1), (HN.2), (HO) and (HI)
are satisfied. Then, for i ∈ {0, 1}, we have

lim
n→∞

1{|G∗n|>0}
Si

n

|T∗n|
= 1ELi a.s. and lim

n→∞
1{|G∗n|>0}

S0,1
n

|T∗n|
= 1EL0,1 a.s.

In addition, L0 and L1, hence Σ are definite positive.

A consequence of this proposition is the asymptotic behavior of the increasing
process of the martingale (Mn).

Corollary 4.3. Suppose that assumptions (HN.1), (HN.2), (HO) and (HI)
are satisfied. Then, we have

lim
n→∞

1{|G∗n|>0}
Σn

|T∗n|
= 1EΣ, and lim

n→∞
1{|G∗n|>0}

Γn

|T∗n|
= 1EΓ.
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This result is the keystone of our asymptotic analysis. It enables us to prove
sharp asymptotic properties for the martingale (Mn).

Theorem 4.4. Under assumptions (HN.1), (HN.2), (HO) and (HI), we have1{|G∗n|>0}M
t
nΣ−1

n−1Mn = O(n) a.s. (4.2)

In addition, we also have

lim
n→∞

1{|G∗n|>0}
1
n

n∑

ℓ=1

M t
ℓΣ

−1
ℓ−1M ℓ = 4σ21E a.s. (4.3)

Moreover, we have the central limit theorem on (E , PE)

1√
|T∗n−1|

Mn
L−→ N (0,Γ) on (E , PE).

As seen in Eq. (4.1), (θ̂n − θ) is closely linked to Mn and this last theorem
is then the major step to establish the asymptotic properties of our estimators.
The proof of this Theorem is given in Section 7. As explained before, it is a
consequence of Proposition 4.2 which proof is detailed in Section 6. In between,
Section 5 presents preliminary results in the form of laws of large number for
the observation, noise and BAR processes.

5. Laws of large numbers

We now state some laws of large numbers involving the observation, noise and
BAR processes. They are based on martingale convergence results, and we start
with giving a general result of convergence for martingales adapted to our frame-
work.

5.1. Martingale convergence results

The following result is nothing but the strong law of large numbers for square
integrable martingales, written in our peculiar setting, and will be repeatedly
used.

Lemma 5.1. Let G = (Gn) be some filtration, (Hn) and (Gn) be two sequences
of random variables satisfying the following hypotheses:

(i) for all n ≥ 1, for all k ∈ Gn, Hk is Gn−1-measurable, Gk is Gn-measurable,
and E[(HkGk)2] < +∞,

(ii) there exist c2 > 0, r ∈ [−1, 1], such that for all n ≥ 1, for all k, p ∈ Gn,

E[Gk|Gn−1] = 0, E[GkGp|Gn−1] =





c2 if k = p,
rc2 if k 6= p and [k/2] = [p/2],
0 otherwise,
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(iii) there exists a sequence of real numbers (an) that tends to ∞ such that∑
k∈Tn

H2
k = O(an).

Then
∑

k∈Tn
HkGk is a G-martingale and one has

lim
n→∞

1
an

∑

k∈Tn

HkGk = 0 a.s.

Proof. Define Dn =
∑

k∈Tn
HkGk. Assumptions (i) and (ii) clearly yield that

(Dn) is a square integrable martingale with respect to the filtration (Gn). Thanks
to (ii), its increasing process satisfies

< D >n = c2

( ∑

k∈Tn

H2
k + 2r

∑

k∈Tn−1

H2kH2k+1

)

≤ c2

( ∑

k∈Tn

H2
k + r

∑

k∈Tn−1

(H2
2k + H2

2k+1)
)

≤ c2(r + 1)
∑

k∈Tn

H2
k ,

and now, (iii) implies that < D >n= O(an). Finally, since the sequence (an)
tends to ∞, Theorem 1.3.15 of [6] ensures that Dn = o(an) a.s.

We also recall Lemma A.3 of [3] that will be useful in the sequel.

Lemma 5.2. Let (An) be a sequence of real-valued matrices such that
∞∑

n=0

‖An‖ < ∞ and lim
n→∞

n∑

k=0

Ak = A.

In addition, let (Xn) be a sequence of real-valued vectors which converges to a
limiting value X. Then,

lim
n→∞

n∑

ℓ=0

An−ℓXℓ = AX.

5.2. Laws of large numbers for the observation process

We now give more specific results on the asymptotic behavior of the observation
process (δk)k≥1. Recall the notation Ti

n defined in (2.2).

Lemma 5.3. Under the assumption (HO), we have the following convergences,
for (i, j) in {0, 1}2

lim
n→+∞

1
πn

∑

k∈Ti
n

δ2k+j = pij
π

π − 1
Wzi a.s.

lim
n→+∞

1
πn

∑

k∈Ti
n

δ2kδ2k+1 = p(i)(1, 1)
π

π − 1
Wzi a.s.
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Proof. Recall that δ2k+j = δkζj
k, so that

∑

k∈Ti
n

δ2k+j = pij

∑

k∈Ti
n

δk +
∑

k∈Ti
n

δk(ζj
k − pij) = pij

(
i +

n∑

ℓ=1

Zi
ℓ

)
+ Dn,

since G0 = {1}, so that Ti
n contains 1 or not, according to i = 1 or not, and where

Dn =
∑

k∈Ti
n

δk(ζj
k − pij). To deal with Dn, we use Lemma 5.1, with G = (Zn)

(recall that Zn = σ{ζk, k ∈ Tn}), Hk = δk1{k∈Ti}, and Gk = (ζj
k − pij)1{k∈Ti}.

Assumption (i) of Lemma 5.1 is obviously satisfied, since δk, for k ∈ Gn, is
Zn−1-measurable. Regarding (ii), since the sequence (ζj

k) is a sequence of i.i.d.
random variables with expectation pij and variance σ2

ij , we have E[Gk|Zn−1] = 0
and E[G2

k|Zn−1] = σ2
ij , for k ∈ Gn, and E[GkGp|Zn−1] = 0, for k 6= p ∈ Gn.

Finally, we turn to assumption (iii):

∑

k∈Tn

H2
k =

∑

k∈Ti
n

δk = i +
n∑

ℓ=1

Zi
ℓ = O(πn),

thanks to (HO) and Eq. (2.7). Finally, Dn = o(πn), and again using Eq. (2.7),
we obtain the first limit. The proof of the second one is similar using the Z-
martingale:

∑

k∈Ti
n

δk(δ2kδ2k+1 − p(i)(1, 1)) =
∑

k∈Tn

1{k∈Ti}δk︸ ︷︷ ︸
Hk

1{k∈Ti}(ζ0
kζ1

k − p(i)(1, 1))
︸ ︷︷ ︸

Gk

,

and Lemma 5.1 again.

5.3. Laws of large numbers for the noise process

We need to establish strong laws of large numbers for the noise sequence (εn)
restricted to the observed indices.

Lemma 5.4. Under assumptions (HN.1), (HN.2), (HO), (HI) and for i ∈
{0, 1}, one has

lim
n→+∞

1
πn

∑

k∈Tn−1

δ2k+iε2k+i = 0 a.s.

Proof. Set
P i

n =
∑

k∈Tn

δ2k+i︸ ︷︷ ︸
Hk

ε2k+i︸ ︷︷ ︸
Gk

.

We use Lemma 5.1, with G = (FOn+1). Assumption (i) is obvious. For k ∈ Gi
n+1,

we have E[Gk|FOn+1] = 0 and E[G2
k|FOn+1] = σ2, and E[GkGp|FOn+1] = 0, for

k 6= p ∈ Gi
n+1. Finally, we turn to assumption (iii):

∑

k∈Tn

H2
k =

∑

k∈Tn

δ2
2k+i =

n+1∑

ℓ=1

Zi
ℓ = O(πn),
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as n tends to infinity, thanks to Eq. (2.7). We obtain the result.

Lemma 5.5. Under assumptions (HN.1), (HN.2), (HO), (HI) and for i ∈
{0, 1}, one has

lim
n→+∞

1
πn

∑

k∈Ti
n\T0

ε2
kδk = σ2 π

π − 1
Wzi a.s.

lim
n→+∞

1
πn

∑

k∈Ti
n\T0

δ2kδ2k+1ε2kε2k+1 = ρp(i)(1, 1)
π

π − 1
Wzi a.s.

Proof. In order to prove the first convergence, we apply again Lemma 5.1 to the
FO-martingale:

Qn =
∑

k∈Ti
n\T0

(ε2
k − σ2)δk =

∑

k∈Tn\T0

1{k∈Ti}δk︸ ︷︷ ︸
Hk

1{k∈Ti}(ε2
k − σ2)

︸ ︷︷ ︸
Gk

,

Under (HN.1), (HN.2), we have E[Gk|FOn ] = 0 and E[G2
k|FOn ] = τ4 − σ4, and

E[GkGp|FOn ] = 0, for k 6= p ∈ Gn. Thanks to Eq. (2.7), we have:

1
πn

∑

k∈Ti
n

δk =
1
πn

n∑

ℓ=1

Zi
ℓ −−−−→n→∞

π

π − 1
Wzi a.s.

which both implies assumption (iii) and the first convergence. To prove the
second convergence, we write

1
πn

∑

k∈Ti
n\T0

δ2kδ2k+1ε2kε2k+1

=
1
πn

∑

k∈Tn\T0

1{k∈Ti}δ2kδ2k+1︸ ︷︷ ︸
Hk

1{k∈Ti}(ε2kε2k+1 − ρ)
︸ ︷︷ ︸

Gk

+
1
πn

ρ
∑

k∈Ti
n\T0

δ2kδ2k+1

We use Lemma 5.1 to prove that the first term converges to 0; Lemma 5.3 gives
the limit of the second term.

Corollary 5.6. Under assumptions (HN.1), (HN.2), (HO), (HI) and for
i ∈ {0, 1}, one has

lim
n→+∞

1
πn

∑

k∈Ti
n\T0

ε2
kδ2k+j = σ2pij

π

π − 1
Wzi a.s.

lim
n→+∞

1
πn

∑

k∈Tn\T0

δ2kδ2k+1ε2kε2k+1 = ρp̄(1, 1)
π

π − 1
W a.s.

Proof. The proof of the first limit is similar to the preceding ones, using the
decomposition δ2k+j = δkζj

k and the properties of the sequence (ζj
n). Using

Lemma 5.5 the second one is straightforward.
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Lemma 5.7. Under assumptions (HN.1), (HN.2), (HO), (HI) and for i ∈
{0, 1}, we have

lim
n→+∞

1
πn

∑

k∈Ti
n\T0

δkε4
k = τ4 π

π − 1
Wzi a.s.

lim
n→+∞

1
πn

∑

k∈Ti
n−1

δ2kδ2k+1ε
2
2kε2

2k+1 = ν2τ4p(i)(1, 1)
π

π − 1
Wzi a.s.

Proof. The proof follows essentially the same lines as the proof of Lemma 5.5
using the square integrable real martingales

Qn =
∑

k∈Ti
n\T0

δk(ε4
i − τ4), and Rn =

∑

k∈Ti
n\T0

δ2jδ2j+1(ε2
2jε

2
2j+1 − ν2τ4).

It is therefore left to the reader.

6. Convergence of the increasing process

We can now turn to the proof of our keystone result, the convergence of the
increasing process of the main martingale (Mn).

6.1. Preliminary results

We first need an upper bound of the normalized sums of the δ2n+iX
2
n, and

δ2nδ2n+1X
2
n before being able to deduce their limits.

Lemma 6.1. Under assumptions (HN.1), (HN.2), (HI) and (HO), and for
i ∈ {0, 1}, we have

∑

k∈Tn

δ2k+iX
2
k = O(πn) and

∑

k∈Tn

δ2kδ2k+1X
2
k = O(πn) a.s.

Proof. In all the sequel, for all k ≥ 1, define a2k = a, b2k = b, a2k+1 = c,
b2k+1 = d and ηk = ak + εk with the convention that η1 = 0. It follows from a
recursive application of relation (2.1) that, for all k ≥ 1,

Xk =

(
rk−1∏

ℓ=0

b[ k

2ℓ ]

)
X1 +

rk−1∑

ℓ=0

(
ℓ−1∏

p=0

b[ k
2p ]

)
η[ k

2ℓ ], (6.1)

with the convention that an empty product equals 1. Set α = max(|a|, |c|),
β = max(|b|, |d|) and notice that 0 < β < 1. The proof of Lemma A.5 in [3]
yields
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∑

k∈Tn\T0

δ2k+iX
2
k ≤ 4

1− β

∑

k∈Tn\T0

δ2k+i

rk−1∑

ℓ=0

βjε2
[ k

2ℓ ]
+

4α2

1− β

∑

k∈Tn\T0

δ2k+i

rk−1∑

ℓ=0

βℓ

+2X2
1

∑

k∈Tn\T0

δ2k+iβ
2rk ,

≤ 4
1− β

Ai
n +

4α2

1− β
Bi

n + 2X2
1Ci

n, (6.2)

where, for i ∈ {0, 1},

Ai
n =

∑

k∈Tn\T0

δ2k+i

rk−1∑

ℓ=0

βℓε2
[ k

2ℓ ]
, Bi

n =
∑

k∈Tn\T0

δ2k+i

rk−1∑

ℓ=0

βℓ, Ci
n =

∑

k∈Tn\T0

δ2k+iβ
2rk .

The last two terms above are readily evaluated by splitting the sums genera-
tion-wise. Indeed, the last term can be rewritten as

Ci
n =

n∑

ℓ=1

∑

k∈Gℓ

δ2k+iβ
2ℓ =

n∑

ℓ=1

β2ℓZi
ℓ+1 = πn

n∑

ℓ=1

(π−1)n−ℓ

(
β2ℓ Zi

ℓ+1

πℓ

)
.

We now use Lemma 5.2 with An = π−n and Xn = β2nZi
n+1π

−n. On the one
hand, the series of (π−n) converges to π/(π− 1) as π > 1 by assumption; on the
other hand, β2n tends to 0 as n tends to infinity as β < 1, and Zi

nπ−n converges
a.s. to Wzi according to Eq. (2.7), hence β2nZi

n+1π
−n tends to 0 as n tends to

infinity. Lemma 5.2 thus yields

lim
n→∞

n∑

ℓ=1

(π−1)n−ℓ

(
β2ℓ Zi

ℓ+1

πℓ

)
= 0 and Ci

n = o(πn) a.s.

We now turn to the term Bi
n:

Bi
n =

n∑

ℓ=1

∑

k∈Gℓ

δ2k+i
1− βℓ

1− β
≤ 1

(1− β)

n∑

ℓ=1

∑

k∈Gℓ

δ2k+i ≤
|T∗n+1|
(1− β)

= O(πn),

due to Lemma 2.1. It remains to control the first term Ai
n. Note that εk appears

in Ai
n as many times as it has descendants up to the n-th generation, and its

multiplicative factor for its p-th generation descendant k is βpδ2k. This leads to

Ai
n =

n∑

ℓ=1

∑

k∈Gℓ

ε2
k

n−ℓ∑

p=0

βp
2p−1∑

m=0

δ2(2pk+m)+i.

Now, note that
∑2p−1

m=0 δ2(2pk+m)+i = δk

∑2p−1
m=0 δ2(2pk+m)+i is the number of

descendants of type i of individual k after p + 1 generations. We denote it
Zi

p+1(k), and split Ai
n the following way:

Ai
n =

n∑

ℓ=1

∑

k∈Gℓ

σ2
n−ℓ∑

p=0

βpδkZi
p+1(k) +

n∑

ℓ=1

∑

k∈Gℓ

(ε2
k − σ2)

n−ℓ∑

p=0

βpδkZi
p+1(k). (6.3)
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We first deal with the second term of the above sum.

n∑

ℓ=1

∑

k∈Gℓ

(ε2
k − σ2)

n−ℓ∑

p=0

βpδkZi
p+1(k) =

n−1∑

p=0

βp

n−p∑

ℓ=1

∑

k∈Gℓ

(ε2
k − σ2)δkZi

p+1(k)

=
n−1∑

p=0

βp

n−p∑

ℓ=1

Y i
ℓ,p,

where Y i
ℓ,p =

∑
k∈Gℓ

(ε2
k − σ2)δkZi

p+1(k). Tedious but straightforward compu-
tations lead to the following expression for the second order moment of Y i

ℓ,p,
relying on assumptions (HI), (HN.1) and (HN.2). We also use the fact that,
for k ∈ Gℓ, conditionally to {δk = 1}, Zi

p+1(k) follows the same law as Zi
p+1,

and is independent of any Zi
p+1(k

′), for k′ 6= k ∈ Gℓ.

E[(Y i
ℓ,p)

2] = (τ4 − σ4)E[Z0
ℓ + Z1

ℓ ]E[(Zi
p+1)

2]

+(ν2τ4 − σ4)E[Zi
p+1]

2E
[ ∑

k∈Gℓ−1

δ2kδ2k+1

]

≤ (τ4 − σ4)E[Z0
ℓ + Z1

ℓ ]
(

E[(Zi
p+1)

2] + E[Zi
p+1]

2
)
,

since
∑

k∈Gℓ−1
δ2kδ2k+1 ≤

∑
k∈Gℓ−1

(δ2k + δ2k+1) = Z0
ℓ + Z1

ℓ . Now, using results
on the moments of a two-type Galton-Watson process (see e.g. [12]), we know
that E[(Zi

p+1)
2] = O(π2p). Recall Eq. (2.7) to obtain that E[(Y i

ℓ,p)
2] = O(πℓπ2p),

which immediately entails that |Y i
ℓ,p| = o(παℓπγp) a.s., for any α > 1/2 and

γ > 1. We thus one gets

n−1∑

p=0

βp

n−p∑

ℓ=1

Y i
ℓ,p = O((βπγ )n) = O(πn) a.s.,

since we can choose γ close enough to 1 to get βπγ ≤ π, as β < 1. We have thus
proved that the second term in the sum in (6.3) is O(πn), we now turn to the
first one

n∑

ℓ=1

∑

k∈Gℓ

σ2
n−ℓ∑

p=0

βpδkZi
p+1(k)

= σ2
n∑

ℓ=1

n−ℓ∑

p=0

βp
∑

k∈Gℓ

δkZi
p+1(k) = σ2

n∑

ℓ=1

n−ℓ∑

p=0

βpZi
ℓ+p+1

= σ2
n−1∑

p=0

βp

n−p∑

ℓ=1

Zi
ℓ+p+1 ≤ σ2

n−1∑

p=0

βp|T∗n+1| = O(πn) a.s.

Finally, Ai
n = O(πn), and the first result of the Lemma is proved. The second

result follows immediately from the remark that the second sum in Lemma 6.1
is clearly smaller than the first one.
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Lemma 6.2. Under assumptions (HN.1), (HN.2), (HI) and (HO), and for
i ∈ {0, 1}, we have

∑

k∈Tn

δ2k+iX
4
k = O(πn) and

∑

k∈Tn

δ2kδ2k+1X
4
k = O(πn) a.s.

Proof. The proof mimics that of Lemma 6.1. Instead of Equation (6.2), we have

∑

k∈Tn\T0

δ2k+iX
4
k ≤

64
(1− β)3

Ai
n +

64α4

(1− β)3
Bi

n + 8X4
1Ci

n

with, for i in {0, 1}

Ai
n =

∑

k∈Tn\T0

δ2k+i

rk−1∑

ℓ=0

βjε4
[ k

2ℓ ]
, Bi

n =
∑

k∈Tn\T0

δ2k+i

rk−1∑

ℓ=0

βℓ, Ci
n =

∑

k∈Tn\T0

δ2k+iβ
4rk .

We can easily prove that (Bi
n +Ci

n) = O(πn). Therefore, we only need a sharper
estimate for Ai

n. Via the same lines as in the proof of Lemma 6.1, but dealing
with ε4

k instead of ε2
k, we can show that Ai

n = O(πn) a.s. which immediately
yields the first result. The second one is obtained by remarking that the second
sum is less than the first one.

6.2. Asymptotic behavior of the sum of observed data

We now turn to the asymptotic behavior of the sums of the observed data. More
precisely, set Hi

n =
∑

k∈Tn
δ2k+iXk, for i in {0, 1}, and Hn = (H0

n, H1
n)t. The

following result gives the asymptotic behavior of (Hn).

Proposition 6.3. Under assumptions (HN.1), (HN.2), (HI) and (HO), we
have the convergence:

lim
n→∞

Hn

πn
=

π

π − 1
Wh a.s.,

where

h =
(

h0

h1

)
= (I2 − P̃ 1)−1P t

(
az0

cz1

)
and P̃ 1 =

1
π

P t

(
b 0
0 d

)
.

Proof. We first prove that the sequence (Hn) satisfies a recursive property using
Equation (2.1).

H0
n = X1δ2 +

∑

k∈T0
n

(
a + bX[ k

2 ] + εk

)
δ2k +

∑

k∈T1
n\T0

(
c + dX[ k

2 ] + εk

)
δ2k

= X1δ2 + a
∑

k∈T0
n

δ2k + b
∑

k∈T0
n

X[ k
2 ]δ2k + c

∑

k∈T1
n\T0

δ2k + d
∑

k∈T1
n\T0

X[ k
2 ]δ2k

+
∑

k∈Tn\T0

εkδ2k

= bp00H
0
n−1 + dp10H

1
n−1 + B0

n,
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with

B0
n = X1δ2 + a

∑

k∈T0
n

δ2k + c
∑

k∈T1
n\T0

δ2k +
∑

k∈Tn\T0

εkδ2k

+b
∑

k∈Tn−1

Xkδ2k(δ4k − p00) + d
∑

k∈Tn−1

Xkδ2k+1(δ4k+2 − p10).

Similarly, we have

H1
n = bp01H

0
n−1 + dp11H

1
n−1 + B1

n,

with

B1
n = X1δ3 + a

∑

k∈T0
n

δ2k+1 + c
∑

k∈T1
n\T0

δ2k+1 +
∑

k∈Tn\T0

εkδ2k+1

+b
∑

k∈Tn−1

Xkδ2k(δ4k+1 − p01) + d
∑

k∈Tn−1

Xkδ2k+1(δ4k+3 − p11).

Let us denote Bn = (B0
n, B1

n)t. The last equations yield in the matrix form:

Hn

πn
= P̃ 1

Hn−1

πn−1
+

Bn

πn
= P̃

n

1 H0 +
n∑

k=1

P̃
n−k

1

Bk

πk
,

with

P̃ 1 =
1
π

(
bp00 dp10

bp01 dp11

)
=

1
π

P t

(
b 0
0 d

)
.

One has ‖P̃ n

1‖ ≤ π−nβn‖P n‖. It is well known that π−nP n converges to a
fixed matrix (see e.g. [13]) as P is a positive matrix with dominant eigenvalue
π. Since β < 1, the sequence P̃

n

1 thus converges to 0 as n tends to infinity. In
addition,

∑ ‖P̃ n

1‖ is bounded, I2 − P̃ 1 is invertible and
∑

n≥0 P̃
n

1 converges
to (I2 − P̃ 1)−1. In order to use Lemma 5.2, we need to compute the limit of
Bn/πn. First, we prove that

∑

k∈Tn\T0

εkδ2k+i = o(πn), (6.4)

for i ∈ {0, 1}, thanks to Lemma 5.1. Indeed, set G = FO, Hk = δ2k+i, Gk = εk.
Thus hypothesis (i) of Lemma 5.1 is obvious, (ii) comes from (HN.1) and
(HN.2). Finally, the last assumption (iii) holds, since

∑

k∈Tn\T0

δ2
2k+i =

n+1∑

ℓ=1

Zi
ℓ = O(πn),

the last equality coming from (2.7), which holds thanks to (HO). Now, we turn
to the terms

∑

k∈Tn

Xkδ2k+i(δ2(2k+i)+j − pij) =
∑

k∈Tn

Xkδ2k+i(ζ
j
2k+i − pij),
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for (i, j) ∈ {0, 1}2. We use again Lemma 5.1, with the following setting: (Gn) =
(Zn+1 ∨ Fn+1), Hk = Xkδ2k+i, Gk = ζj

2k+i − pij . For k ∈ Gn, we check
that Xkδ2k+i is Gn−1-measurable, since Xk is Fn-measurable and δ2k+i is Zn-
measurable. Next, because of (HI) and of the independence of the sequence
(ζk), E[ζj

2k+i− pij |Zn ∨Fn] = 0. The same independence hypothesis yields that
E[GkGp|Zn ∨ Fn] 6= 0 only if k = p, and then equals σ2

ij . Finally,
∑

k∈Tn

(Xkδ2k+i)2 =
∑

k∈Tn

X2
kδ2k+i = O(πn),

thanks to Lemma 6.1. Now, Lemma 5.1 allows to conclude that
∑

k∈Tn

Xkδ2k+i(δ2(2k+i)+j − pij) = o(πn), (6.5)

for (i, j) ∈ {0, 1}2. Next, Lemma 5.3 gives the limit of the term
∑

k∈Ti
n

δ2k+j ,
for (i, j) ∈ {0, 1}2, so that we finally obtain:

lim
n→∞

Bn

πn
= W

π

π − 1

(
az0p00 + cz1p10

az0p01 + cz1p11

)
= W

π

π − 1
P t

(
az0

cz1

)
a.s.

and we use Lemma 5.2 to conclude.

Remark 6.4. Putting together Proposition 6.3 and Eq. (6.5) above, we imme-
diately get that under the same assumptions as that of Proposition 6.3,

lim
n→∞

1
πn

∑

k∈Tn

Xkδ2k+iδ2(2k+i)+j =
π

π − 1
hipijW a.s.

for all (i, j) ∈ {0, 1}2, result we will use for the study of the limit of
∑

X2
kδ2k+i.

6.3. Asymptotic behavior of the sum of squared observed data

We now turn to the asymptotic behavior of the sums of the squared observed
data. Set Ki

n =
∑

k∈Tn
δ2k+iX

2
k , for i in {0, 1}, and Kn = (K0

n, K1
n)t. The

following result gives the asymptotic behavior of (Kn).

Proposition 6.5. Under assumptions (HN.1), (HN.2), (HI) and (HO), we
have the convergence:

lim
n→∞

Kn

πn
=

π

π − 1
Wk a.s.,

where

k =
(

k0

k1

)
= (I2 − P̃ 2)−1P t

(
(a2 + σ2)z0 + 2

π abh0

(c2 + σ2)z1 + 2
π cdh1

)
,

and

P̃ 2 =
1
π

P t

(
b2 0
0 d2

)
.
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Proof. We use again Equation (2.1) to prove a recursive property for the se-
quence (Kn). Following the same lines as in the proof of Proposition 6.3, we
obtain:

Kn

πn
= P̃ 2

Kn−1

πn−1
+

Cn

πn
= P̃

n

2K0 +
n∑

ℓ=1

P̃
n−ℓ

2

Cℓ

πℓ
,

where Cn = (C0
n, C1

n)t is defined by

Ci
n = X2

1δ2+i + a2
∑

k∈T0
n

δ2k+i + b2
∑

k∈Tn−1

X2
kδ2k(δ4k+i − p0i)

+2ab
∑

k∈Tn−1

Xkδ2kδ4k+i + 2a
∑

k∈T0
n

εkδ2k+i + 2b
∑

k∈T0
n

X[ k
2 ]εkδ2k+i

+
∑

k∈Tn\T0

ε2
kδ2k+i + c2

∑

k∈T1
n\T0

δ2k+i + d2
∑

k∈Tn−1

X2
kδ2k+1(δ4k+2+i − p1i)

+2cd
∑

k∈Tn−1

Xkδ2k+1δ4k+2+i + 2c
∑

k∈T1
n\T0

εkδ2k+i + 2d
∑

k∈T1
n\T0

X[ k
2 ]εkδ2k+i,

for i ∈ {0, 1}. Note that ‖P̃ n

2 ‖ ≤ π−nβ2n‖P n‖, so that P̃
n

2 converges to 0. In
addition,

∑ ‖P̃ n

2‖ is bounded, I2 − P̃ 2 is invertible and
∑

n≥0 P̃
n

2 converges
to (I2 − P̃ 2)−1. In order to use Lemma 5.2, we have to compute the limit of
Cn/πn. Following the proof of (6.4), we already have, for (i, j) ∈ {0, 1}2,

∑

k∈Tj
n

εkδ2k+i = o(πn) a.s.

We now turn to the terms
∑

k∈Tn−1
X2

kδ2k+i(δ2(2k+i)+j−pij),for (i, j) ∈ {0, 1}2.
To deal with these terms, we use Lemma 5.1 with the same setting we used to
prove Eq. (6.5), except that we replace Xk with X2

k . Assumptions (i) and (ii)
of Lemma 5.1 have thus already been checked, and regarding (iii), we have∑

k∈Tn−1
X4

kδ2k+i = O(πn) a.s. thanks to Lemma 6.2. We conclude that
∑

k∈Tn−1

X2
kδ2k+i(δ2(2k+i)+j − pij) = o(πn) a.s.

Next, we study
∑

k∈Ti
n

X[ k
2 ]εkδ2k+j , for (i, j) ∈ {0, 1}2. We use the same mar-

tingale tool, so to speak Lemma 5.1, with G = FO, Hk = X[ k
2 ]δ2k+j1{k∈Ti} and

Gk = εk. Assumptions (i) and (ii) are easily checked, and since
∑

k∈Ti
n

X2
[ k
2 ]

δ2k+j =
∑

k∈Tn−1

X2
kδ2(2k+i)+j ≤

∑

k∈Tn−1

X2
kδ2k+i = O(πn),

the last equality coming from Lemma 6.1, assumption (iii) is satisfied and
∑

k∈Ti
n

X[ k
2 ]εkδ2k+j = o(πn) a.s.
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Now, Corollary 5.6 yields that for i ∈ {0, 1},

lim
n→∞

1
πn

∑

k∈Tn\T0

ε2
kδ2k+i = σ2(p0iz

0 + p1iz
1)

π

π − 1
W a.s.

Finally, Remark 6.4 gives the limit of π−n
∑

k∈Tn−1
Xkδ2k+iδ2(2k+i)+j , and Lem-

ma 5.3 that of π−n
∑

k∈Tj
n

δ2k+i, so that we finally obtain

lim
n→∞

Cn

πn
=

Wπ

π − 1

(
p00 p10

p01 p11

)
×
(

(a2 + σ2)z0 + 2
π abh0

(c2 + σ2)z1 + 2
π cdh1

)
a.s.

And we conclude using Lemma 5.2 again.

Propositions 6.3 and 6.5 together with Equation (2.7) give the asymptotic
behavior of the matrices S0

n and S1
n. The next result gives the behavior of matrix

S0,1
n given through the quantities

∑
k∈Tn

δ2kδ2k+1Xk and
∑

k∈Tn
δ2kδ2k+1X

2
k . It

is an easy consequence of Propositions 6.3 and 6.5, together with Lemma 5.3
for the first limit.

6.4. Asymptotic behavior of covariance terms

Finally, we turn to the asymptotic behavior of the covariance terms, which
are involved in matrix S0,1

n . We thus define H01
n =

∑
k∈Tn

δ2kδ2k+1Xk and
K01

n =
∑

k∈Tn
δ2kδ2k+1X

2
k .

Proposition 6.6. Under assumptions (HN.1), (HN.2), (HO) and (HI), we
have the almost sure convergences:

lim
n→∞

1
πn

∑

k∈Tn

δ2kδ2k+1 =
π

π − 1
Wp̄(1, 1),

lim
n→∞

H01
n

πn
=

π

π − 1
Wh0,1 and lim

n→∞
K01

n

πn
=

π

π − 1
Wk0,1,

where

p̄(1, 1) = p(0)(1, 1)z0 + p(1)(1, 1)z1, (6.6)

h0,1 = p(0)(1, 1)
(

az0 + b
h0

π

)
+ p(1)(1, 1)

(
cz1 + d

h1

π

)
,

k0,1 = p(0)(1, 1)
(

a2z0 + b2 k0

π
+ 2ab

h0

π

)

+p(1)(1, 1)
(

c2z1 + d2 k1

π
+ 2cd

h1

π

)
+ σ2p̄(1, 1).

Proof. The first limit is a consequence of Lemma 5.3. Next, using Eq. (2.1)
we obtain H01

n π−n and K01
n π−n in terms of π−n

∑
k∈Ti

n−1
δk, Hi

n−1π
−n and

Ki
n−1π

−n and the result follows from Propositions 6.3 and 6.5.
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Proof of Proposition 4.2. We are now in a position to complete the proof of
Proposition 4.2. Simply notice that we have proved in Propositions 6.3, 6.5 and
6.6 all the wished convergences, except that we normalized the sums with πn.
Thanks to Lemma 2.1, we end the proof.

Remark 6.7. In the case of fully observed data, the matrix P is a 2×2 matrix
with all entries equal to 1, π equals 2 and the normalized eigenvector z equals
(1/2, 1/2). One can check that in that case, our limits correspond to those of [3].

7. Asymptotic behavior of the main martingale

Theorem 4.4 is a strong law of large numbers for the martingale (Mn). The
standard strong law for martingales is unhelpful here. Indeed, it is valid for
martingales that can be decomposed in a sum of the form

∑n
ℓ=1 Ψℓ−1ξℓ where

(Ψℓ) is predictable and (ξℓ) is a martingale difference sequence. In addition, (Ψℓ)
and (ξℓ) are required to be sequences of fixed-size vectors. Such a decomposition
with fixed-sized vectors is impossible in our context (see Lemma A.2), essentially
because the number of observed data in each generation asymptotically grows
exponentially fast as πn. Consequently, we are led to propose a new strong law
of large numbers for (Mn), adapted to our framework.

For all n ≥ 1, let Vn = M t
nΣ−1

n−1Mn where Σn is defined in Section 3.1.
First of all, we have

Vn+1

= (Mn + ∆Mn+1)tΣ−1
n (Mn + ∆Mn+1),

= Vn−M t
n(Σ−1

n−1−Σ−1
n )Mn+2M t

nΣ−1
n ∆Mn+1+∆M t

n+1Σ
−1
n ∆Mn+1.

Note that M t
nΣ−1

n ∆Mn+1 and ∆M t
nΣ−1

n Mn+1 are scalars, hence they are
equal to their own transpose and as a result, one has M t

nΣ−1
n ∆Mn+1 =

∆M t
nΣ−1

n Mn+1. By summing over the identity above, we obtain the main
decomposition

Vn+1 +An = V1 + Bn+1 +Wn+1, (7.1)

where

An =
n∑

ℓ=1

M t
ℓ(Σ

−1
ℓ−1 −Σ−1

ℓ )M ℓ,

Bn+1 = 2
n∑

ℓ=1

M t
ℓΣ

−1
ℓ ∆M ℓ+1, Wn+1 =

n∑

ℓ=1

∆M t
ℓ+1Σ

−1
ℓ ∆M ℓ+1.

The asymptotic behavior of the left-hand side of (7.1) is as follows.

Proposition 7.1. Under assumptions (HN.1), (HN.2), (HO) and (HI), we
have

lim
n→+∞

1{|G∗n|>0}
Vn+1 +An

n
=

4(π − 1)
π

σ21E a.s.
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Proof. Thanks to the laws of large numbers derived in Sections 5 and 6, the
proof of Proposition 7.1 follows essentially the same lines as [3] and is given in
Appendix A.

Since (Vn) and (An) are two sequences of non negative real numbers, Propo-
sition 7.1 yields that 1{|G∗n|>0}Vn = O(n) a.s. which proves Equation (4.2). We
now turn to the proof of Equation (4.3). We start with a sharp rate of conver-
gence for (Mn).

Proposition 7.2. Under assumptions (HN.1), (HN.2), (HO) and (HI), we,
we have, for all η > 1/2,1{|G∗n|>0} ‖ Mn ‖2= o(|T∗n−1|nη) a.s.

Proof. The result is obvious on E . On E , the proof follows again the same lines
as [3] thanks to the laws of large numbers derived in Sections 5 and 6. It is given
in Appendix B.

A direct application of Proposition 7.2 ensures that 1{|G∗n|>0}Vn = o(nη) a.s.
for all η > 1/2. Hence, Proposition 7.1 immediately leads to the following result.

Corollary 7.3. Under assumptions (HN.1), (HN.2), (HO) and (HI), we
have

lim
n→+∞

1{|G∗n|>0}
An

n
=

4(π − 1)
π

σ21E a.s.

Proof of Result (4.3) of Theorem 4.4. First of all, An may be rewritten as

An =
n∑

ℓ=1

M t
ℓ(Σ

−1
ℓ−1 −Σ−1

ℓ )M ℓ =
n∑

ℓ=1

M t
ℓΣ

−1/2
ℓ−1 ∆ℓΣ

−1/2
ℓ−1 M ℓ,

where ∆n = I4 −Σ1/2
n−1Σ

−1
n Σ1/2

n−1. Thanks to Corollary 4.3, we know that

lim
n→∞

1{|G∗n|>0}∆n =
π − 1

π
I41E a.s.

Besides, Corollary 7.3 yields that An ∼ nπ−1
π 4σ2 a.s. on E . Plugging these two

results into the equality

An =
π − 1

π

n∑

ℓ=1

M t
ℓΣ

−1
ℓ−1M ℓ +

n∑

ℓ=1

M t
ℓΣ

−1/2
ℓ−1

(
∆ℓ −

π − 1
π

I4

)
Σ−1/2

ℓ−1 M ℓ

gives that
∑n

ℓ=1 M t
ℓΣ

−1
ℓ−1M ℓ ∼ An

π
π−1 a.s. on E and convergence (4.3) directly

follows.

8. Proof of the main results

We can now proceed to proving our main results.
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8.1. Strong consistency for θ̂n

Theorem 3.2 is a direct consequence of Theorem 4.4.

Proof of result (3.3) of Theorem 3.2. Recall that Vn = M t
nΣ−1

n−1Mn. It clearly
follows from Equation (4.1) that

Vn = (θ̂n − θ)tΣn−1(θ̂n − θ).

Consequently, the asymptotic behavior of θ̂n−θ is related to the one of Vn. More
precisely, we can deduce from Corollary 4.3 and the fact that the eigenvalues of
a matrix are continuous functions of its coefficients the following result

lim
n→∞

1{|G∗n|>0}
λmin(Σn)
|T∗n|

= λmin(Σ)1E a.s.

where λmin(A) denotes the smallest eigenvalue of matrix A. Since L as well as
Σ is definite positive, one has λmin(Σ) > 0. Therefore, as

‖θ̂n − θ‖2 ≤ Vn

λmin(Σn−1)
,

we use Result (4.2) of Theorem 4.4 to conclude that1{|G∗n|>0}‖θ̂n − θ‖2 = O
(

n

|T∗n−1|

) 1E = O
(

log |T∗n−1|
|T∗n−1|

) 1E a.s.

which completes the proof of results (3.3).

We now prove the quadratic strong law (QSL).

Proof of result (3.4) of Theorem 3.2. The QSL is a direct consequence of re-
sult (4.3) of Theorem 4.4 together with the fact that θ̂n − θ = Σ−1

n−1Mn.
Indeed, we have1{|G∗n|>0}

1
n

n∑

ℓ=1

M t
ℓΣ

−1
ℓ−1M ℓ

= 1{|G∗n|>0}
1
n

n∑

ℓ=1

(θ̂ℓ − θ)tΣℓ−1(θ̂ℓ − θ)

= 1{|G∗n|>0}
1
n

n∑

ℓ=1

|T∗ℓ−1|(θ̂ℓ − θ)t1{|G∗
ℓ−1|>0}

Σℓ−1

|T∗ℓ−1|
(θ̂ℓ − θ)

= 1{|G∗n|>0}
1
n

n∑

ℓ=1

|T∗ℓ−1|(θ̂ℓ − θ)tΣ(θ̂ℓ − θ) + o(1) a.s.

which completes the proof.
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8.2. Strong consistency for the variance estimators

For n ≥ 1, set

V k = (δ2kε2k, δ2k+1ε2k+1)
t , V̂ k = (δ2kε̂2k, δ2k+1ε̂2k+1)

t .

The almost sure convergence of σ̂2
n and ρ̂n is strongly related to that of V̂ k−V k.

Proof of result (3.5) of Theorem 3.3. Equation(3.5) can be rewritten as

lim
n→∞

1{|G∗n|>0}
1
n

∑

k∈Tn−1

‖V̂ k − V k‖2 = 4(π − 1)σ21E a.s.

Once again, we are searching for a link between the sum of ‖V̂ k −V k‖ and the
processes (An) and (Vn) whose convergence properties were previously investi-
gated. For i ∈ {0, 1} and n ≥ 0, let

Φi
n =

(
δ2(2n)+i δ2(2n+1)+i · · · δ2(2n+1−1)+i

δ2(2n)+iX2n δ2(2n+1)+iX2n+1 · · · δ2(2n+1−1)+iX2n+1−1

)

be the collection of (δ2k+i, δ2k+iXk)t, k ∈ Gn, and set

Ψn =
(

Φ0
n 0

0 Φ1
n

)
.

Note that Ψn is a 4 × 2n+1 matrix. For all n ≥ 1, we thus have, in the matrix
form

∑

k∈Gn

‖V̂ k − V k‖2 =
∑

k∈Gn

δ2k(ε̂2k − ε2k)2 + δ2k+1(ε̂2k+1 − ε2k+1)2,

= (θ̂n − θ)tΨnΨt
n(θ̂n − θ),

= M t
nΣ−1

n−1ΨnΨt
nΣ−1

n−1Mn,

= M t
nΣ−1/2

n−1 ∆nΣ−1/2
n−1 Mn,

where
∆n = Σ−1/2

n−1 ΨnΨt
nΣ−1/2

n−1 = Σ−1/2
n−1 (Σn −Σn−1)Σ

−1/2
n−1 .

Now, we can deduce from Corollary (4.3) that

lim
n→∞

1{|G∗n|>0}∆n = (π − 1)I41E a.s.

which implies that1{|G∗n|>0}
∑

k∈Gn

‖V̂ k − V k‖2 = M t
nΣ−1

n−1Mn (π − 1 + o(1))1{|G∗n|>0} a.s.
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Therefore, we can conclude via convergence (4.3) that

lim
n→∞

1{|G∗n|>0}
1
n

∑

k∈Tn−1

‖V̂ k − V k‖2

= lim
n→∞

1{|G∗n|>0}
1

n(π − 1)

n∑

ℓ=1

M t
ℓΣ

−1
ℓ−1M ℓ = 4(π − 1)σ21E a.s.

which completes the proof.

Proof of result (3.6) of Theorem 3.3. First of all, one has

σ̂2
n − σ2

n =
1
|T∗n|

∑

k∈Tn−1

(
‖V̂ k‖2 − ‖V k‖2

)
,

=
1
|T∗n|

∑

k∈Tn−1

(
‖V̂ k − V k‖2 + 2(V̂ k − V k)tV k

)
.

Set

Pn =
∑

k∈Tn−1

(V̂ k − V k)tV k =
n∑

ℓ=1

∑

k∈Gℓ−1

(V̂ k − V k)tV k.

We clearly have

∆Pn+1 = Pn+1 − Pn =
∑

k∈Gn

(V̂ k − V k)tV k.

One can observe that for all k ∈ Gn, V̂ k−V k is FO
n -measurable. Consequently,

(Pn) is a real martingale transform for the filtration FO. Hence, we can deduce
from the strong law of large numbers for martingale transforms given in Theorem
1.3.24 of [6] together with (3.5) that1{|G∗n|>0}Pn = o


 ∑

k∈Tn−1

||V̂ k − V k)||2

 = o(n) a.s.

It ensures once again via convergence (3.5) that

lim
n→∞

1{|G∗n|>0}
|T∗n|
n

(σ̂2
n − σ2

n) = lim
n→∞

1{|G∗n|>0}
1
n

∑

k∈Tn−1

‖V̂ k − V k‖2

= 4(π − 1)σ21E a.s.

which completes the proof of result (3.6).

Proof of results (3.7) and (3.8) of Theorem 3.3. We now turn to the study of
the covariance estimator ρ̂n. We have

ρ̂n − ρn =
1

|T∗01n−1|
∑

k∈Tn−1

δ2kδ2k+1(ε̂2kε̂2k+1 − ε2kε2k+1),

=
1

|T∗01n−1|
∑

k∈Tn−1

δ2k(ε̂2k − ε2k)δ2k+1(ε̂2k+1 − ε2k+1) +
1

|T∗01n−1|
Qn,
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where

Qn =
∑

k∈Tn−1

δ2kδ2k+1(ε̂2k − ε2k)ε2k+1 + δ2kδ2k+1(ε̂2k+1 − ε2k+1)ε2k

=
∑

k∈Tn−1

(V̂ k − V k)tJ2V k,

with

J2 =
(

0 1
1 0

)
.

The process (Qn) is a real martingale transform for the filtration FO satisfying

Qn = o


 ∑

k∈Tn−1

||V̂ k − V k||2

 = o(n) a.s.

It now remains to prove that

lim
n→∞

1{|G∗n|>0}
1
n

∑

k∈Tn−1

δ2kδ2k+1(ε̂2k − ε2k)(ε̂2k+1 − ε2k+1)

= lim
n→∞

Rn

n
= ρ(π − 1)tr

(
(L1)−1(L0,1)2(L0)−1

)1E a.s. (8.1)

where

Rn =
n∑

ℓ=1

M t
ℓΣ

−1
ℓ−1(J2 ⊗Φ01

ℓ (Φ01
ℓ )t)Σ−1

ℓ−1M ℓ,

where ⊗ denotes the Kronecker product of matrices, i.e.

J2 ⊗Φ01
ℓ (Φ01

ℓ )t =
(

0 Φ01
ℓ (Φ01

ℓ )t

Φ01
ℓ (Φ01

ℓ )t 0

)
,

and Φ01
ℓ is defined similarly as Φ0

ℓ and Φ1
ℓ by the collection of (δ2kδ2k+1,

δ2kδ2k+1Xk)t, k ∈ Gℓ. As Φ01
n (Φ01

n )t = S01
n − S01

n−1, proposition 4.2 implies
that

lim
n→∞

Σ−1/2
n−1 (J2 ⊗Φ01

n (Φ01
n )t)Σ−1/2

n−1 = (π − 1)Σ−1/2J2 ⊗L01Σ−1/2 a.s.

so that the asymptotic behavior of Rn/n boils down to that of

n∑

ℓ=1

M t
ℓΣ

−1/2
ℓ−1 (J2 ⊗L01)Σ−1/2

ℓ−1 M ℓ.

A proof along the same lines as in Section 7 finally yields the expected results,
i.e.

lim
n→∞

1{|G∗n|>0}
Rn

n
= ρ

π − 1
π

tr
(
(L1)−1(L0,1)2(L0)−1

)1E a.s.
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which completes the proof of convergence (8.1). We then obtain

lim
n→∞

1{|G∗n|>0}
|T∗n|
n

(ρ̂n − ρn) = ρ
π − 1
p̄(1, 1)

tr
(
(L1)−1(L0,1)2(L0)−1

)1E a.s.

which completes the proof of Theorem 3.3.

8.3. Asymptotic normality

Contrary to the previous literature on BAR processes, we cannot use the central
limit theorem given by Propositions 7.8 and 7.9 of [11] as in [8, 3] because the
normalizing term is now the number of observations and is therefore random.
The approach used in [5] strongly relies on the gaussian assumption for the noise
sequence that does not hold here. Instead, we use the central limit theorem for
martingales given in Theorem 3.II.10 of Duflo [6]. However, unlike the previous
sections, this theorem can not be directly applied to the martingale (Mn) be-
cause the number of observed data in a given generation grows exponentially
fast and the Lindeberg condition does not hold. The solution is to use a new
filtration. Namely, instead of using the observed generation-wise filtration, we
will use the sister pair-wise one. Let

GOp = O ∨ σ{δ1X1, (δ2kX2k, δ2k+1X2k+1), 1 ≤ k ≤ p}

be the σ-algebra generated by the whole history O of the Galton-Watson pro-
cess and all observed individuals up to the offspring of individual p. Hence
(δ2kε2k, δ2k+1ε2k+1) is GOk -measurable. In addition, assumptions (HN.1) and
(HI) imply that the processes (δ2kε2k, Xkδ2kε2k, δ2k+1ε2k+1, Xkδ2k+1ε2k+1)t,
(δ2kε2

2k + δ2k+1ε
2
2k+1 − (δ2k + δ2k+1)σ2) and (δ2kδ2k+1(ε2kε2k+1 − ρ)) are GOk -

martingale difference sequences. In all the sequel, we will work under the prob-
ability PE and we denote by EE the corresponding expectation.

Proof of Theorem 3.4, first step. We apply Theorem 3.II.10 of [6] to the GOk -
martingale M (n) = (M (n)

p ){p≥1} defined by

M (n)
p =

1√
|T∗n|

p∑

k=1

Dk with Dk =




δ2kε2k

Xkδ2kε2k

δ2k+1ε2k+1

Xkδ2k+1ε2k+1


 .

Set νn = |Tn| = 2n+1 − 1. Note that if k /∈ T∗n, then Dk = 0 which implies that

M (n)
νn

=
1√
|T∗n|

|Tn|∑

k=1

Dk =
1√
|T∗n|

∑

k∈T∗n

Dk.
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As the non-extinction set E is in GOk for every k ≥ 1, it is easy to prove that

EE [DkDt
k|GOk−1] = E[DkDt

k|GOk−1]

=




σ2δ2k σ2δ2kXk ρδ2kδ2k+1 ρδ2kδ2k+1Xk

σ2δ2kXk σ2δ2kX2
k ρδ2kδ2k+1Xk ρδ2kδ2k+1X

2
k

ρδ2kδ2k+1 ρδ2kδ2k+1Xk σ2δ2k+1 σ2δ2k+1Xk

ρδ2kδ2k+1Xk ρδ2kδ2k+1X
2
k σ2δ2k+1Xk σ2δ2k+1X

2
k


 ,

and Corollary 4.3 gives the PE almost sure limit of the increasing process

< M (n) >νn=
1
|T∗n|

∑

k∈T∗n

EE [DkDt
k|GOk−1] =

Γn

|T∗n|
−−−−→
n→∞

Γ. (8.2)

Therefore, the first assumption of Theorem 3.II.10 of [6] holds under PE . We
now want to prove the Lindeberg condition that is the convergence in probability
to 0 of the following expression Ln for all ǫ > 0:

Ln =
1
|T∗n|

∑

k∈T∗n

EE [‖Dk‖21{‖Dk‖>ǫ
√
|T∗n|}

|GOk−1]

≤ 1
|T∗n|

∑

k∈T∗n

EE [‖Dk‖r|GOk−1]PE(‖Dk‖ > ǫ
√
|T∗n| |GOk−1)

≤ supk≥0 E[‖Dk‖r|GOk−1]
|T∗n|

∑

k∈T∗n

EE [‖Dk‖2 |GOk−1]
ǫ2|T∗n|

,

for some r > 2 and thanks to Hölder and Chebyshev inequalities. Besides, using
Eq. (6.1) and similar calculations as in Lemma 6.1, one readily obtains

X8
n ≤ 27(1− β)−7

rn−1∑

k=0

βk|η8
[ n
2k ]|+ 27β8rnX8

1 .

Now, assumption (HN.1) together with β < 1 yield the existence of a constant
C such that

sup
k≥0

E[X8
k ] ≤ C(1 + E[X8

1 ]),

and recall that E[X8
1 ] < ∞. Finally, since the entries of Dk are combinations of

ε2k+i and Xk, using again (HN.1) and (HI), one obtains that

sup
k≥0

E[‖Dk‖r|GOk−1] < ∞ a.s.

with r = 8. The Lindeberg condition is thus proved, plugging the convergence
(8.2) into the following equality:

1
|T∗n|

∑

k∈T∗n

EE [‖Dk‖2 |GOk−1] = tr

(
1
|T∗n|

∑

k∈T∗n

EE [DkDt
k |GOk−1]

)
−−−−→
n→∞

tr(Γ).
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We can now conclude that under PE
1√
|T∗n−1|

∑

k∈T∗n−1

Dk =
1√
|T∗n−1|

Mn
L−→ N (0,Γ).

Finally, result (3.9) follows from Eq. (4.1) and Corollary 4.3 together with Slut-
sky’s Lemma.

Proof of Theorem 3.4, second step. On the one hand, we apply Theorem 3.II.10
of [6] to the GOp -martingale M (n) = (M (n)

p ){p≥1} defined by

M (n)
p =

1√
|T∗n|

p∑

k=1

vk and vk = δ2kε2
2k + δ2k+1ε

2
k+1 − (δ2k + δ2k+1)σ2.

As above, one clearly has

M (n)
νn

=
1√
|T∗n|

∑

k∈T∗n−1

vk =
√
|T∗n|(σ2

n − σ2).

Using assumptions (HN.1), (HI) and Lemma 5.3 we compute the limit of the
increasing process under PE

lim
n→∞

< M (n) >νn= (τ4 − σ4) +
2p̄(1, 1)

π
(ν2τ4 − σ4) PE a.s.

Therefore, the first assumption of Theorem 3.II.10 of [6] holds under PE . Thanks
to assumptions (HN.2) and (HI) we can prove that for some r > 2,

sup
k≥0

EE [‖vk‖r|GOk−1] < ∞ a.s.

which implies the Lindeberg condition. Therefore, we obtain that under PE
√
|T∗n|(σ2

n − σ2) L−→ N (0, (τ4 − σ4) +
2p̄(1, 1)

π
(ν2τ4 − σ4)).

Furthermore, we infer from Eq. (3.6) that

lim
n→∞

√
|T∗n|(σ̂2

n − σ2
n) = 0 PE a.s.

which yields result (3.10).
We turn now to the proof of result (3.11) with another GOp -martingale (M (n))

defined by

M (n)
p =

1√
|T∗01n−1|

p∑

k=1

δ2kδ2k+1(ε2kε2k+1 − ρ).

As above, one easily shows that

M (n)
νn

=
1√
|T∗01n−1|

∑

i∈T∗n−1

δ2iδ2i+1(ε2iε2i+1 − ρ) =
√
|T∗01n−1|(ρn − ρ).
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Using assumptions (HN.1) and (H.I), we compute the limit of the increasing
process

lim
n→∞

< M (n) >νn= ν2τ4 − ρ2 PE a.s.

We also derive the Lindeberg condition. Consequently, we obtain that under PE ,
one has √

|T∗01n−1|(ρn − ρ) L−→ N (0, ν2τ4 − ρ2).

Furthermore, we infer from (3.8) that

lim
n→∞

√
|T∗01n−1|(ρ̂n − ρn) = 0 PE a.s.

Finally, result (3.11) follows, which completes the proof of Theorem 3.4.

Appendix A: Quadratic strong law

In order to establish the quadratic strong law for the main martingale (Mn), we
are going to study separately the asymptotic behavior of (Wn) and (Bn) which
appear in the main decomposition given by Equation (7.1).

Lemma A.1. Under assumptions (HN.1), (HN.2), (HO) and (HI), we have

lim
n→+∞

1{|G∗n|>0}
1
n
Wn =

4(π − 1)
π

σ21E a.s.

Proof. First of all, we have the decomposition Wn+1 = Tn+1 +Rn+1 where

Tn+1 =
n∑

ℓ=1

∆M t
ℓ+1Σ

−1∆M ℓ+1

|T∗ℓ |
,

Rn+1 =
n∑

ℓ=1

∆M t
ℓ+1(|T∗ℓ |Σ−1

ℓ −Σ−1)∆M ℓ+1

|T∗ℓ |
.

We first prove that

lim
n→+∞

1{|G∗n|>0}
1
n
Tn =

4(π − 1)
π

σ21E a.s. (A.1)

As Tn is a scalar and the trace is commutative, one can rewrite Tn+1 as Tn+1 =
tr(Σ−1/2Hn+1Σ−1/2) where

Hn+1 =
n∑

ℓ=1

∆M ℓ+1∆M t
ℓ+1

|T∗ℓ |
.

Our goal is to make use of the strong law of large numbers for martingale trans-
forms, so we start by adding and subtracting a term involving the conditional
expectation of ∆Hn+1 given FO

n . We have already seen in Section 4.1 that for
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all n, E[∆Mn+1∆M t
n+1|FO

n ] = Γn − Γn−1. Consequently, we can split Hn+1

into two terms

Hn+1 =
n∑

ℓ=1

Γℓ − Γℓ−1

|T∗ℓ |
+ Kn+1,

where

Kn+1 =
n∑

ℓ=1

∆M ℓ+1∆M t
ℓ+1 − (Γℓ − Γℓ−1)
|T∗ℓ |

.

On the one hand, it follows from Corollary 4.3 and Lemma 2.1 that

lim
n→+∞

1{|G∗n|>0}
Γn − Γn−1

|T∗n|
=

π − 1
π

Γ1E a.s.

Thus, Cesaro convergence and the remark that {|G∗
ℓ | = 0} ⊂ {|G∗

n| = 0} for all
ℓ ≤ n yield

lim
n→+∞

1{|G∗n|>0}
1
n

n∑

ℓ=1

Γℓ − Γℓ−1

|T∗ℓ |
= lim

n→+∞
1{|G∗n|>0}

1
n

n∑

ℓ=1

1{|G∗ℓ |>0}
Γℓ − Γℓ−1

|T∗ℓ |

=
π − 1

π
Γ1E a.s.

On the other hand, the sequence (Kn) is obviously a matrix martingale trans-
form and tedious but straightforward calculations, together with Lemmas 6.1
and 6.2 and the strong law of large numbers for martingale transforms given in
Theorem 1.3.24 of [6] imply that 1{|G∗n|>0}Kn = o(n) a.s. Hence, we infer from
the equation above that

lim
n→+∞

1{|G∗n|>0}
1
n

Hn =
π − 1

π
Γ1E a.s. (A.2)

Finally, we obtain

lim
n→+∞

1{|G∗n|>0}
1
n
Tn =

π − 1
π

tr(Σ−1/2ΓΣ−1/2)1E =
π − 1

π
4σ21E a.s.

which proves (A.1). We now turn to the asymptotic behavior of Rn+1. We
know from Proposition 4.2 that 1{|G∗n|>0}(|T∗n|Σ−1

n −Σ−1) goes to 0 as n goes
to infinity. Hence, for all positive ǫ and for large enough n, one has1{|G∗n|>0}|∆M t

n+1(|T∗n|Σ−1
n −Σ−1)∆Mn+1| ≤ 1{|G∗n|>0}4ǫ∆M t

n+1∆Mn+1.

Using again that {|G∗
ℓ | = 0} ⊂ {|G∗

n+1| = 0} for all ℓ ≤ n + 1, we rewrite1{|G∗n+1|>0}Rn+1 =1{|G∗n+1|>0}

n∑

ℓ=1

1{|G∗ℓ |>0}
∆M t

ℓ+1(|T∗ℓ |Σ−1
ℓ −Σ−1)∆M ℓ+1

|T∗ℓ |
.
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Hence,1{|G∗n+1|>0}|Rn+1| ≤ 4ǫ 1{|G∗n+1|>0}

n∑

ℓ=1

1{|G∗ℓ |>0}
∆M t

ℓ+1∆M ℓ+1

|T∗ℓ |

≤ 4ǫ 1{|G∗n+1|>0}

n∑

ℓ=1

∆M t
ℓ+1∆M ℓ+1

|T∗ℓ |
≤ 4ǫ 1{|G∗n+1|>0} tr(Hn+1).

This last inequality holding for any positive ǫ and large enough n, the limit
given by Equation (A.2) entails that

lim
n→+∞

1{|G∗n|>0}
1
n
Rn = 0 a.s.

which completes the proof of Lemma A.1.

Lemma A.2. Under assumptions (HN.1), (HN.2), (HO) and (HI), we have

lim
n→+∞

1{|G∗n|>0}
1
n
Bn = 0 a.s.

Proof. The result is obvious on the extinction set E . Now let us work on E .
Now for i ∈ {0, 1} and n ≥ 1, let ξi

n = (ε2n+i, ε2n+2+i, . . . , ε2n+1−2+i)
t, be the

collection of εk, k ∈ Gi
n, and set ξn =

(
ξ0

n, ξ1
n

)t
. Note that ξn is a column vector

of size 2n+1. With these notation, one has

Bn+1 = 2
n∑

ℓ=1

M t
ℓΣ

−1
ℓ ∆M ℓ+1 = 2

n∑

ℓ=1

M t
ℓΣ

−1
ℓ Ψℓξℓ+1.

The sequence (Bn) is a real martingale transform satisfying

∆Bn+1 = Bn+1 − Bn = 2M t
nΣ−1

n Ψnξn+1.

Consequently, via the strong law of large numbers for martingale transforms,
we find that either (Bn) converges a.s. or Bn = o(< B >n) a.s. where

< B >n+1= 4
n∑

ℓ=1

M t
ℓΣ

−1
ℓ ΨℓCΨt

ℓΣ
−1
ℓ M ℓ,

with

C =
(

σ2 ρ
ρ σ2

)
⊗ I2n .

As C is definite positive under assumption (HN.1), one has C ≤ 2σ2I2n+1 in
the sense that 2σ2I2n+1 −C is semi definite positive. Hence, one has

< B >n+1≤ 8σ2
n∑

ℓ=1

M t
ℓΣ

−1
ℓ ΨℓΨt

ℓΣ
−1
ℓ M ℓ.
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Now, by definition, one has

Σ−1
ℓ ΨℓΨt

ℓΣ
−1
ℓ =

(
(S0

ℓ)−1Φ0
ℓ(Φ

0
ℓ)t(S0

ℓ)−1 0
0 (S1

ℓ)−1Φ1
ℓ (Φ

1
ℓ)t(S1

ℓ)−1

)
.

We now use Lemma B.1 of [3] on each entry to obtain

Σ−1
ℓ ΨℓΨt

ℓΣ
−1
ℓ ≤ Σ−1

ℓ−1 −Σ−1
ℓ ,

as the matrix lk in that lemma is definite positive. Therefore, we obtain that

< B >n+1≤ 8σ2
n∑

ℓ=1

M t
ℓ(Σ

−1
ℓ−1 −Σ−1

ℓ )M ℓ = 8σ2An.

Finally, we deduce from the main decomposition given by Equation (7.1) and
Lemma A.1 that1{|G∗n|>0}(Vn+1 +An) = o(An) +O(n) a.s.

leading to 1{|G∗n|>0}Vn+1 = O(n) and 1{|G∗n|>0}An = O(n) a.s. as Vn+1 and An

are non-negative. This implies in turn that 1{|G∗n|>0}Bn = o(n) a.s. completing
the proof of Lemma A.2.

Appendix B: Wei’s Lemma

In order to prove Proposition 7.2, we shall apply Wei’s Lemma given in [16]
page 1672, to each entry of the vector-valued main martingale

Mn =
n∑

ℓ=1

∑

k∈Gℓ−1

(δ2kε2k, δ2kXkε2k, δ2k+1ε2k+1, δ2k+1Xkε2k+1)
t .

For i ∈ {0, 1}, denote

P i
n =

n∑

ℓ=1

∑

k∈Gℓ−1

δ2k+iε2k+i and Qi
n =

n∑

ℓ=1

∑

k∈Gℓ−1

δ2k+iXkε2k+i.

On the set E , these processes can be rewritten as

P i
n =

n∑

ℓ=1

√
|G∗

ℓ−1|vi
ℓ, Qi

n =
n∑

ℓ=1

√
|Gℓ−1|wi

ℓ,

where

vi
n = 1{|G∗n−1|>0}

1√
|G∗

n−1|
∑

k∈Gn−1

δ2k+iε2k+i,

wi
n = 1{|G∗n−1|>0}

1√
|G∗

n−1|
∑

k∈Gn−1

δ2k+iXkε2k+i.
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On the one hand, we clearly have E[vi
n+1|FO

n ] = 0 and E[(vi
n+1)2|FO

n ] = σ2 Zi
n+1
|G∗n|

a.s. on E . Moreover, it follows from Cauchy-Schwarz inequality that

E[(vi
n+1)

4|FO
n ] =

1{|G∗n|>0}
|G∗

n|2
∑

k∈Gn

δ2l+iE[ε4
2k+i|FO

n ]

+
1{|G∗n|>0}
|G∗

n|2
∑

p∈Gn

∑

k 6=p

δ2p+iδ2k+iE[ε2
2p+i|FO

n ]E[ε2
2k+i|FO

n ]

≤ 3C1{|G∗n|>0} sup
k∈Gn

E[ε4
2k+i|FO

n ] a.s.

as Zi
n+1|G∗

n|−1 is bounded.This implies that supE[(vi
n+1)

4|FO
n ] < +∞ a.s. Con-

sequently, we deduce from Wei’s Lemma that for all η > 1/2,1{|G∗n−1|>0}(P i
n)2 = o(|T∗n−1|nη)1E a.s.

On the other hand, it is not hard to see that E[wi
n+1|FO

n ] = 0 a.s. Moreover, it
follows from Cauchy-Schwarz inequality that,

E[(wi
n+1)

4|FO
n ]

≤ 1{|G∗n|>0}
|G∗

n|2


∑

k∈Gn

δ2k+iX
4
kE[ε4

2k+i|FO
n ] + σ4

∑

p∈Gn

∑

k 6=p

δ2p+iδ2k+iX
2
pX2

k




≤ 31{|G∗n|>0}

(
sup

k∈Gn

E[ε4
2k+i|FO

n ]
)(

1
|G∗

n|
∑

k∈Gn

δ2k+iX
2
l

)2

a.s.

which is finite from Proposition 6.5. We deduce from Wei’s Lemma applied to
Qi

n that for all η > 1/2, 1{|G∗n−1|>0}‖Qi
n‖2 = o(|T∗n−1|nη) a.s. which completes

the proof of Proposition 7.2.
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a b s t r a c t

Wepresent symmetry tests for bifurcating autoregressive (BAR) processeswhen some data
are missing. BAR processes typically model cell division data. Each cell can be of one of
two types odd or even. The goal of this paper is to study the possible asymmetry between
odd and even cells in a single observed lineage. We first derive asymmetry tests for the
lineage itself, modeled by a two-type Galton–Watson process, and then derive tests for the
observed BAR process. We present applications on simulated and real data.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Bifurcating autoregressive (BAR) processes were first introduced by Cowan and Staudte (1986). They generalize
autoregressive processes when data are structured as a binary tree, see also Hwang and Basawa (2009, 2011) for processes
indexed by general trees. Typically, BAR processes are involved in statistical studies of cell lineages. Cell lineage data consist
of observations of some quantitative characteristic of the cells over several generations descended from an initial cell. One
may need to distinguish the two offspring of a given cell according to some biological property, leading to the notion of type.
The initial cell is labeled 1, and the two offspring of cell k are labeled 2k and 2k + 1, where 2k is of type even, and 2k + 1 is
of type odd. If Xk denotes the quantitative characteristic of cell k, the first-order asymmetric BAR process is given by

X2k = a + bXk + ε2k,
X2k+1 = c + dXk + ε2k+1,

(1)

for all k ≥ 1. The noise sequence (ε2k, ε2k+1) represents environmental effects, while a, b, c, d are unknown real parameters
related to the inherited effects. Various estimators are studied in the literature for a, b, c, d, see Guyon (2007), Delmas and
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Marsalle (2010), Bercu et al. (2009) and de Saporta et al. (2011). Here the genealogy ismodeled by a two-typeGalton–Watson
process (GW), allowing the reproduction laws to depend on both the mother’s and daughter’s types. The aim of this paper is
to propose asymmetry tests for both the GW process defining the genealogy of the cells, and the BAR process with missing
data. In particular, we propose original tailor-made estimators for the reproduction probabilities of the GW process, give
their asymptotic behavior and derive Wald test for the equality of the means of the reproduction laws for even and odd
mother cells. We also investigate asymmetry of the parameters a, b, c, d. A detailed study on simulated data, as well as a
new investigation of the Escherichia coli data of Stewart et al. (2005) are provided.

2. Notation

For all n ≥ 1, denote the n-th generation by Gn = {k ∈ N : 2n
≤ k ≤ 2n+1

− 1}, and the sub-tree of all cells up to
the n-th generation by Tn =

n
ℓ=0 Gℓ. The cardinality |Gn| of Gn is 2n, while that of Tn is |Tn| = 2n+1

− 1. We encode the
presence or absence of cells by the process (δk): if cell k is observed, δk = 1, if cell k is missing, δk = 0. We define the sets of
observed cells as G∗

n = {k ∈ Gn : δk = 1} and T∗
n = {k ∈ Tn : δk = 1}. Finally, let E be the event corresponding to the case

when there are no cell left to observe: E =


n≥1{|G
∗
n| = 0} and E its complementary set. For n ≥ 1, we define the number

of observed cells in the n-th generation distinguishing their type: Z0
n = |G∗

n ∩ 2N|, Z1
n = |G∗

n ∩ (2N + 1)|, and we set, for all
n ≥ 1, Zn = (Z0

n , Z1
n ). Note that for i ∈ {0, 1} and n ≥ 1 one has Z i

n =


k∈Gn−1
δ2k+i.

3. Asymmetry in the lineage

We now describe the mechanism generating the observation process (δk) and recall some classical assumptions taken
from Harris (1963). We define the genealogy of the cells by a two-type GW process (Zn). All cells reproduce independently
and with a reproduction law depending only on their type. For a mother cell of type i ∈ {0, 1}, we denote by p(i)(j0, j1)
the probability that it has j0 daughter of type 0 and j1 daughter of type 1. For the cell division process we are interested
in, one clearly has p(i)(0, 0) + p(i)(1, 0) + p(i)(0, 1) + p(i)(1, 1) = 1. The reproduction laws have moments of all orders,
and we can thus define the descendant matrix as the 2 × 2 matrix P = (pij)0≤i,j≤1, where pi0 = p(i)(1, 0) + p(i)(1, 1) and
pi1 = p(i)(0, 1) + p(i)(1, 1), for i ∈ {0, 1} i.e. pij is the expected number of descendants of type j of a cell of type i. We make
the following main assumption.

(AO) All entries of the matrix P are positive and its dominant eigenvalue π satisfies π > 1.

In this case, there exist component-wise positive left eigenvectors for π . Let z = (z0, z1) be the one satisfying z0 +

z1 = 1. Assumption (AO) means that (Zn) is super-critical and ensures that extinction is not almost sure: P(E) < 1. On
E, |T∗

n|
−1n

l=1 Z
i
l converges to z i, meaning that z i is the asymptotic proportion of cells of type i. Our context is very specific

because the information given by (δk) is more precise than the one given by (Zn) used in the literature, see Guttorp (1991).
Empiric estimators of the reproduction probabilities using data up to the n-th generation are, for i, j0, j1 in {0, 1}

p(i)
n (j0, j1) =


k∈Tn−2

δ2k+iφj0(δ2(2k+i))φj1(δ2(2k+i)+1)
k∈Tn−2

δ2k+i
,

whereφ0(x) = 1−x, φ1(x) = x, if the denominators are nonzero (zero otherwise). The strong consistency is readily obtained
on the non-extinction set E by martingale methods.

Lemma 3.1. Under (AO) and for all i, j0 and j1 in {0, 1}, one has
limn→∞ 1{|G∗

n |>0}p(i)
n (j0, j1) = p(i)(j0, j1)1E a.s.

Set p(i)
= (p(i)(0, 0), p(i)(1, 0), p(i)(0, 1), p(i)(1, 1))t the vector of the 4 reproduction probabilities for a mother of type

i, p = ((p(0))t , (p(1))t)t the vector of all 8 reproduction probabilities andpn = (p(0)
n (0, 0), . . . ,p(1)

n (1, 1))t its estimator. As
P(E) ≠ 0, we define the conditional probability PE by PE (A) = P(A ∩ E)/P(E) for all events A.

Theorem 3.2. Under assumption (AO), we have the convergence


|T∗

n−1|(pn − p)
L

−→ N (0,V) on (E, PE ), with V =
V0/z0 0

0 V1/z1


and for all i in {0, 1},Vi

= Wi
− p(i)(p(i))t ,Wi is a 4 × 4 matrix with the entries of p(i) on the diagonal

and 0 elsewhere.

Proof. For all n ≥ 2, and q ≥ 1, set M(n)
q =


(M0(n)

q )t , (M1(n)
q )t

t , with

Mi(n)
q =

1
|T∗

n−1|

q
k=1


δ2k+i


(1 − δ2(2k+i))(1 − δ2(2k+i)+1) − p(i)(0, 0)


δ2k+i


δ2(2k+i)(1 − δ2(2k+i)+1) − p(i)(1, 0)


δ2k+i


(1 − δ2(2k+i))δ2(2k+i)+1 − p(i)(0, 1)


δ2k+i


δ2(2k+i)δ2(2k+i)+1 − p(i)(1, 1)


 .
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Let (Gq) be the filtration of cousin cells: G0 = σ {δ1, δ2, δ3} and for all q ≥ 1, Gq = Gq−1 ∨ σ {δ4q, δ4q+1, δ4q+2, δ4q+3}. For all
n ≥ 2, (M(n)

q ) is a (Gq)-martingale. We apply Theorem 3.II.10 of Duflo (1997) with the stopping times νn = |Tn−2|. The PE

a.s. limit of the increasing process is

⟨M(n)
⟩νn =

1
|T∗

n−1|




k∈Tn−2

δ2kV0 0

0


k∈Tn−2

δ2k+1V1

 −−−→
n→∞

G =


z0V0 0
0 z1V1


.

In addition, the Lindeberg condition holds as the δk have finite moments of all orders. Thus, we obtain the convergence
M(n)

|Tn−2|

L
−→ N (0,G) on (E, PE ). On the other hand, ∆−1

n−1|T
∗

n−1|M
(n)
|Tn−2|

=


|T∗

n−1|(pn − p), with

∆n =


n

ℓ=1

Z0
ℓ I4 0

0
n

ℓ=1

Z1
ℓ I4

 ,

and I4 is the identity matrix of size 4. As |T∗
n|

−1n
ℓ=1 Z

i
ℓ converges a.s. to z i on (E, PE ), we have the asymptotic normality,

using Slutsky’s lemma. �

We now derive Wald’s test for the asymmetry of the means of the reproduction laws. Set m =

p(0)(1, 0) + p(0)(0, 1) +

2p(0)(1, 1)

−

p(1)(1, 0)+p(1)(0, 1)+2p(1)(1, 1)


the difference of themeans of the types 0 and 1 reproduction laws andmn

its empirical estimator. Set HGW
0 : m = 0 the symmetry hypothesis and HGW

1 : m ≠ 0. Let (YGW
n )2 be the test statistic defined

by YGW
n = |T∗

n−1|
1/2(∆GW

n )−1/2mn, where ∆GW
n = dgwtVndgw, dgw = (0, 1, 1, 2, 0 − 1, −1, −2)t , andVn is the empirical

version of V, where z i is replaced by |T∗
n|

−1n
l=1 Z

i
l and the p(i)(j0, j1) are replaced byp(i)

n (j0, j1). Thanks to Lemma 3.1,Vn
converges a.s. to V and the test statistic has the following asymptotic properties.

Theorem 3.3. Under assumption (AO) and the null hypothesis HGW
0 , one has (YGW

n )2
L

−→ χ2(1) on (E, PE ); and under the

alternative hypothesis HGW
1 , one has limn→∞(YGW

n )2 = +∞ a.s. on (E, PE ).

Proof. Let g be the function defined from R8 onto R by g(x1, . . . , x8) =

x2 + x3 + 2x4


−

x6 + x7 + 2x8


, so thatmn − m = g(pn) − g(p), and dgw is the gradient of g . Theorem 3.2 yields


|T∗

n−1|

g(pn) − g(p)

 L
−→ N (0, ∆GW) on

(E, PE ), with ∆GW
= dgwtVdgw. Under HGW

0 , g(p) = m = 0, so that |T∗

n−1|(∆
GW)−1g(pn)

2 L
−→ χ2(1) on (E, PE ). One

then uses Slutsky’s lemma to replace ∆GW by ∆GW
n . Under HGW

1 , since YGW
n = |T∗

n−1|
1/2(∆GW

n )−1/2mn and mn converges to
m ≠ 0, YGW

n tends to infinity a.s. on (E, PE ). �

4. Asymmetry in cell’s characteristic

We turn to the asymmetry of the BAR model with missing data. Assume that E[X8
1 ] < ∞ and 0 < max(|b|, |d|) < 1.

Denote by F = (Fn) the natural filtration associated with the BAR process: Fn = σ {Xk, k ∈ Tn}.

(AN.1) One has supn≥0 supk∈Gn+1
E[ε8

k |Fn] < ∞ a.s., ∀n ≥ 0 and k ∈ Gn+1, E[εk|Fn] = 0, E[ε2
k |Fn] = σ 2 a.s., ∀k ∈ Gn,

E[ε2kε2k+1|Fn] = ρ a.s.
(AN.2) ∀n ≥ 0, {(ε2k, ε2k+1)}k∈Gn are conditionally independent given Fn.

(AI) The sequence (δk) is independent from the sequences (Xk) and (εk).

The least-squares estimator of θ = (a, b, c, d)t is given for all n ≥ 1 byθn = (an,bn,cn,dn)t with

θn = Σ−1
n−1


k∈Tn−1


δ2kX2k

δ2kXkX2k

δ2k+1X2k+1

δ2k+1XkX2k+1

 , Σn =


S0n 0
0 S1n


,

Sin =


k∈Tn

δ2k+i


1 Xk

Xk X2
k


, S0,1n =


k∈Tn

δ2kδ2k+1


1 Xk

Xk X2
k


.

Denote also L0, L1, L0,1 their a.s. limits: limn→∞ 1{|G∗
n |>0}Sin/|T

∗
n| = 1ELi, limn→∞ 1{|G∗

n |>0}S0,1n /|T∗
n| = 1EL0,1, see

Proposition 4.2 of de Saporta et al. (2011). We now recall Theorems 3.2 and 3.4 of de Saporta et al. (2011).
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Table 1
Proportions of p-values under the 0.05, 0.01 and 0.001 thresholds of the asymmetry tests for the means of
the GW process (1000 replicas) p(0)

= (0.04, 0.08, 0.08, 0.8) (under (H1), p(1)
= (0.15, 0.08, 0.08, 0.69)).

Generation Under HGW
0 Under HGW

1

p < 0.05 p < 0.01 p < 0.001 p < 0.05 p < 0.01 p < 0.001

7 6.4 1.9 0.3 27.8 11.8 03.6
8 5.6 1.4 0.3 44.2 22.2 07.6
9 5.5 1.1 0.3 58.6 38.5 17.0

10 5.7 1.5 0.2 79.4 60.8 35.9
11 4.8 1.0 0.1 93.1 82.0 64.2

Theorem 4.1. Under (AN.1–2), (AO) and (AI) , the estimatorθn is strongly consistent limn→∞ 1{|G∗
n |>0}θn = θ1E a.s. In addition,

we have the asymptotic normality


|T∗

n−1|(
θn − θ)

L
−→ N (0, Σ−1ΓΣ−1) on (E, PE ), where

Σ =


L0 0
0 L1


, and Γ =


σ 2L0 ρL0,1

ρL0,1 σ 2L1


.

We now propose two different asymmetry tests. The first one compares the couples (a, b) and (c, d). Set Hc
0: (a, b) = (c, d)

the symmetry hypothesis and Hc
1: (a, b) ≠ (c, d). Let (Yc

n)
tYc

n be the test statistic defined by Yc
n = |T∗

n−1|
1/2(∆c

n)
−1/2(an −cn,bn −dn)t , with ∆c

n = |T∗

n−1|
2dgctΣ−1

n−1
Γ n−1Σ

−1
n−1dgc,

dgc =


1 0 −1 0
0 1 0 −1

t

, Γ n =
1

|T∗
n|

 σ 2
n+1S

0
n ρn+1S0,1nρn+1S0,1n σ 2

n+1S
1
n


,

σ 2
n = |T∗

n|
−1

k∈T∗
n−1

(ε2
2k + ε2

2k+1), ρn = |T∗01
n−1|

−1
k∈Tn−1

ε2kε2k+1, T∗01
n = {k ∈ Tn : δ2kδ2k+1 = 1} and for all

k ∈ Gn,ε2k = δ2k(X2k −an −bnXk),ε2k+1 = δ2k+1(X2k+1 −cn −dnXk).

Theorem 4.2. Under assumptions (AN.1–2), (AO) , (AI) and the null hypothesisHc
0, one has (Yc

n)
tYc

n
L

−→ χ2(2) on (E, PE ); and

under the alternative hypothesis Hc
1, one has limn→∞ ∥Yc

n∥
2

= +∞ a.s. on (E, PE ).

Proof. We mimic the proof of Theorem 3.3 with g the function defined from R4 onto R2 by g(x1, x2, x3, x4) =

x1 − x3,

x2 − x4
t . �

Our second test compares the fixed points a/(1 − b) and c/(1 − d), which are the asymptotic means of X2k and X2k+1

respectively. Set Hf
0: a/(1 − b) = c/(1 − d) the symmetry hypothesis and Hf

1: a/(1 − b) ≠ c/(1 − d). Let (Y f
n )

2 be the test
statistic defined by Y f

n = |T∗

n−1|
1/2(∆f

n)
−1/2

an/(1−bn) −cn/(1−dn), where∆f
n = |T∗

n−1|
2dgftΣ−1

n−1
Γ n−1Σ

−1
n−1dgf, dgf =

1/(1 − b), a/(1 − b)2, −1/(1 − d), −c/(1 − d)2
t .

Theorem 4.3. Under assumptions (AN.1–2), (AO) , (AI) and the null hypothesis Hf
0, one has (Y f

n )
2 L
−→ χ2(1) on (E, PE ); and

under the alternative hypothesis Hf
1, one has limn→∞(Y f

n )
2

= +∞ a.s. on (E, PE ).

Proof. We mimic again the proof of Theorem 3.3 with g the function defined from R4 onto R by g(x1, x2, x3, x4) =
x1/(1 − x2) − x3/(1 − x4)

t . �

5. Application to simulated data

We now study the behavior of our tests on simulated data. For each test, we compute, in function of the generation n and
for different thresholds, the proportion of rejections under hypotheses H0 and H1, the latter being an indicator of the power
of the test. Proportions are computed on a sample of 1000 replicated trees. In Table 1, the observed proportions of p-values
under the given thresholds are close to the expected proportions of rejection underHGW

0 suggesting that the asymptotic law
of the statistic (YGW

n )2 is available by generation 8. Under HGW
1 , the power of the test increases from 27.8% for generation 7

to 93.1% for generation 11 for a risk of type 1 fixed at 0.05. In Table 2, the observed proportions of p-values under the given
thresholds, are close to the expected proportions of rejection under Hc

0 suggesting that the asymptotic law of the statistic
∥Yc

n∥
2 is also available at generation 8. Under Hc

1, the power of the test increases from 37.4% for generation 7 to 95.7% for
generation 11 for a risk of type 1 fixed at 0.05. In Table 3, the observed proportions go away from the expected ones under
Hf

0, suggesting that the asymptotic law of the statistic is not reached before the 10th generation. The power is also weak
until the 10th generation.
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Table 2
Proportions of p-values under the 0.05, 0.01 and 0.001 thresholds of the asymmetry test for the parameters
of the BAR process (1000 replicas) a = b = 0.5 (under (H1), c = 0.5; d = 0.4).

Gen Under Hc
0 Under Hc

1

p < 0.05 p < 0.01 p < 0.001 p < 0.05 p < 0.01 p < 0.001

7 6.6 2.2 0.6 37.4 19.7 08.0
8 5.5 1.5 0.3 53.6 31.0 14.6
9 5.5 1.3 0.3 71.1 52.3 30.3

10 6.3 1.2 0.1 86.8 75.5 56.1
11 5.9 0.6 0.1 95.7 90.8 81.4

Table 3
Proportions of p-values under the 0.05, 0.01 and 0.001 thresholds of the asymmetry test for the fixed points
of the BAR process (1000 replicas) a = b = 0.5 (under (H1), c = 0.5; d = 0.4).

Gen Under Hf
0 Under Hf

1

p < 0.05 p < 0.01 p < 0.001 p < 0.05 p < 0.01 p < 0.001

7 2.2 0.7 0 23.1 07.4 01.4
8 3.3 0.5 0.1 41.3 20.5 06.1
9 3.8 0.5 0 64.6 41.6 18.6

10 4.7 0.8 0 82.9 68.1 46.3
11 5.5 0.7 0.1 94.5 88.5 74.5

Fig. 1. Histogram of the 51 p-values of the test HGW
0 .

(a) Hc
0 . (b) Hf

0 .

Fig. 2. Histogram of the 51 p-values of the tests Hc
0 and Hf

0 .

6. Application to real data: aging detection of Escherichia coli

To study aging in the single cell organism E. coli, Stewart et al. (2005) filmed 94 colonies of dividing cells, determining
the complete lineage and the growth rate of each cell. E. coli is a rod-shaped bacterium that reproduces by dividing in the
middle. Each cell inherits an old end or pole from its mother, and creates a new pole. Therefore, each cell has a type: old pole
or new pole inducing asymmetry in the cell division. Stewart et al. (2005) propose a statistical study of the mean genealogy
and pair-wise comparison of sister cells assuming their independencewhich is not verified in the lineage.We ran our tests of
the null hypothesesHGW

0 ,Hc
0 andHf

0 on the 51 data sets issued of the 94 colonies containing at least eight generations. Fig. 1
shows that the hypothesis of equality of the expected number of observed offspring between two sisters is not rejected
whatever the data set. This result is not surprising: data are missing most frequently because the cells were out of the
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range of the camera. The null hypotheses of the two tests are rejected for one set in four for Hc
0 and for one in eight for Hf

0
(see Fig. 2). A global conclusion on the asymmetry between the old pole and new pole cells is not easy. Regarding the
simulation results in Tables 2 and 3, this lack of evidence is probably due to a low power of the tests at generations 8 and 9.
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Random coefficient bifurcating autoregressive
processes

Benoîte de Saporta, Anne Gégout Petit, Laurence Marsalle

Abstract

This paper presents a model of asymmetric bifurcating autoregressive pro-
cess with random coefficients. We couple this model with a Galton Watson
tree to take into account possibly missing observations. We propose least-
squares estimators for the various parameters of the model and prove their
consistency with a convergence rate, and their asymptotic normality. We use
both the bifurcating Markov chain and martingale approaches and derive new
important general results in both these frameworks.

1 Introduction
In the 80’s, Cowan and Staudte [1] introduced Bifurcating Autoregressive processes
(BAR) as a parametric model to study cell lineage data. A quantitative characteris-
tic of the cells (e.g. growth rate, age at division) is recorded over several generations
descended from an initial cell, keeping track of the genealogy to study inherited
effects. As a cell usually gives birth to two offspring by division, such genealogies
are naturally structured as binary trees. BAR processes are thus a generalization of
autoregressive processes (AR) to this binary tree structure, by modeling each line of
descent as a first order AR process, allowing the environmental effects on sister cells
to be correlated. Statistical inference for the parameters of BAR processes has been
widely studied, either based on the observation of a single tree growing to infinity
[1, 2, 3, 4] or on a large number of small independent trees [5, 6]. See also [7, 8] for
processes indexed by general trees.

Various extensions of the original model have been proposed, e.g. non gaussian
noise sequence [9, 10], higher order AR [3, 10] or moving average AR [6]. Since 2005,
evidence of asymmetry in cell division has been established by biologists [11] and an
asymmetric BAR model has been introduced by Guyon [12] where the coefficients of
the AR processes of sister cells are allowed to be different. This model was further
extended to higher order AR [13], to take missing data into account [14, 15, 16] and
with parasite infection [17].

To our best knowledge, only two papers [18] and [19] deal with random coefficient
BAR processes. In the former by Bui and Huggins it is explained that random
coefficients BAR processes can account for observations that do not fit the usual
BAR model. For instance, the extra randomness can model irregularities in nutrient
concentrations in the media in which the cells are grown. Other evidence for the need
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of richer models can be found e.g. in [20]. In this paper, we propose a new model for
random coefficient BAR processes (R-BAR). It is more general than that of Bui and
Huggins, as the random variables are not supposed to be Gaussian, they may not
have moments of all order and correlation between all the sources of randomness
are allowed. Moreover, we propose an asymmetric model in the continuance of
[12, 13, 14, 15, 16, 19] in the context of missing data. Indeed, experimental data
are often incomplete and it is important to take this phenomenon into account for
the inference. As in [14, 15] we model the structure of available data by a Galton
Watson tree, instead of a complete binary tree. Our model is close to that developed
in [19], but the assumptions on the noise process are different as we allow correlation
between the two sources of randomness but require higher moments because of the
missing data and because we do not use a weighted estimator. The main difference is
that the model in [19] is fully observed, whereas ours allows for missing observations.

Our approach for the inference is also different from [18, 19]. As we cannot use
maximum likelihood estimation, we propose modified least squares estimators as
in [21]. In [18], inference is based on an asymptotically infinite number of small
replicated trees. Here, as in [19], we consider one single tree growing to infinity but
our least squares estimator is not weighted. The originality of our approach is that
it combines the bifurcating Markov chain and martingale approaches. Bifurcating
Markov chains (BMC) were introduced in [12] on complete binary trees and further
developed in [14] in the context of missing data on Galton Watson trees. BAR models
can be seen as a special case of BMC. This interpretation allows us to establish the
convergence of our estimators. A by-product of our procedure is a new general result
for BMC on Galton Watson trees. Indeed, in [12, 14] the driven noise sequence is
assumed to have moments of all order. Here, we establish new laws of large numbers
for polynomial functions of the BMC where the noise sequence only has moments
up to a given order. The strong law of large numbers [22] and the central limit
theorem [23, 24, 22] for martingales have been previously used in the context of
BAR processes [9, 10, 4] and adapted to special cases of martingales on binary trees
[13, 15, 16, 19]. In this paper, we establish a general law of large numbers for square
integrable martingales on Galton Watson binary trees. This result is applied to our
R-BAR model to obtain sharp convergence rates and a quadratic strong law for our
estimators.

The paper is organized as follows. In Section 2, we give the precise definition
of our R-BAR model on a Galton Watson tree and state our main assumptions.
In Section 3, we give modified least squares estimators and state the convergence
results we obtained: consistency with convergence rate and asymptotic normality.
In Section 4, we recall the BMC framework, prove a new law of large numbers
under limited moment conditions and apply it to our R-BAR model to derive the
consistency of our estimators. In Section 5 we establish a new general law of large
numbers for square integrable martingales on Galton Watson trees and use it to de-
rive convergence rates and quadratic strong laws for our estimators. In Section 6 we
establish the asymptotic normality by using central limit theorems for martingales.
Finally in Section 7 we apply our estimation procedure to E. coli data of [11].
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2 Model
In the sequel, all random variables are defined on the probability state space (Ω,A,P).
As in the previous literature, we use the index 1 for the original cell, and the two
offspring of cell k are labelled 2k and 2k + 1. Consider the first-order asymmetric
random coefficients bifurcating autoregressive process (R-BAR) given, for all k ≥ 1,
by {

X2k = (b2k + η2k)Xk + (a2k + ε2k),
X2k+1 = (b2k+1 + η2k+1)Xk + (a2k+1 + ε2k+1),

(2.1)

where for all k ≥ 1, one has a2k = a, b2k = b, a2k+1 = c and b2k+1 = d. The
initial state X1 is the characteristic of the original ancestor while the sequence
(ε2k, η2k, ε2k+1, η2k+1)n≥1 is the driven noise of the process, and the parameter (a, b, c, d)
belongs to R4. One can see this R-BAR process as a random-coefficient first-order
autoregressive process on a binary tree, where each vertex represents an individual
or cell, vertex 1 being the original ancestor. For all n ≥ 1, denote the n-th generation
by Gn and the sub-tree of all individuals from the original individual up to the n-th
generation by Tn:

Gn = {2n, 2n + 1, . . . , 2n+1 − 1}, Tn =
n⋃

ℓ=0

Gℓ

In particular, G0 = {1} is the initial generation and G1 = {2, 3} is the first generation
of offspring from the original ancestor. Finally, denote by T the complete tree. Note
that the cardinality |Gn| of Gn is 2n while that of Tn is |Tn| = 2n+1 − 1. In the
sequel, we shall make use of the following hypotheses.

(H.1) The sequence (ε2k, η2k, ε2k+1, η2k+1)k≥1 is independent and identically dis-
tributed. It is also independent from X1.

(H.2) The random variables ε2, η2, ε3, η3 and X1 have moments of all order up to
4γ, for some γ ≥ 1. One has

E[ε2] = E[ε3] = 0, E[ε2
2] = E[ε2

3] = σ2
ε > 0, E[ε2ε3] = ρε,

E[η2] = E[η3] = 0, E[η2
2 ] = E[η2

3 ] = σ2
η > 0, E[η2η3] = ρη,

E[ε2+iη2+j] = ρij , for (i, j) ∈ {0, 1}, and ρ = 1
2
(ρ01 + ρ10).

In addition, for all p, q, r, s such that p+ q + r + s ≤ 4γ denote

E[εp
2η

q
2ε

r
3η

s
3] = ϑ(p, q, r, s).

When dealing with the biological issue of cell division, it may happen that a lineage
is incomplete. Indeed, cells may die or measurements may be impossible or faulty on
some cells. Taking into account such a phenomenon, we introduce the observation
process, (δk)k∈T. Basically, δk = 1 if cell k is observed, δk = 0 otherwise. We use
the same framework as in [14], and not the more general introduced in [15]. We set
δ1 = 1 and define the whole sequence through the following equalities:

δ2k = δkξ
0
k and δ2k+1 = δkξ

1
k, (2.2)

3



where the sequence
(
ξk = (ξ0

k, ξ
1
k)
)

k∈T is a sequence of independent identically dis-
tributed random vectors of {0, 1}2 with generating function

E
[
s

ξ0
1

0 s
ξ1
1

1

]
= (1− p0 − p1 − p01) + p0s0 + p1s1 + p01s0s1.

We also suppose independence between the observation and state processes.

(H.3) The sequence (ξk)k∈T is independent from (ε2k, η2k, ε2k+1, η2k+1)k∈T and from
X1.

Notice that the process (δk)k∈T takes its values in {0, 1}, and that if k ∈ T is such
that δk = 0, then δ2nk+i = 0, for all i ∈ {0, . . . , 2n − 1} and all n ≥ 1. So to speak,
if individual k is not observed, all its descendants are also missing. We now define
the sets of observed data

G∗
n = {k ∈ Gn : δk = 1} and T∗

n = {k ∈ Tn : δk = 1} = ∪n
ℓ=0G∗

ℓ .

Thanks to the i.i.d. property of (ξk), the sequence of cardinalities (|G∗
n|)n≥0 is a

Galton-Watson (GW) process with reproduction generating function

z 7−→ (1− p0 − p1 − p01) + (p0 + p1)z + p01z
2,

and mean m = 2p01 +p0 +p1. According to the position of m of with respect to 1, it
is well known that the population extincts a.s. or not. More precisely, if m ≤ 1 then
we have extinction almost surely, in the sense that P(∪n≥0{|G∗

n| = 0}) = 1. But if
m > 1, there is a positive probability of survival of the population: P(∩n≥0{|G∗

n| >
0}) > 0. This latter case is called the super-critical case, and we assume that we are
in that case.

(H.4) The mean of the reproduction law is greater than 1: m > 1.

On the non-extinction set, the growth of the population is exponential. There exists
some non-negative square integrable random variable W such that

lim
n→∞

|G∗
n|

mn
= W a.s., and {W > 0} = ∩n≥0{|G∗

n| > 0} a.s. (2.3)

This immediately entails that

lim
n→∞

|T∗
n|

mn
= W × m

m− 1
a.s. (2.4)

We will denote E the extinction set E = ∪n≥0{|G∗
n| = 0} and E its complementary

set. Note that under assumption (H.4), one has P(E) > 0. We need one more
assumption combining the R-BAR and GW processes.

(H.5) There exist 1 ≤ κ ≤ γ such that

p0 + p01

m
E[(b+ η2)

4κ] +
p1 + p01

m
E[(d+ η3)

4κ] < 1.
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This is the analogous of the usual assumption max{|b|, |d|} < 1 in the case of fixed
coefficients. The assumption above is slightly weaker: in the fully observed case and
when η2 = η3 = 0, it reduces to (b4κ + d4κ)/2 < 1.

Finally, denote by F = (Fn) the natural filtration of the R-BAR process (Xk)k∈T,
which means that Fn is the σ-algebra generated by all individuals up to the n-th
generation, Fn = σ{Xk, k ∈ Tn}. We also introduce the sigma field O = σ{δk, k ∈
T} generated by the observation process. We assume that all the history of the
observation process (δk) is known at time 0 and use the filtration FO = (FO

n ) defined
for all n by

FO
n = O ∨ σ{δkXk, k ∈ Tn} = O ∨ σ{Xk, k ∈ T∗

n}.
Note that FO

n is a sub-σ-field of O ∨Fn.

3 Estimation
We now give some least-squares estimators of our main parameters and state our
main results on their asymptotic behavior.

3.1 Estimators

We propose to make use of the standard least-squares (LS) estimator θ̂n = (ân, b̂n, ĉn, d̂n)
t

of θ = (a, b, c, d)t which minimizes the following expression

∆n(θ) =
1

2

∑

k∈Tn−1

δ2k(X2k − a− bXk)
2 + δ2k+1(X2k+1 − c− dXk)

2.

Consequently, we have for all n ≥ 1 and i ∈ {0, 1}

θ̂n = S−1
n−1

∑

k∈Tn−1

(δ2kX2k, δ2kXkX2k, δ2k+1X2k+1, δ2k+1XkX2k+1)
t ,

with Sn−1 =

(
S0

n−1 0
0 S1

n−1

)
, and Si

n−1 =
∑

k∈Tn−1
δ2k+i

(
1 Xk

Xk X2
k

)
.

We now turn to the estimation of the parameters of the conditional covariance
of (ε2, η2, ε3, η3). Following [21], we obtain a modified least squares estimator of
σ = (σ2

ε , ρ00, ρ11, σ
2
η)

t by minimizing

∆′
n(σ) =

1

2

n−1∑

ℓ=1

∑

k∈Gℓ

(ǫ̂22k − E[ǫ22k|FO
ℓ ])2 + (ǫ̂22k+1 − E[ǫ22k+1|FO

ℓ ])2,

where for all k ∈ Gn,
{
ǫ2k = δ2k(ε2k + η2kXk),

ǫ2k+1 = δ2k+1(ε2k+1 + η2k+1Xk),

{
ǫ̂2k = δ2k(X2k − ân − b̂nXk),

ǫ̂2k+1 = δ2k(X2k+1 − ĉn − d̂nXk).

Under assumptions (H.2) and (H.3), one obtains the following estimator

σ̂n = U−1
n−1

∑

k∈Tn−1

(
ǫ̂22k + ǫ̂22k+1, 2Xk ǫ̂

2
2k, 2Xkǫ̂

2
2k+1, X

2
k(ǫ̂

2
2k + ǫ̂22k+1)

)t
, (3.1)
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where

Un =
∑

k∈Tn




δ2k + δ2k+1 2δ2kXk 2δ2k+1Xk (δ2k + δ2k+1)X
2
k

2δ2kXk 4δ2kX
2
k 0 2δ2kX

3
k

2δ2k+1Xk 0 4δ2k+1X
2
k 2δ2k+1X

3
k

(δ2k + δ2k+1)X
2
k 2δ2kX

3
k 2δ2k+1X

3
k (δ2k + δ2k+1)X

4
k


 .

Note that if σ2
η = 0 the estimator of σ2

ε above corresponds to the empirical esti-
mator already used in [15]. Similarly, the least-squares estimator of ρ = (ρε, ρ, ρη)

t

minimizes

∆′′
n(ρ) =

1

2

n−1∑

ℓ=1

∑

k∈Gℓ

(ǫ̂2k ǫ̂2k+1 − E[ǫ2kǫ2k+1|FO
ℓ ])2,

and one obtains

ρ̂n = V −1
n−1

∑

k∈Tn−1

(
ǫ̂2k ǫ̂2k+1, 2Xkǫ̂2k ǫ̂2k+1, X

2
k ǫ̂2k ǫ̂2k+1

)t
, (3.2)

where

V n =
∑

k∈Tn

δ2kδ2k+1




1 2Xk X2
k

2Xk 4X2
k 2X3

k

X2
k 2X3

k X4
k


 .

Note that one cannot identify ρ01 from ρ10, hence the use of ρ = (ρ01 +ρ10)/2. Again
if σ2

η = 0, we retrieve the empirical estimator of ρε used in [15].

3.2 Main results

We now state our main results. The first one establishes the consistency of our
estimators on the non-extinction set.

Theorem 3.1 Under assumptions (H.1-5), and if κ ≥ 2, one has

lim
n→∞

1{|G∗n|>0}θ̂n = θ1E a.s.

and if in addition κ ≥ 4 then one also has

lim
n→∞

1{|G∗n|>0}σ̂n = σ1E a.s., lim
n→∞

1{|G∗n|>0}ρ̂n = ρ1E a.s.

The next results give convergence rates for the estimators.

Theorem 3.2 Under assumptions (H.1-5) and if κ ≥ 4, one has

‖θ̂n − θ‖2 = o(nδm−n) a.s.

for all δ > 1/2, and the quadratic strong law

lim
n→∞

1{|G∗n|>0}
1

n

n∑

ℓ=1

|T∗
ℓ−1|(θ̂ℓ − θ)tSΣ−1S(θ̂ℓ − θ) = tr(ΓΣ−1)1E a.s.

where S, Γ and Σ are 4 × 4 matrices defined respectively in Proposition 4.14,
Lemma 5.4 and Lemma 5.5.
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For all n, set

σn = U−1
n−1

∑

k∈Tn−1

(
ǫ22k + ǫ22k+1, 2Xkǫ

2
2k, 2Xkǫ

2
2k+1, X

2
k(ǫ22k + ǫ22k+1

)
, (3.3)

ρn = V −1
n−1

∑

k∈Tn−1

(
ǫ2kǫ2k+1, 2Xkǫ2kǫ2k+1, X

2
kǫ2kǫ2k+1

)
. (3.4)

Theorem 3.3 Under assumptions (H.1-5) and if κ ≥ 8, one has

lim
n→∞

1{|G∗n|>0}σn = σ1E a.s.

lim
n→∞

1{|G∗n|>0}
|T∗

n−1|
n

(σ̂n − σn)

= U−1 (q0(0) + q1(0), 2q0(1), 2q1(1), q0(2) + q1(2))t
1E a.s.

where U is a 4×4 matrix defined in Proposition 4.14 and the qi(r) are scalars defined
in Lemma 5.8.

Theorem 3.4 Under assumptions (H.1-5) and if κ ≥ 8, one has

lim
n→∞

1{|G∗n|>0}ρn = ρ1E a.s.

lim
n→∞

1{|G∗n|>0}
|T∗

n−1|
n

(ρ̂n − ρn) = V −1
(
q01(0), 2q01(1), q01(2)

)t
1E a.s.

where V is a 3 × 3 matrix defined in Proposition 4.14 and the q01(r) are scalars
defined in Lemma 5.11.

We now turn to the asymptotic normality for all our estimators θ̂n, σ̂n and ρ̂n given
the non-extinction of the underlying Galton-Watson process. Using the fact that
P(E) 6= 0 thanks to the super-criticality assumption (H.4), we define the probability
PE on (Ω,A) by PE(A) = P(A ∩ E)/P(E) for all A ∈ A.

Theorem 3.5 Under assumptions (H.1-5) and if κ ≥ 8, one has

|T∗
n−1|1/2(θ̂n − θ)

L−→ N (0,S−1ΓS−1) on (E ,PE) (3.5)

with S defined in Proposition 4.14 and Γ in Lemma 5.4. If moreover κ ≥ 16,

|T∗
n−1|1/2(σ̂n − σ)

L−→ N
(
0,U−1ΓσU−1

)
on (E ,PE), (3.6)

|T∗
n−1|1/2(ρ̂n − ρ)

L−→ N (0,V −1ΓρV −1) on (E ,PE), (3.7)

where the matrices Γσ and Γρ are defined in Eq. (6.1) and (6.2).

The proofs of these theorems are detailed in the next sections.
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4 Bifurcating Markov chains and consistency
In order to investigate the convergence of our estimators, we need laws of large
numbers for quantities such as (δ2k+iX

q
kX

r
2kX

s
2k+1)k∈T. To obtain them, we use the

bifurcating Markov chain framework introduced by J. Guyon in [12] and adapted to
Galton-Watson trees by J.-F. Delmas and L. Marsalle in [14]. Note that we cannot
directly use the results in [14] because our noise sequences do not have moments
of all order. Therefore, our first step is to provide a general result for bifurcating
Markov chains on GW trees with only a finite number of moments. We first recall
the general framework, then prove the ergodicity of the induced Markov chain and
finally derive strong laws of large numbers. We conclude this section by establishing
the strong consistency of our estimators.

4.1 Bifurcating Markov chain

Let B be the Borel σ-field of R, and Bp be the Borel σ-field of Rp, for p > 1. We
add a cemetery point ∂ to R, denote by R the set R ∪ {∂}, and by B the σ-field
generated by B and {∂}. This cemetery point models the state of a non-observed
cell. We recall the following definitions from [14].

Definition 4.1 We call T∗-transition probability any mapping P from R× B2
onto

[0, 1] such that

• P (·, A) is measurable for all A in B2,

• P (x, ·) is a probability measure on (R2
,B2

) for all x in R,

• P (∂, {(∂, ∂)}) = 1.

For any measurable function f from R3 onto R, one defines the measurable function
Pf from R onto R by

Pf(x) =

∫
f(x, y, z)P (x, dy, dz),

provided the integral is well defined. Let ν be a probability measure on R. In the
sequel, ν will denote the distribution of X1.

Definition 4.2 We say that (Zn)n∈T is a bifurcating Markov chain with initial dis-
tribution ν and T∗-transition probability P , a P -BMC in short, if Z1 has distribution
ν and for all n in N, and for all families of measurable bounded functions (fk)k∈Gn

on R2, one has

E

[∏

k∈Gn

fk(Z2k, Z2k+1)
∣∣∣ σ(Zj, j ∈ Tn)

]
=
∏

k∈Gn

Pfk(Zk).

As explained in [12], this means that given the first n generations Tn, one builds gen-
eration Gn+1 by drawing 2n independent couples (Z2k, Z2k+1) according to P (Zk, ·),
k ∈ Gn. In addition, any couple (Z2k, Z2k+1) depends on past generations only
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through its mother Zk. As P (∂, {(∂, ∂)}) = 1, ∂ is an absorbing state, and this
hypothesis corresponds to the fact that a cell that is not observed cannot give birth
to an observed one. We also assume that P (x,R2), P (x,R×{∂}) and P (x, {∂}×R)
do not depend on x ∈ R. The P -BMC is thus said to be spatially homogeneous.
Such a spatially homogeneous P -BMC with an absorbing cemetery state is called a
bifurcating Markov chain on a Galton Watson tree, see [14] for details.

Now let us turn back to our observed R-BAR process. In order to use the
framework of P -BMC’s, we define the auxilliary process (X∗

n)n∈T by

X∗
n = Xn1{δn=1} + ∂1{δn=0}, (4.1)

which means that X∗
n = Xn if cell n is observed, X∗

n = ∂ the cemetery state oth-
erwise. It is clear from assumptions (H.1) and (H.3) that the process (X∗

n)n∈T is
a P -BMC on a GW tree with T∗-transition probability given for all x in R and all
measurable non-negative functions f on R3 by

Pf(x) = p01E
[
f
(
x, (b+ η2)x+ a+ ε2, (d+ η3)x+ c+ ε3

)]
(4.2)

+p0E
[
f
(
x, (b+ η2)x+ a + ε2, ∂

)]

+p1E
[
f
(
x, ∂, (d + η3)x+ c+ ε3

)]
+ (1− p01 − p0 − p1)f(x, ∂, ∂),

if x 6= ∂ and Pf(∂) = f(∂, ∂, ∂). As explained in [12], the asymptotic behavior of
the P -BMC is driven by that of the induced Markov chain (Yn) defined on R as
follows.

• For all n ≥ 1, define the sequence (An, Bn)n≥1 to be i.i.d. random variables
with the same distribution as (a2+ζ + ε2+ζ, b2+ζ + η2+ζ), where ζ is a Bernoulli
random variable with mean (p01 + p1)/m independent from (ε2, η2, ε3, η3).

• Then, set Y0 = X∗
1 = X1 and Yn+1 is recursively defined by

Yn+1 = An+1 +Bn+1Yn. (4.3)

The sequence (Yn)n∈N is clearly an R-valued Markov chain with transition kernel
given for all x in R and A in B by

Q(x,A) =
P0(x,A) + P1(x,A)

m
, (4.4)

with Pi(x,A) = (p01 + pi)E
[
1A

(
(b2+i + η2+i)x+ a2+i + ε2+i

)]
. Note that P0 and P1

are sub-probability kernels on (R,B), whereas Q is a proper probability kernel on
(R,B).

4.2 Ergodicity of the induced Markov chain

We now turn to the ergodicity for the induced Markov chain (Yn)n∈N. We start with
some preliminary results on the random variables A1 and B1.

Lemma 4.3 Under assumptions (H.2) and (H.5), the random variables A1 and
B1 have moments of all order up to 4γ. In addition, E[log |B1|] < 0 and for all
0 < s ≤ 4κ, one has E[|B1|s] < 1.
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Proof First, for all 0 ≤ s ≤ 4γ, one clearly has

E[|A1|s] =
p0 + p01

m
E[|a+ ε2|s] +

p1 + p01

m
E[|c+ ε3|s],

E[|B1|s] =
p0 + p01

m
E[|b+ η2|s] +

p1 + p01

m
E[|d+ η3|s].

Hence, under assumption (H.2), it is clear that E[|A1|s] and E[|B1|s] are finite. Next,
notice that the function s 7→ E[|B1|s] is convex, that E[|B1|0] = 1 and E[|B1|4κ] < 1
by assumption (H.5). This implies that E[|B1|s] < 1 for all 0 < s ≤ 4κ. Last, con-
sider E[| log |B1||]: if it is finite, E[log |B1|] is the right-derivative at 0 of s 7→ E[|B1|s],
and convexity arguments with assumption (H.5) yield that E[log |B1|] < 0 ; if it is
infinite, the moment assumptions on B1 gives that necessarily E[(log |B1|)+] < ∞
and E[(log |B1|)−] = ∞, so that finally E[log |B1|] = −∞ < 0, as expected. �

The next result states the existence of an invariant distribution for the Markov chain
(Yn)n∈N. It is well known as (Yn) is a real-valued auto-regressive process with random
i.i.d. coefficients satisfying Lemma 4.3, see e.g. [25, 26].

Lemma 4.4 Under assumptions (H.2) and (H.5), there exists a probability distri-
bution µ on (R,B) which is the distribution of the convergent series Y∞ =

∑∞
ℓ=1B1B2 · · ·Bℓ−1Aℓ

such that for all continuous bounded functions f on R and all x in R, one has

Ex[f(Yn)] −−−→
n→∞

∫
fdµ = 〈µ, f〉.

We investigate the moments of the invariant distribution µ to extend the above
result to polynomial functions. For all s ≥ 1, set ‖X‖s = (E[|X|s])1/s.

Lemma 4.5 Under assumptions (H.2) and (H.5), µ has moments of all order up
to 4κ. In addition, for all 1 ≤ s ≤ 4κ, all x ∈ R and all n ∈ N, (Ex[|Yn|s])1/s ≤
|x|+ ‖A1‖s/(1− ‖B1‖s) <∞.

Proof Set 1 ≤ s ≤ 4κ. As the sequence (An, Bn) is i.i.d., one has

E[|Y∞|s]1/s = E
[
|
∞∑

ℓ=1

B1 · · ·Bℓ−1Aℓ|s
]1/s ≤

∞∑

ℓ=1

‖B1‖ℓ−1
s ‖A1‖s.

Since E[|B1|s] < 1 and E[|A1|s] < ∞ thanks to Lemma 4.3, the series converges.
Now let us turn to Yn. The recursive equation (4.3) yields

Yn = Y0B1 · · ·Bn +

n∑

ℓ=1

Bn · · ·Bℓ+1Aℓ,

with the usual convention that an empty product equals 1. As the sequence (An, Bn)
is i.i.d., Yn also has the same distribution (under Px) as

xB1 · · ·Bn +

n∑

ℓ=1

B1 · · ·Bℓ−1Aℓ, (4.5)

10



so that, for 1 ≤ s ≤ 4κ, one has

Ex[|Yn|s]1/s ≤ |x|‖B1‖n
s +

n∑

ℓ=1

‖B1‖ℓ−1
s ‖A1‖s ≤ |x|+ ‖A1‖s

1− ‖B1‖s
,

hence the result. �

Corollary 4.6 Under assumptions (H.2) and (H.5), all polynomial functions f
of degree less than 4κ are in L1(µ): 〈µ, |f |〉 = E[|f(Y∞)|] <∞.

We state a technical domination result that will be useful in the next section.

Lemma 4.7 Under assumptions (H.2) and (H.5), for all polynomials f of degree
less than 2q with q ≤ 2κ, there exists a nonnegative polynomial g of degree less than
2q such that for all n ∈ N and all x ∈ R one has

∣∣∣Ex[f(Yn)]
∣∣∣ ≤ g(x).

Proof By linearity, it is sufficient to prove the result for f(x) = xp with p ≤ 2q.
For p ≥ 1, Lemma 4.5 yields

∣∣∣Ex[Y
p
n ]
∣∣∣ ≤

(
|x|+ ‖A1‖p

1− ‖B1‖p

)p

≤ 2p−1
(
|x|p +

‖A1‖p
p

(1− ‖B1‖p)p

)
.

If p is even, we set g(x) = 2p−1
(
xp + ‖A1‖p

p/(1 − ‖B1‖p)
p
)
, and if p is odd, we set

g(x) = 2p−1
(
xp+1 +1+‖A1‖p

p/(1−‖B1‖p)
p
)
, as for all x ∈ R, |x|p ≤ xp+1 +1. Notice

that if p is odd and p ≤ 2q, one also has p+ 1 ≤ 2q, hence the result. �

Finally, we prove the geometric ergodicity of (Yn) for polynomial functions.

Lemma 4.8 Under assumptions (H.1-2) and (H.5), for all polynomial functions
f of degree less than 2q with q ≤ 2κ, there exist a nonnegative polynomial function
g of degree less than 2q and a positive constant c such that for all n ∈ N and all
x ∈ R, one has

∣∣∣Ex[f(Yn)]− 〈µ, f〉
∣∣∣ ≤ g(x)‖B1‖n

4κ, and
∣∣∣Eν [f(Yn)]− 〈µ, f〉

∣∣∣ ≤ c‖B1‖n
4κ.

Proof Without loss of generality, it is sufficient to prove the result for polynomials
f of the form xp with 1 ≤ p ≤ 2q. Hölder inequality yields

∣∣∣Ex[f(Yn)]− 〈µ, f〉
∣∣∣ =

∣∣∣Ex[Y
p
n − Y p

∞]
∣∣∣ =

∣∣∣Ex[(Yn − Y∞)

p−1∑

s=0

Y s
nY

p−1−s
∞ ]

∣∣∣

≤
(
Ex[|Yn − Y∞|p]

) 1
p

p−1∑

s=0

(
Ex[|Y s

nY
p−1−s
∞ | p

p−1 ]
)p−1

p
.

11



We are going to study the two terms above separately. For the first term, Eq. (4.5)
and the definition of Y∞ yield

(
Ex[|Yn − Y∞|p]

)1/p

=
(
E[|xB1 · · ·Bn −

∞∑

ℓ=n+1

B1 · · ·Bℓ−1Aℓ|p]
)1/p

≤ |x|‖B1‖n
p + ‖A1‖p

‖B1‖n
p

1− ‖B1‖p

≤
(
|x|+ ‖A1‖p

1− ‖B1‖p

)
‖B1‖n

4κ,

by Lemma 4.3 as p ≤ 4κ by assumption. We now turn to the second term. Hölder
inequality with parameters (p− 1)/s and (p− 1)/(p− 1− s) yields

(
Ex[|Y s

nY
p−1−s
∞ | p

p−1 ]
)

≤
(

Ex[|Yn|p]
)s/(p−1)(

E[|Y∞|p]
)(p−1−s)/(p−1)

≤
(
|x|+ ‖A1‖p

1− ‖B1‖p

)s

‖Y∞‖p−1−s
p ,

this last majoration coming from Lemma 4.5. Finally, one obtains

∣∣∣Ex[Y
p
n − Y p

∞]
∣∣∣ ≤ ‖B1‖n

4κ

p−1∑

s=0

(
|x|+ ‖A1‖p

1− ‖B1‖p

)s+1

‖Y∞‖p−1−s
p

≤ ‖B1‖n
4κg(x),

where g is a polynomial function of degree at most 2q by a similar argument as
in the previous proof. Integrating this bound with respect to the initial law ν and
using (H.1) gives the second result. �

4.3 Laws of large numbers for the P -BMC

We now want to prove laws of large numbers for a family of functionals of the P -
BMC (X∗

n). We are interested in polynomial functions on R and R3
multiplied by

indicators. Precisely, for all q ≥ 1, let Fq and Gq be the vector spaces generated by
the following classes of functions from R3 onto R and from R onto R respectively,

Fq = vect{xαyβ
1R(y), xαzτ

1R(z), xαyβzτ
1R2(y, z), 0 ≤ α+ β + τ ≤ q},

Gq = vect{xα
1R(x), 0 ≤ α ≤ q},

where α, β, τ are integers. We first establish some technical results.

Lemma 4.9 Let f ∈ Fq and h ∈ Gq. Under assumption (H.2),

(i) if q ≤ 4γ, then f ∈ L1(P ) and Pf ∈ Gq,

(ii) if q ≤ 4γ, then h ∈ L1(P0) ∩ L1(P1) ∩ L1(Q) and P0h, P1h and Qh ∈ Gq,

(iii) if q ≤ 2γ, then h⊗ h ∈ L1(P ) and P (h⊗ h) ∈ G2q.

12



Proof Take q ≤ 4γ and remark that Pf(∂) = 0 for any f ∈ Fq, so that Pf(x) =
Pf(x)1R(x) for all x ∈ R. Next, set f(x, y, z) = xαyβzτ

1R2(y, z), f0 = xαyβ
1R(y)

and f1 = xαzβ
1R(z) in Fq. Eq. (4.2) yields, for i ∈ {0, 1},

P |f |(x) = p01|x|αE
[∣∣(b+ η2)x+ a + ε2

∣∣β∣∣(d+ η3)x+ c+ ε3

∣∣τ],
P |fi|(x) = (p01 + pi)|x|αE

[∣∣(b2+i + η2+i)x+ a2+i + ε2+i

∣∣β].

Assumption (H.2) entails that the 4γ moments of
(
(b + η2)x + a + ε2

)
and

(
(d +

η3)x + c + ε3

)
are finite, which gives the finiteness of all the above expectations,

since β + τ ≤ q. The results of integrability for (i) is thus proved by linearity. In
addition, one has, for i ∈ {0, 1},

Pf(x) = p01

β∑

r=0

τ∑

s=0

Cr
βC

s
τE
[
(b+ η2)

r(a+ ε2)
β−r(d+ η3)

s(c+ ε3)
τ−s
]
xr+s+α,

P fi(x) = (p01 + pi)

β∑

r=0

Cr
βE
[
(b2+i + η2+i)

r(a2+i + ε2+i)
β−r
]
xr+α,

so that Pf , Pf1 and Pf2 in Gq, since α+β+ τ ≤ q, and (i) is obtained by linearity.
Now set h(x) = xα

1R(x) in Gq. One has

Pi|h|(x) = (p01 + pi)E
[∣∣(b2+i + η2+i)x+ a2+i + ε2+i

∣∣α],

which is similar to Pfi so that the same arguments as above imply (ii). Finally,
set p ≤ 2γ, h0(x) = xβ

1R(x), h1(x) = xτ
1R(x) in Gp and l(y, z) = h0 ⊗ h1(y, z) =

h0(y)h1(z). One has

P |l|(x) = p01E
[∣∣(b+ η2)x+ a+ ε2

∣∣β∣∣(d+ η3)x+ c+ ε3

∣∣τ],

which is similar to Pf with β + τ ≤ 2p so that (iii) also holds. �

We are now ready to prove the main result of this section.

Theorem 4.10 Under assumptions (H.1-5), for all function f ∈ Fκ, one has the
following law of large numbers

lim
n→∞

1

mn

∑

k∈G∗n

f(X∗
k , X

∗
2k, X

∗
2k+1) = 〈µ, Pf〉W a.s.

Proof: This result is similar to Theorem 11 of [12] and Theorem 3.1 of [14].
The proof folllows essentially the same lines and is thus shortened here, the main
difference being that the class of functions Fκ does not satisfy assumptions (i)-(vi)
from [12, 14] mainly because Fκ is not stable by multiplication and (ε2, η2, ε3, η3) do
not have moments of all order.

For all f in Fκ, Pf is well-defined from R onto R thanks to Lemma 4.9 as κ ≤ γ.
As Pf(∂) = 0, by a slight abuse of notation we will also denote Pf its restriction
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to R. Thus, Pf is µ-integrable by Lemma 4.5. One has

m−n
∑

k∈G∗n

f(X∗
k , X

∗
2k, X

∗
2k+1)− 〈µ, Pf〉W

= m−n
∑

k∈G∗n

(
f(X∗

k , X
∗
2k, X

∗
2k+1)− 〈µ, Pf〉

)
+ 〈µ, Pf〉

( |G∗
n|

mn
−W

)
.

By Eq. (2.3) the second term converges to 0 a.s. as n tends to infinity. In order to
prove the a.s. convergence of the first term, as in [12, 14], it is sufficient to prove
that ∑

n≥0

m−2nE
[( ∑

k∈G∗n

g(X∗
k , X

∗
2k, X

∗
2k+1)

)2]
<∞, (4.6)

with g = f − 〈µ, Pf〉 ∈ Fκ. Thanks to Lemma 4.9, Pg ∈ Gκ, and as g2 ∈ F2κ, one
also has Pg2 ∈ G2κ. The expectation inside the sum decomposes as

E
[( ∑

k∈G∗n

g(X∗
k , X

∗
2k, X

∗
2k+1)

)2]

= E
[( ∑

k∈G∗n

Pg(X∗
k)
)2]

+ E
[ ∑

k∈G∗n

(
Pg2 − (Pg)2

)
(X∗

k)
]

= Cn +Dn.

We study the two terms Cn andDn separately. Let us first prove that
∑

n≥0m
−2nDn <

∞. We can rewrite Dn = E
[∑

k∈G∗n
h(X∗

k)
]

with h = Pg2 − (Pg)2. As seen above,
h ∈ G2κ and therefore h is µ-integrable thanks to Lemma 4.5. To investigate the
limit of

∑
m−2nDn, we prove that m−nDn has a finite limit. More precisely, one has

‖m−n
∑

k∈G∗n

h(X∗
k)− 〈µ, h〉W‖2

=
∥∥m−n

∑

k∈G∗n

(
h(X∗

k)− 〈µ, h〉
)

+ 〈µ, h〉(m−n|G∗
n| −W )

∥∥
2

≤
∥∥m−n

∑

k∈G∗n

(
h(X∗

k)− 〈µ, h〉
)∥∥

2
+ |〈µ, h〉|

∥∥m−n|G∗
n| −W

∥∥
2
.

The second term converges to zero. For the first term, again let l = h−〈µ, h〉 ∈ G2κ

and 〈µ, l〉 = 0, and by [14, Eq. (15) p 2504], one has

‖m−n
∑

k∈G∗n

(
h(X∗

k)− 〈µ, h〉
)
‖2

2 (4.7)

= m−nEν [l
2(Yn)] + 2m−2

n−1∑

ℓ=0

m−ℓ〈ν,QℓP (Qn−ℓ−1l ⊗Qn−ℓ−1l)〉.

Concerning the first term in Eq. (4.7), as l2 ∈ G4κ, by Lemma 4.8 one obtains
limn→∞ Eν [l

2(Yn)] = 〈µ, l2〉 and m−nE[l2(Yn)] converges to 0 a.s. Concerning the sec-
ond term in Eq. (4.7), Lemma 4.8 yields limn→∞Qn−ℓ−1l(x) = limn→∞ Ex[l(Yn−ℓ−1] =
〈µ, l〉 = 0 and by Lemma 4.7, Qn−r−1l is dominated by some φ ∈ G2κ. Moreover, us-
ing Lemma 4.9, φ⊗φ belongs to F4κ, it is P -integrable and P (φ⊗φ) belongs to G4κ.
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By Lemma 4.7, QℓP (φ⊗φ) is dominated by some ψ ∈ G4κ, which is ν-integrable by
assumption (H.2). Lebesgue dominated convergence theorem thus yields

lim
n→∞

〈ν,QℓP (Qn−ℓ−1l ⊗Qn−ℓ−1l)〉 = 0,

and |〈ν,QℓP (Qn−ℓ−1l ⊗ Qn−ℓ−1l)〉| ≤ 〈ν, ψ〉. This upper bound allows us to deal
with the limit of the second term of Eq. (4.7). Under assumption (H.4),

∑n−1
ℓ=0 m

−ℓ

converges and for ǫ > 0, it exists ℓǫ such that
∑n−1

ℓ=ℓǫ
m−ℓ〈ν, ψ〉 ≤ ǫ. Finally, for

n > ℓǫ, we have
∣∣∣

n−1∑

ℓ=0

m−ℓ〈ν,QℓP (Qn−ℓ−1l ⊗Qn−ℓ−1l)〉
∣∣∣

≤
ℓǫ−1∑

ℓ=0

m−ℓ|〈ν,QℓP (Qn−ℓ−1l ⊗Qn−ℓ−1l)〉|+ ǫ,

All the terms of the left sum converge to 0 with n, which finally proves the L2-
convergence of m−n

∑
k∈G∗n

h(X∗
k) to 〈µ, h〉W . It implies the convergence of the

expectation m−nDn to 〈µ, h〉E[W ] (recall that W is square integrable). Therefore,
one obtains

∑
n≥0m

−2nDn <∞ because m > 1.
Let us now prove that

∑
n≥0m

−2nCn <∞. Recall that g ∈ Fκ, 〈µ, Pg〉 = 0 and
following [14, Eq. (15) p 2504], we have

Cn

m2n
=

∥∥∥ 1

mn

∑

k∈G∗n

Pg(X∗
k)
∥∥∥

2

2
(4.8)

=
1

mn
Eν

[
(Pg)2(Yn)

]
+

2

m2

n−1∑

ℓ=0

〈
ν,QℓP

(
Qn−ℓ−1(Pg)⊗Qn−ℓ−1(Pg)

)〉

mℓ
.

The proof of the convergence of the first term of Eq. (4.8) is the same as that
of Eν [l

2(Yq)], and
∑

n≥0m
−nE[(Pg)2(Yn)] converges. For the second term, setting

p = n− ℓ− 1, we can rewrite

∑

n≥0

n−1∑

ℓ=0

m−ℓ
〈
ν,QℓP

(
Qn−ℓ−1(Pg)⊗Qn−ℓ−1(Pg)

)〉

=
∑

ℓ≥0

m−ℓ
〈
ν,QℓP

(∑

p≥0

Qp(Pg)⊗Qp(Pg)
)〉
.

By Lemma 4.8, there exists ϕ ∈ Gκ+1, such that |Ex[(Pg)(Yp)]| = |Qp(Pg)(x)| ≤
ϕ(x)‖B1‖p

4κ and therefore one has

|
∑

p≥0

(Qp(Pg)⊗Qp(Pg))| ≤ (ϕ⊗ ϕ)
∑

p≥0

‖B1‖p
4κ.

By assumption (H.5), the series converges and there remains to study the asymp-
totic behavior of

∑
ℓ≥0m

−ℓ〈ν,QℓP (ϕ⊗ϕ)〉. For this, let us remark that 〈ν,QℓP (ϕ⊗
ϕ)〉 = Eν [P (ϕ⊗ ϕ)(Yℓ)] with P (ϕ⊗ ϕ) ∈ G2κ+2. By Lemma 4.8, limℓ→∞ Eν [P (ϕ⊗
ϕ)(Yℓ)] is finite and the series converges because m > 1. We have thus proved that
Eq. (4.6) holds, and hence the almost sure convergence of the seriesm−n

∑
ℓ∈G∗n

f(X∗
ℓ , X

∗
2ℓ, X

∗
2ℓ+1)

to 〈µ, Pf〉W . �
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4.4 Laws of large numbers for the R-BAR process

Let us now turn back to our R-BAR process and see how the law of large numbers
given by Theorem 4.10 applies to our process.

Proposition 4.11 Under assumptions (H.1-5), for all integers 0 ≤ q ≤ κ, and all
i ∈ {0, 1}, the following laws of large numbers hold

lim
n→∞

1{|G∗n|>0}
1

|T∗
n|
∑

k∈T∗n

δ2k+iX
q
k = ℓi(q)1E a.s.

lim
n→∞

1{|G∗n|>0}
1

|T∗
n|
∑

k∈T∗n

δ2kδ2k+1X
q
k = ℓ01(q)1E a.s.

with ℓi(q) = (p01 + pi)E[Y q
∞] and ℓ01(q) = p01E[Y q

∞].

Proof Set q ≤ κ. We apply Theorem 4.10 to the function f0(x, y, z) = xq
1R(y)

if i = 0 and f1(x, y, z) = xq
1R(z) if i = 1 for the first limit, and f01(x, y, z) =

xq
1R2(y, z) for the second limit. The functions f0, f1 and f01 clearly belong to

Fκ, and moreover Pfi(x) = (p01 + pi)x
q, Pf01(x) = p01x

q. Finally, notice that
〈µ, xq〉 = E[Y q

∞]. Theorem 4.10 thus yields a.s.

lim
n→∞

1

mn

∑

k∈G∗n

δ2k+iX
q
k = ℓi(q)W, and lim

n→∞
1

mn

∑

k∈G∗n

δ2kδ2k+1X
q
k = ℓ01(q)W.

Now, one has, for instance

lim
n→∞

1

mn

∑

k∈T∗n

δ2k+iX
q
k =

n∑

ℓ=0

1

mn−ℓ

( 1

mℓ

∑

k∈G∗ℓ

δ2k+iX
q
k

)
.

The sum above converges to ℓi(q)Wm/(m − 1) thanks to [13, Lemma A.3] and we
conclude using Eq. (2.4). �

Proposition 4.12 Under assumptions (H.1-5), for all integers 0 ≤ q ≤ κ−1, and
all i ∈ {0, 1}, one has the following almost sure convergences

lim
n→∞

1{|G∗n|>0}
|T∗

n−1|
∑

k∈T∗n−1
δ2k+iX

q
kX2k+i = (p01 + pi)(a2+iE[Y q

∞] + b2+iE[Y q+1
∞ ])1E ,

lim
n→∞

1{|G∗n|>0}
|T∗

n−1|
∑

k∈T∗n−1
δ2kδ2k+1X

q
kX2k+i = p01(a2+iE[Y q

∞] + b2+iE[Y q+1
∞ ])1E ,

and if κ ≥ 2, for all integers 0 ≤ q ≤ κ− 2, one has a.s.

lim
n→∞

1{|G∗n|>0}
1

|T∗
n−1|

∑

k∈T∗n−1

δ2k+iX
q
kX

2
2k+i = (p01 + pi)

×
(
(a2

2+i + σ2
ε )E[Y q

∞] + 2(a2+ib2+i + ρii)E[Y q+1
∞ ] + (b22+i + σ2

η)E[Y q+2
∞ ]

)
1E ,

lim
n→∞

1{|G∗n|>0}
1

|T∗
n−1|

∑

k∈T∗n−1

δ2kδ2k+1X
q
kX2kX2k+1

= p01

(
(ac+ ρε)E[Y q

∞] + (ad+ bc + 2ρ)E[Y q+1
∞ ] + (bd+ ρη)E[Y q+2

∞ ]
)
1E .

16



Proof The proof follows the same lines as that of Proposition 4.11. �

We end this section by computing the moments of the invariant law µ.

Lemma 4.13 Under assumptions (H.2) and (H.5), one has

E[Y∞] =
E[A1]

1− E[B1]
, E[Y 2

∞] =
E[A2

1] + 2E[A1B1]E[Y∞]

1− E[B2
1 ]

,

and more generally, the moments of Y∞ can be calculated recursively for all 1 ≤ q ≤
4κ thanks to the relation E[Y q

∞] =
∑q

s=0C
s
qE[Aq−s

1 Bs
1]E[Y s

∞].

Proof As Y∞ is the stationary solution of equation Yn = An +BnYn−1, Y∞ has the
same law as A0 + B0Y∞ where (A0, B0) is a copy of (A1, B1) independent from the
sequence (An, Bn)n≥1. Hence, one has E[Y∞] = E[A0 +B0Y∞] = E[A1]+E[B1]E[Y∞].
Similarly, one has

E[Y 2
∞] = E[(A0 +B0Y∞)2] = E[A2

1] + 2E[A1B1]E[Y∞] + E[B2
1 ]E[Y 2

∞].

The general formula is obtained in the same way by developing the relation E[Y q
∞] =

E[(A0 +B0Y∞)q]. �

Note that one can easily compute the moments of A1 and B1 from their definition.
In particular, one has

E[Y∞] =
am0 + cm1

1− bm0 − dm1

,

E[Y 2
∞] =

a2m0 + c2m1 + σ2
ε + 2

(
(ab+ ρ00)m0 + (cd+ ρ11)m1

)
E[Y∞]

1− (b2m0 + d2m1 + σ2
η)

,

with m0 = (p01 + p0)/m and m1 = (p01 + p1)/m.

4.5 Consistency of the estimators

We are now able to prove the consistency of our estimators. We start with the
computation of the limits of the normalizing matrices Sn, Un and V n, which is a
direct consequence of Proposition 4.11

Proposition 4.14 Under assumptions (H.1-5), and if κ ≥ 2, for i ∈ {0, 1}, one
has

lim
n→∞

1{|G∗n|>0}
Si

n

|T∗
n|

= Si
1E = (p01 + pi)

(
1 E[Y∞]

E[Y∞] E[Y 2
∞]

)
1E a.s.

lim
n→∞

1{|G∗n|>0}
Sn

|T∗
n|

= S1E =

(
S0 0
0 S1

)
1E a.s.

If in addition κ ≥ 4, the following convergences hold

lim
n→∞

1{|G∗n|>0}
Un

|T∗
n|

= U1E

= m




1 2m0E[Y∞] 2m1E[Y∞] E[Y 2
∞]

2m0E[Y∞] 4m0E[Y 2
∞] 0 2m0E[Y 3

∞]
2m1E[Y∞] 0 4m1E[Y 2

∞] 2m1E[Y 3
∞]

E[Y 2
∞] 2m0E[Y 3

∞] 2m1E[Y 3
∞] E[Y 4

∞]


1E a.s.
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and

lim
n→∞

1{|G∗n|>0}
V n

|T∗
n|

= V 1E = p01




1 2E[Y∞] E[Y 2
∞]

2E[Y∞] 4E[Y 2
∞] 2E[Y 3

∞]
E[Y 2

∞] 2E[Y 3
∞] E[Y 4

∞]



1E a.s.

Besides, the matrices Si, U and V are assumed to be invertible.

We now turn to the consistency of our main estimators.

Proof of Theorem 3.1 As regards our main estimator θ̂n, a direct application of
Proposition 4.12 yields

lim
n→∞

1{|G∗n|>0}
|T∗

n−1|
Sn−1θ̂n = m




m0(a+ bE[Y∞])
m0(aE[Y∞] + bE[Y 2

∞])
m1(c+ dE[Y∞])

m1(cE[Y∞] + dE[Y 2
∞])


1E = Sθ1E a.s.

and the result follows from Proposition 4.14 and the definition of θ̂n. The consistency
of σ̂n and ρ̂n is more complicated as their definition involves the ǫ̂k. We give a
detailed proof of the convergence of |T∗

n−1|−1
∑
ǫ̂22k, the other terms in Un−1σ̂n and

V n−1ρ̂n being treated similarly. For k ∈ Gn, one has

ǫ̂22k = δ2k(X2k − ân − b̂nXk)
2

= δ2k(â
2
n + 2ânb̂nXk + b̂2nX

2
k − 2ânX2k − 2b̂nXkX2k +X2

2k).

Hence, one has

∑

k∈T∗n−1

ǫ̂22k =

n−1∑

ℓ=1

â2
ℓ

∑

k∈Gℓ

δ2k + 2

n−1∑

ℓ=1

âℓb̂ℓ
∑

k∈Gℓ

δ2kXk +

n−1∑

ℓ=1

b̂2ℓ
∑

k∈Gℓ

δ2kX
2
k (4.9)

−2

n−1∑

ℓ=1

âℓ

∑

k∈Gℓ

δ2kX2k − 2

n−1∑

ℓ=1

b̂ℓ
∑

k∈Gℓ

δ2kXkX2k +
∑

k∈T∗n−1

δ2kX
2
2k.

The limit of the last term is given by Proposition 4.12. Let us study the first term.
One has

1

mn−1

n−1∑

ℓ=1

â2
ℓ

∑

k∈Gℓ

δ2k =

n−1∑

ℓ=1

â2
ℓ

mℓ

mn−1

1

mℓ

∑

k∈Gℓ

δ2k.

We apply Lemma A.3 of [13] to the sequence above. On the one hand,

lim
ℓ→∞

â2
ℓ

1

mℓ

∑

k∈Gℓ

δ2k = a2(p01 + p0)W a.s.

thanks to the previous result on the consistency of θ̂n and Theorem 4.10. On the
other hand, the series

∑
m−n converges to m/(m − 1) under assumption (H.4).

Therefore, Lemma A.3 of [13] yields

lim
n→∞

1

mn−1

n−1∑

ℓ=1

â2
ℓ

∑

k∈Gℓ

δ2k =
m

m− 1
a2(p01 + p0)W a.s.
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and Eq. (2.4) finally yields

lim
n→∞

1{|G∗n|>0}
1

|T∗
n−1|

n−1∑

ℓ=1

â2
ℓ

∑

k∈Gℓ

δ2k = a2(p01 + p0)1E a.s.

Note that the limit above is just the limit of â2
ℓ multiplied by the limit of |T∗

n−1|−1
∑
δ2k.

The other terms in Eq. (4.9) are dealt with similarly using the results of Proposi-
tion 4.12. Finally, one obtains the almost sure convergences

lim
n→∞

1{|G∗n|>0}
|T∗

n−1|
Un−1σ̂n = lim

n→∞

1{|G∗n|>0}
|T∗

n−1|
∑

k∈Tn−1




ǫ̂22k + ǫ̂22k+1

2Xkǫ̂
2
2k

2Xkǫ̂
2
2k+1

X2
k(ǫ̂22k + ǫ̂22k+1)


 = Uσ1E ,

lim
n→∞

1{|G∗n|>0}1

|T∗
n−1|

V n−1ρ̂n = lim
n→∞

1{|G∗n|>0}1

|T∗
n−1|

∑

k∈Tn−1




ǫ̂2k ǫ̂2k+1

2Xkǫ̂2k ǫ̂2k+1

X2
k ǫ̂2k ǫ̂2k+1


 = V ρ1E ,

hence the result using Proposition 4.14. �

5 Martingales and convergence rate
The aim of this section is to obtain sharper convergence results for our estimators,
namely rates of convergence. The P -BMC approach does not allow this, therefore
we now use martingale theory instead, as in [13, 15]. However, we cannot directly
apply the results therein mainly because our noise sequence (ǫk = εk +ηkX[k/2]) now
contains the BAR process (Xk) and thus does not satisfy the assumptions of [13, 15].

5.1 Martingales on binary trees

We start with a general result of convergence for martingales on a Galton Watson
binary tree, that we will make repeatedly use of in the following sections. Special
cases of this result have already been proved and used in [13] and [15]. Note that in
this binary tree context, we cannot make use of the standard asymptotic theory for
vector martingales (see e.g. [22]) because the size of data is roughly multiplied by
m at each generation.

Theorem 5.1 Let (Mn) be a p-dimensional FO-martingale on the GW-binary tree
T∗: Mn =

∑n
ℓ=1

∑
k∈G∗ℓ

W k, with W k = (w1
k, w

2
k, . . . , w

p
k)

t. We make the following
assumptions

(A.1) For all n, Mn is square integrable.

Let < M >n=
∑n−1

ℓ=0 Γℓ be the increasing process of (Mn), with

Γn = E[∆Mn+1∆M t
n+1 | FO

n ].

(A.2) On E, |T∗
n−1|−1 < M >n converges almost surely to a positive semidefinite

matrix Γ.
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(A.3) The p× p FO-matrix martingale (Kn) defined by

Kn =

n∑

ℓ=1

|T∗
ℓ |−1(∆M ℓ+1∆M t

ℓ+1 − E[∆M ℓ+1∆M t
ℓ+1 | FO

ℓ ])

is square integrable and its component-wise increasing processes are O(n) a.s.
on E .

Let (Ξn) be a sequence of p× p symmetric positive definite matrices, adapted to FO,
such that

(A.4) On E, |T∗
n|−1Ξn converges a.s. to a positive definite matrix Ξ.

Then M t
nΞ

−1
n−1Mn = O(n) and ‖Mn‖2 = O(nmn) a.s. on E . If in addition, the

entries of (Mn) satisfy

(A.5) supn E[(m−n/2
∑

k∈G∗n
wi

k)
4 | FO

n−1] <∞ a.s.,

then for all δ > 1/2, ‖Mn‖2 = o(nδmn) a.s. and

lim
n→∞

1{|G∗n|>0}
1

n

n∑

ℓ=1

M t
ℓΞ

−1
ℓ−1M ℓ = tr(ΓΞ−1)1E a.s. (5.1)

Proof of the first part of Theorem 5.1 From now on, let us suppose that we
are on the non-extinction set E . As Ξn is definite positive, it is invertible. For all
n ≥ 1, denote Vn = M t

nΞ
−1
n−1Mn. We have

Vn+1 = M t
n+1Ξ

−1
n Mn+1 = (Mn + ∆Mn+1)

tΞ−1
n (Mn + ∆Mn+1),

= Vn −M t
n(Ξ−1

n−1 − Ξ−1
n )Mn + 2M t

nΞ
−1
n ∆Mn+1+∆M t

n+1Ξ
−1
n ∆Mn+1,

since M t
nΞ

−1
n ∆Mn+1 is scalar, and hence equal to its own transpose. By summing

over the identity above, we obtain

Vn+1 +An = V1 + Bn+1 +Wn+1, (5.2)

where An =

n∑

ℓ=1

M t
ℓ(Ξ

−1
ℓ−1 −Ξ−1

ℓ )M ℓ, (5.3)

Bn+1 = 2

n∑

ℓ=1

M t
ℓΞ

−1
ℓ ∆M ℓ+1 and Wn+1 =

n∑

ℓ=1

∆M t
ℓ+1Ξ

−1
ℓ ∆M ℓ+1.

The asymptotic behavior of Vn = M t
nΞ

−1
n−1Mn is obtained in three steps trough the

study of Wn, Bn and An respectively.

Step 1: Asymptotic behavior of Wn. Let us prove the following convergence
1

n
Wn =

m− 1

m
tr(ΓΞ−1) a.s. on E (5.4)

Recall that we work on E . Rewrite Wn+1 as

Wn+1 =
n∑

ℓ=1

(|T∗
ℓ |−1/2∆M ℓ+1)

t(|T∗
ℓ |Ξ−1

ℓ )(|T∗
ℓ |−1/2∆M ℓ+1).

We want to apply the following Lemma (which proof is postponed) for ∆n = Ξ−1
n |Tn|

and Zn = |T∗
n|−1/2∆Mn+1.
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Lemma 5.2 Let (∆n) be a sequence of d × d real positive semidefinite symmetric
matrices and (Zn) a sequence of Rd, such that limn→∞ ∆n = ∆ with ∆ definite
positive. Then one has

lim
n→∞

1

n

n∑

ℓ=1

Zt
ℓ∆ℓZℓ = Z ⇐⇒ lim

n→∞
1

n

n∑

ℓ=1

Zt
ℓ∆Zℓ = Z.

Indeed, one has limn→∞ |T∗
ℓ |Ξ−1

ℓ = Ξ−1 a.s. thanks to (A.4), and Ξ−1 is positive
definite. Thus, there only remains to prove the a.s. convergence of the real sequence
(n−1Tn+1), where

Tn+1 =

n∑

ℓ=1

∆M t
ℓ+1Ξ

−1∆M ℓ+1

|T∗
ℓ |

= tr(Ξ−1/2Hn+1Ξ
−1/2) = tr(Hn+1Ξ

−1),

Hn+1 =

n∑

ℓ=1

∆M ℓ+1∆M t
ℓ+1

|T∗
ℓ |

=

n∑

ℓ=1

Γℓ

|T∗
ℓ |

+ Kn.

On the one hand, by Assumption (A.3), we know that Kn = o(n) a.s on E . On the
other hand, by definition, one has

Γℓ

|T∗
ℓ |

=

(
< M >ℓ+1

|T∗
ℓ |

− |T∗
ℓ−1|
|T∗

ℓ |
< M >ℓ

|T∗
ℓ−1|

)
−−−→
ℓ→∞

(
Γ− Γ

m

)
= Γ

m− 1

m

by Assumption (A.3). Hence, Cesaro convergence yields

lim
n→∞

1

n
Hn =

m− 1

m
Γ a.s.

We have thus proved the a.s. convergence of n−1Tn+1 to tr(ΓΞ−1)(m − 1)/m. All
the assumptions of Lemma 5.2 are satisfied, which leads us to (5.4).

Step 2: Let us prove that < B >n+1= O(1 +An) a.s. on E .

By definition, the process (Bn) is a scalar FO-martingale, and one clearly has

E[∆B2
n+1|FO

n ] = 4M t
nΞ

−1
n ΓnΞ

−1
n Mn a.s. (5.5)

Let us prove that there exists some α > 0, some n1 ≥ 1, such that for n ≥ n1,

Ξ−1
n ΓnΞ

−1
n ≤ α(Ξ−1

n−1 − Ξ−1
n ), (5.6)

in the sense that the symmetric matrix α(Ξ−1
n−1 − Ξ−1

n ) − Ξ−1
n ΓnΞ

−1
n is positive

semidefinite. If we remark that this matrix equals

|T∗
n|−1

(
α(|T∗

n|Ξ−1
n−1 − |T∗

n|Ξ−1
n )− |T∗

n|Ξ−1
n |T∗

n|−1Γn|T∗
n|Ξ−1

n

)
,

it is clear that it converges, as n goes to ∞, to (αmΞ−1−Ξ−1ΓΞ−1)(m−1)/m. For
u ∈ Rp, one has

ut(αmΞ−1 − Ξ−1ΓΞ−1)u = αmutΞ−1u− utΞ−1ΓΞ−1u

≥
(
αmλ−(Ξ−1)− λ+(Ξ−1ΓΞ−1)

)
utu,
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where λ+(∆) and λ−(∆) denote respectively the greatest and smallest eigenvalues
of ∆. Since Ξ−1 is positive definite by Assumption (A.4), λ−(Ξ−1) > 0, so that
we can find α > 0 such that αmλ−(Ξ−1)− λ+(Ξ−1ΓΞ−1) > 0. This last inequality
yields that (αmΞ−1 −Ξ−1ΓΞ−1)(m− 1)/m is a symmetric positive definite matrix,
hence so are α(Ξ−1

n−1−Ξ−1
n )−Ξ−1

n ΓnΞ
−1
n for large enough n. Plugging the majoration

given by Eq. (5.6) into Eq. (5.5) then yields

<B>n+1 ≤ 4
( n1−1∑

k=1

M t
k(Ξ

−1
k ΓkΞ

−1
k − α(Ξ−1

k−1 − Ξ−1
k ))M k

)
+ 4αAn

≤ c(1 +An),

with c some constant with respect to n. This ends Step 2.

Step 3: Asymptotic behavior of Vn and Mn.

Thanks to Eq. (5.6) and the fact that Ξ−1
n ΓnΞ

−1
n is positive semidefinite, (An) is

nonnegative and increasing for large enough n, so that either it is convergent, or it
goes to infinity. In the former case, Step 2 with the law of large numbers for real mar-
tingales yield that (Bn) also converges, and Step 1 immediately gives Vn+1 = O(n)
a.s. on E by Eq. (5.2). In the latter case, Step 2 again with the law of large numbers
for real martingales yield that Bn = o(An). We then deduce from decomposition
(5.2) and Step 1 that Vn+1 +An = o(An) +O(n) a.s. on E leading to Vn+1 = O(n)
a.s. on E , since both An and Vn are non-negative.

We are now able to prove the first part of Theorem 5.1. By definition of Vn, we
have directly Vn = M t

nΞ
−1
n−1Mn = O(n). Moreover, the matrices Ξn being positive

definite, we have

‖Mn‖2 = M t
nMn ≤ M t

nΞ
−1
n−1Mn

(
λ−(Ξ−1

n−1)
)−1

on E . Finally, Assumption (A.4) and convergence (2.4) yield ‖Mn‖2 = O(nmn)
a.s., which completes the proof of the first part of Theorem 5.1. �

Proof of Lemma 5.2 Recall that if ∆ is a symmetric matrix, then for any u ∈
Rd, λ−(∆)utu ≤ ut∆u ≤ λ+(∆)utu. Applying this result for ∆ℓ −∆ and ∆ we
obtain

|Zt
ℓ(∆ℓ −∆)Zℓ| ≤ max{|λ+(∆ℓ −∆)|, |λ−(∆ℓ −∆)|}Zt

ℓZℓ (5.7)

≤ max{|λ+(∆ℓ −∆)|, |λ−(∆ℓ −∆)|}
λ−(∆)

Zt
ℓ∆Zℓ. (5.8)

By assumption, max{|λ+(∆ℓ −∆)|, |λ−(∆ℓ −∆)|} converges to 0 as ℓ goes to ∞,
so that for any ε > 0, one has

1

n

n∑

ℓ=1

|Zt
ℓ(∆ℓ −∆)Zℓ| ≤

cε
n

+ ε
1

n

n∑

ℓ=1

Zt
ℓ∆Zℓ,
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for some cε constant with respect to n. If 1
n

∑n
ℓ=1 Zt

ℓ∆Zℓ converges to Z, letting n
go to ∞ leads to

lim sup
n→∞

1

n

n∑

ℓ=1

|Zt
ℓ(∆ℓ −∆)Zℓ| ≤ εZ,

and this holding for any ε > 0, we obtain that 1
n

∑n
ℓ=1 Zt

ℓ(∆ℓ −∆)Zℓ converges to
0, and therefore 1

n

∑n
ℓ=1 Zt

ℓ∆ℓZℓ converges to Z. The same arguments, replacing ∆
by ∆ℓ in Eq. (5.8) yields the reverse implication. �

Proof of the second part of Theorem 5.1 Let us rewrite each entry M q
n of the

martingale Mn as

M q
n =

n∑

ℓ=1

mℓ/2 1

mℓ/2

∑

k∈G∗ℓ

wq
k =

n∑

ℓ=1

mℓ/2xq
ℓ .

We apply Wei’s lemma [27, p 1672] to the martingale difference sequence (xq
ℓ) and

the scalar sequence (mℓ/2) for the function f(x) = (log x)δ/2 with δ > 1/2 using
Assumption (A.5). One obtains M q

n = o(mn/2nδ/2). As M q
n is the q-th entry of

Mn, one has ‖Mn‖2 = o(nδmn) a.s. Now recall that Vn = M t
nΞ

−1
n−1Mn, therefore,

one has
1{|G∗n|>0}Vn = 1{|G∗n|>0}M

t
nΞ

−1
n−1Mn = o(nδ) a.s.

for all δ > 1/2. In particular, for δ = 1, Vn = o(n). Then, Eq. (5.2) together with
the proof of the first part of Theorem 5.1, and the law of large numbers for real
martingales, yield

lim
n→∞

1{|G∗n|>0}
An

n
=
m− 1

m
tr(ΓΞ−1)1E a.s. (5.9)

Henceforth, we work on E . Rewrite An as

An =
n∑

ℓ=1

M t
ℓ(Ξ

−1
ℓ−1 − Ξ−1

ℓ )M ℓ =
n∑

ℓ=1

(Ξ
−1/2
ℓ−1 M ℓ)

t∆ℓ(Ξ
−1/2
ℓ−1 M ℓ),

where ∆ℓ = I4 − Ξ
1/2
ℓ−1Ξ

−1
ℓ Ξ

1/2
ℓ−1. To end the proof, we use Lemma 5.2 with Zℓ =

Ξ
−1/2
ℓ−1 M ℓ. Thanks to Assumption (A.4) we have limℓ→∞ ∆ℓ = m−1

m
I4, so that ∆ℓ

and its limit are definite positive for large enough ℓ as m > 1. Besides, Eq. (5.9)
gives the convergence of 1

n

∑n
ℓ=1(Ξ

−1/2
ℓ−1 M ℓ)

t∆ℓ(Ξ
−1/2
ℓ−1 M ℓ). Applying Lemma 5.2

thus gives

lim
n→∞

1

n

n∑

ℓ=1

(Ξ
−1/2
ℓ−1 M ℓ)

tm− 1

m
I4(Ξ

−1/2
ℓ−1 M ℓ) =

m− 1

m
tr(ΓΞ−1),

which is the expected result. �

We now state a corollary to Theorem 5.1 that will be useful in the sequel when
dealing with indefinite symmetric matrices.
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Corollary 5.3 Let (Mn) and (Ξn) satisfing the assumptions of Theorem 5.1. Let
(∆n) be a sequence of invertible symmetric matrices converging almost surely on E
to an invertible symmetric matrix ∆. Then one has

lim
n→∞

1{|G∗n|>0}
1

n

n∑

ℓ=1

M t
ℓΞ

−1/2
ℓ−1 ∆ℓΞ

−1/2
ℓ−1 M ℓ = tr(ΓΞ−1∆)1E .

Proof The first step is analogous to Lemma 5.2: we want to replace ∆ℓ by the fixed
matrix ∆ in the equation above. As ∆ is possibly indefinite, we cannot directly
apply Lemma 5.2. We modify its proof as follow, starting from Eq. (5.7)

|(Ξ−1/2
ℓ−1 M ℓ)

t(∆ℓ −∆)Ξ
−1/2
ℓ−1 M ℓ|

≤ max{|λ+(∆ℓ −∆)|, |λ−(∆ℓ −∆)|}M t
ℓΞ

−1
ℓ−1M ℓ.

By assumption, max{|λ+(∆ℓ −∆)|, |λ−(∆ℓ −∆)|} converges to 0 as ℓ goes to ∞,
so that for any ε > 0, one has

1

n

n∑

ℓ=1

|(Ξ−1/2
ℓ−1 M ℓ)

t(∆ℓ −∆)Ξ
−1/2
ℓ−1 M ℓ| ≤

cε
n

+ ε
1

n

n∑

ℓ=1

M t
ℓΞ

−1
ℓ−1M ℓ,

for some cε constant with respect to n. As (Mn) and (Ξn) satisfy the assumptions
of Theorem 5.1, Eq.(5.1) yields

lim sup
n→∞

1

n

n∑

ℓ=1

|(Ξ−1/2
ℓ−1 M ℓ)

t(∆ℓ −∆)Ξ
−1/2
ℓ−1 M ℓ| ≤ εtr(ΓΞ−1),

and this holding for any ε > 0, we obtain that 1
n

∑n
ℓ=1(Ξ

−1/2
ℓ−1 M ℓ)

t(∆ℓ−∆)Ξ
−1/2
ℓ−1 M ℓ

converges to 0, and therefore 1
n

∑n
ℓ=1(Ξ

−1/2
ℓ−1 M ℓ)

t∆ℓΞ
−1/2
ℓ−1 M ℓ has the same limit as

1
n

∑n
ℓ=1(Ξ

−1/2
ℓ−1 M ℓ)

t∆Ξ
−1/2
ℓ−1 M ℓ. Thus, it only remains to prove the convergence of

1
n

∑n
ℓ=1 M t

ℓΞ
−1/2
ℓ−1 ∆Ξ

−1/2
ℓ−1 M ℓ. Once again Theorem 5.1 cannot be directly applied

with the sequence (Ξ
1/2
ℓ−1∆

−1Ξ
1/2
ℓ−1) as these matrices may be indefinite. To get around

this difficulty, recall that any symmetric matrix can be rewrite as a difference between
two symmetric definite positive matrices. Thus, set ∆ = ∆+ −∆−, where ∆+ and
∆− are symmetric positive definite. Applying twice Theorem 5.1 with the sequences
(Ξ

1/2
ℓ−1∆

−1
+ Ξ

1/2
ℓ−1) and (Ξ

1/2
ℓ−1∆

−1
− Ξ

1/2
ℓ−1), and using the linearity of the trace, yields a.s.

on E

lim
n→∞

1

n

n∑

ℓ=1

M t
ℓΞ

−1/2
ℓ−1 ∆Ξ

−1/2
ℓ−1 M ℓ = tr

(
ΓΞ−1/2(∆+ −∆−)Ξ−1/2

)
= tr(ΓΞ−1∆),

ending the proof. �

5.2 Rate of convergence for θ̂n

We apply Theorem 5.1 to a suitably chosen martingale. We have

θ̂n − θ = S−1
n−1

∑

k∈Tn−1

(ǫ2k, Xkǫ2k, ǫ2k+1, Xkǫ2k+1)
t = S−1

n−1Mn, (5.10)
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where
Mn =

∑

k∈Tn−1

(ǫ2k, Xkǫ2k, ǫ2k+1, Xkǫ2k+1)
t . (5.11)

Under assumptions (H.1-3), we have for all n ≥ 0, k ∈ Gn, E[ǫ2k+i|FO
n ] = E[Xkǫ2k+i|FO

n ] =
0 and (Mn) is a square integrable (FO

n )-martingale, so that Assumption (A.1) holds.
Set Γℓ = E[∆M ℓ+1∆M t

ℓ+1|FO
ℓ ]. Thus one has

<M>n=

n−1∑

ℓ=0

Γℓ =

n−1∑

ℓ=0

∑

k∈Gℓ

γk ⊗
(

1 Xk

Xk X2
k

)
=
∑

k∈Tn−1

γk ⊗
(

1 Xk

Xk X2
k

)
,

where

γk =

(
δ2k(σ

2
ε + 2Xkρ00 +X2

kσ
2
η) δ2kδ2k+1(ρε + 2Xkρ+X2

kρη)
δ2kδ2k+1(ρε + 2Xkρ+X2

kρη) δ2k+1(σ
2
ε + 2Xkρ11 +X2

kσ
2
η)

)
. (5.12)

Lemma 5.4 Under assumptions (H.1-5) and if κ ≥ 4, one has

lim
n→∞

1{|G∗n|>0}
<M>n

|T∗
n−1|

= Γ1E =

(
Γ0 Γ01

Γ01 Γ1

)
1E a.s.,

where Γ0, Γ01 and Γ1 are the 2× 2 matrices defined by

Γi =

(
σ2

εℓi(0) + 2ρiiℓi(1) + σ2
ηℓi(2) σ2

εℓi(1) + 2ρiiℓi(2) + σ2
ηℓi(3)

σ2
εℓi(1) + 2ρiiℓi(2) + σ2

ηℓi(3) σ2
εℓi(2) + 2ρiiℓi(3) + σ2

ηℓi(4)

)
,

Γ01 =

(
ρεℓ01(0) + 2ρℓ01(1) + ρηℓ01(2) ρεℓ01(1) + 2ρℓ01(2) + ρηℓ01(3)
ρεℓ01(1) + 2ρℓ01(2) + ρηℓ01(3) ρεℓ01(2) + 2ρℓ01(3) + ρηℓ01(4)

)
.

Proof This is a direct consequence of Proposition 4.11. �

Hence, Assumption (A.2) holds if κ ≥ 4. The process (Kn) is clearly a square
integrable martingale if γ ≥ 2. It is not difficult to check that its component-wise
increasing process is at most of the order of

n∑

ℓ=1

1

|T∗
ℓ |2
∑

k∈Gℓ

δ2k+iX
8
k , (5.13)

with i ∈ {0, 1}. Proposition 4.11 ensures that |T∗
n|−1

∑
k∈Gn

δ2k+iX
4
k converges a.s.

on E provided κ ≥ 4, it is therefore bounded by some constant C. As a result, its
square is also bounded by C2 and |T∗

ℓ |−2
∑

k∈Gℓ
δ2k+iX

8
k ≤ C2 a.s. on E . Finally, we

get that

1{|G∗n|>0}

n∑

ℓ=1

1

|T∗
ℓ |2
∑

k∈Gℓ

δ2k+iX
8
k ≤ C2n1{|G∗n|>0},

so that Assumption (A.3) holds if κ ≥ 4. We now introduce a new sequence of
matrices Σn. They are defined as a standardized version of the increasing process
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of (Mn), with the variance coefficients σ2
ε and σ2

η set to 1 and all the covariance
coefficients ρε, ρη, ρij set to 0, namely

Σn =
∑

k∈Tn

(1 +X2
k)

(
δ2k 0
0 δ2k+1

)
⊗
(

1 Xk

Xk X2
k

)
,

Note that Σn is definite positive as soon as the X2
k are not constant. The next result

is again a direct consequence of Proposition 4.11.

Lemma 5.5 Under assumptions (H.1-5) and if κ ≥ 4, one has

lim
n→∞

1{|G∗n|>0}
Σn

|T∗
n|

= Σ1E =

(
Σ0 0
0 Σ1

)
1E a.s.,

where Σi is the 2 × 2 matrix Σi =

(
ℓi(0) + ℓi(2) ℓi(1) + ℓi(3)
ℓi(1) + ℓi(3) ℓi(2) + ℓi(4)

)
. In addition, Σ

is definite positive.

Thus, Assumption (A.4) also holds if κ ≥ 4.

Lemma 5.6 Under assumptions (H.1-5) and if κ ≥ 4, for i ∈ {0, 1} and q ∈
{0, 1}, one has

sup
n

{
m−2nE

[( ∑

k∈G∗n

Xq
kǫ2k+i

)4 | FO
n

]}
<∞ a.s.

Proof The left hand of the equation above is at most of the order of

sup
n

{( 1

mn

∑

k∈G∗n

δ2k+iX
4
k

)2

+
1

m2n

∑

k∈G∗n

δ2k+iX
8
k

}
.

We bound these terms along the sakes lines as Eq. (5.13). �

We have now proved that Assumptions (A.1-5) of Theorem 5.1 hold for the martin-
gale (Mn) and the sequence of definite positive matrices (Ξn = Σn), thus we obtain
the following result.

Proposition 5.7 Under assumptions (H.1-5) and if κ ≥ 4, one has

M t
nΣ

−1
n−1Mn = O(n), and ‖Mn‖2 = O(nmn) a.s.

In addition, for all δ > 1/2, ‖Mn‖2 = o(nδmn) a.s. and

lim
n→∞

1{|G∗n|>0}
1

n

n∑

ℓ=1

M t
ℓΣ

−1
ℓ−1M ℓ = tr(ΓΣ−1)1E a.s.

Proof of Theorem 3.2 Recall that θ̂n − θ = S−1
n−1Mn, one has

‖θ̂n − θ‖2 = M t
nS

−2
n−1Mn ≤ ‖Mn‖2λ+(S−2

n−1),

and use Proposition 4.14 to conclude that ‖θ̂n − θ‖2 = o(nδm−n) a.s. For the
quadratic strong law, Proposition 5.7 yields the following a.s. limit on E

lim
n→∞

1

n

n∑

ℓ=1

|T∗
ℓ−1|(θ̂ℓ − θ)t(|T∗

ℓ−1|−1Sℓ−1Σ
−1
ℓ−1Sℓ−1)(θ̂ℓ − θ) = tr(ΓΣ−1)

and the result is obtained using Proposition 4.14, Lemmas 5.5 and 5.2. �
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5.3 Rate of convergence for σ̂n

We now turn to the convergence of σ̂n − σn. Recall that σ̂n defined in Eq. (3.1)
and σn in Eq. (3.3). Note that

Un−1(σ̂n − σn) = P σ

n + 2Rσ

n , (5.14)

with

P σ

n =
∑

k∈Tn−1




(ǫ̂2k − ǫ2k)
2 + (ǫ̂2k+1 − ǫ2k+1)

2

2Xk(ǫ̂2k − ǫ2k)
2

2Xk(ǫ̂2k+1 − ǫ2k+1)
2

X2
k

(
(ǫ̂2k − ǫ2k)

2 + (ǫ̂2k+1 − ǫ2k+1)
2
)


 ,

Rσ

n =
∑

k∈Tn−1




ǫ2k(ǫ̂2k − ǫ2k) + ǫ2k+1(ǫ̂2k+1 − ǫ2k+1)
2Xkǫ2k(ǫ̂2k − ǫ2k)

2Xkǫ2k+1(ǫ̂2k+1 − ǫ2k+1)
X2

k

(
ǫ2k(ǫ̂2k − ǫ2k) + ǫ2k+1(ǫ̂2k+1 − ǫ2k+1)

)


 .

We are going to study separately the asymptotic properties of P σ

n and Rσ

n .

Lemma 5.8 Under assumptions (H.1-5) and if κ ≥ 4, for all i ∈ {0, 1} and
p ∈ {0, 1, 2}, we have the following convergences

lim
n→∞

1{|G∗n|>0}
1

n

∑

k∈Tn

Xp
k(ǫ̂2k+i − ǫ2k+i)

2 = qi(p)1E

= (m− 1)tr(Γi(Si)−2Si(p))1E a.s.

where Si(p) is the 2× 2 matrix defined by Si(p) =

(
ℓi(p) ℓi(p+ 1)

ℓi(p+ 1) ℓi(p+ 2)

)
.

Proof We detail the proof for i = 0, the same arguments holding for i = 1, mutatis
mutandis. We apply Theorem 5.1 to (M 0

n), the 2-component vector corresponding
to the first two entries of the martingale (Mn) defined by Eq. (5.11). Let θ0 =

(a, b)t, θ̂
0

n = (ân, b̂n)t. Clearly, one has (θ̂
0

n − θ0) = (S0
n−1)

−1M 0
n, and thus, if

Si
ℓ(p) =

∑
k∈Tℓ

δ2k+i

(
Xp

k Xp+1
k

Xp+1
k Xp+2

k

)
, one has

1

n

∑

k∈Tn

Xp
k(ǫ̂2k − ǫ2k)

2 =
1

n

n∑

ℓ=1

∑

k∈Gℓ

δ2k(θ̂
0

ℓ − θ0)t

(
Xp

k Xp+1
k

Xp+1
k Xp+2

k

)
(θ̂

0

ℓ − θ0)

=
1

n

n∑

ℓ=1

(M 0
ℓ)

t∆−1
ℓ−1(p)M

0
ℓ ,

where ∆ℓ(p) = S0
ℓ(S

0
ℓ+1(p) − S0

ℓ(p))
−1S0

ℓ is a 2 × 2 symmetric definite positive
matrix. Since p ≤ 2 ≤ κ, Proposition 4.11 yields a.s. the convergence of |T∗

ℓ |−1Si
ℓ(p)

to Si(p) on the non extinction set, and thus of |Tℓ|−1∆ℓ(p) to the symmetric positive
definite matrix ∆(p) = (m−1)(S0)−1S0(p)(S0)−1. We can thus apply Theorem 5.1
with the martingale (M 0

n) and the sequence of symmetric positive definite matrices
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(
Ξℓ = ∆ℓ(p)

)
satisfying Assumption (A.4). Assumptions (A.1-3) and (A.5) also

clearly hold, because (M 0
n) inherits them from (Mn). We thus obtain

lim
n→∞

1{|G∗n|>0}
1

n

∑

k∈Tn

Xp
k(ǫ̂2k − ǫ2k)

2 = (m− 1)tr(Γ0(S0)−2S0(p))1E a.s.

which completes the proof. �

As a consequence, we obtain the a.s. convergence of the sequence (P σ

n ).

Lemma 5.9 Under assumptions (H.1-5) and if κ ≥ 4, one has

lim
n→∞

1{|G∗n|>0}
1

n
P σ

n =
(
q0(0) + q1(0), 2q0(1), 2q1(1), q0(2) + q1(2)

)t
1E a.s.

It remains to give the limit of the sequence (Rσ

n ).

Lemma 5.10 Under assumptions (H.1-5) and if κ ≥ 8, one has

lim
n→∞

1{|G∗n|>0}
1

n
Rσ

n = 0 a.s.

Proof : It is sufficient to prove that (Rσ

n ) is a martingale and that its increasing
process is almost surely O(n). For all k ∈ Gn, one has

E[ǫ2k(ǫ̂2k − ǫ2k) | FO
n ] = δ2k

(
(a− ân) + (b− b̂n)Xk

)
E[ǫ2k | FO

n ] = 0,

and we have similar results for the other entries of Rσ

n . Hence, (Rσ

n ) is a (FO
n )-

martingale. It is also square integrable. We are going to study (Rσ

n ) component-
wise. We give the details for the last entry, the others being treated similarly. For
i ∈ {0, 1}, set

Qi
n =

n−1∑

ℓ=1

(θi − θ̂
i

ℓ)
t
∑

k∈Gℓ

δ2k+i

(
X2

k

X3
k

)
ǫ2k+i.

The last entry of Rσ

n can then be rewritten as Q0
n + Q1

n. The processes (Qi
n) are

clearly (FO
n )-martingales with increasing processes equal to

< Qi >n=

n−1∑

ℓ=1

(M i
ℓ)

t(Si
ℓ−1)

−1∆i
ℓ(S

i
ℓ−1)

−1M i
ℓ,

with ∆i
n =

∑
k∈Gn

δ2k+i(σ
2
ε + 2ρiiXk + σ2

ηX
2
k)

(
X4

k X5
k

X5
k X6

k

)
. Thanks to Proposi-

tion 4.11, and since κ ≥ 8, the sequence of matrices (|T∗
n|−1∆i

n) converges a.s. on the
non-extinction set E to a positive definite matrix and hence |T∗

n|(Si
n−1)

−1∆i
n(Si

n−1)
−1

also converges to a definite positive matrix ∆i. We now apply Theorem 5.1 to (M i
n)

and (Si
n−1(∆

i
n)−1Si

n−1) to obtain that < Qi >n= O(n), and thus Qi
n = o(n). The

other entries of (Rσ

n ) are dealt with similarly, yielding the result. �

Proof of Theorem 3.3 The convergence of σ̂n − σn is a direct consequence of
Eq. (5.14), Proposition 4.14, Lemmas 5.9 and 5.10. The convergence of σn to σ is
then a consequence of this previous convergence and Theorem 3.1. �
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5.4 Rate of convergence for ρ̂n

We now turn to the convergence of ρ̂n − ρn. We follow the same steps as in Sec-
tion 5.3. One can rewrite V n−1(ρ̂n − ρn) as

V n−1(ρ̂n − ρn) = P ρ

n + Rρ

n, (5.15)

with

P ρ

n =
∑

k∈Tn−1

(ǫ̂2k − ǫ2k)(ǫ̂2k+1 − ǫ2k+1)
(
1, 2Xk, X

2
k

)t
,

Rρ

n =
∑

k∈Tn−1

(
ǫ2k+1(ǫ̂2k − ǫ2k) + ǫ2k(ǫ̂2k+1 − ǫ2k+1)

) (
1, 2Xk, X

2
k

)t
.

We are going to study separately the asymptotic properties of P ρ

n and Rρ

n.

Lemma 5.11 Under assumptions (H.1-5) and if κ ≥ 4, for all p ∈ {0, 1, 2}, the
following a.s. convergences hold on the non extinction set E

lim
n→∞

1

n

∑

k∈Tn

Xp
k(ǫ̂2k − ǫ2k)(ǫ̂2k+1 − ǫ2k+1) = q01(p)

=
m− 1

2
tr
(
ΓS−2J01(p)

)
,

with J01(p) =

(
0 S01(p)

S01(p) 0

)
and S01(p) =

(
ℓ01(p) ℓ01(p+ 1)

ℓ01(p+ 1) ℓ01(p+ 2)

)
.

Proof : First, notice that for all k ∈ Gn and p ∈ {0, 1, 2}, one has

2Xp
k(ǫ̂2k − ǫ2k)(ǫ̂2k+1 − ǫ2k+1)

= δ2kδ2k+1(θ̂n − θ)t




0 0 Xp
k Xp+1

k

0 0 Xp+1
k Xp+2

k

Xp
k Xp+1

k 0 0

Xp+1
k Xp+2

k 0 0


 (θ̂n − θ).

Hence, using Eq. (5.10), one has

2
∑

k∈Tn

Xp
k(ǫ̂2k − ǫ2k)(ǫ̂2k+1 − ǫ2k+1) =

n∑

ℓ=1

M t
ℓS

−1
ℓ−1(J

01
ℓ (p)− J01

ℓ−1(p))S
−1
ℓ−1M ℓ,

with

J01
n (p) =

(
0 S01

n (p)
S01

n (p) 0

)
and S01

n (p) =
∑

k∈Tn

2δ2kδ2k+1X
p
k

(
1 Xk

Xk X2
k

)
.

Set ∆n(p) = S−1/2
n (J01

n+1(p) − J01
n (p))S−1/2

n . Thanks to Proposition 4.11, we have
the following convergence

lim
n→∞

1{|G∗n|>0}∆n(p) = ∆(p)1E = (m− 1)S−1/2J01(p)S−1/2
1E a.s.

We now apply Corollary 5.3 to the martingale (Mn) and the sequences (Sn) and
(∆n) to obtain the result. �

Thus, one obtains the following limit.
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Lemma 5.12 Under assumptions (H.1-5) and if κ ≥ 4, one has the almost sure
convergence

lim
n→∞

1{|G∗n|>0}
1

n
P σ

n =
(
q01(0), 2q01(1), q01(2)

)t
1E a.s.

The limit of Rρ

n is obtained similarly to Lemma 5.10 using Corollary 5.3 again instead
of Theorem 5.1.

Lemma 5.13 Under assumptions (H.1-5) and if κ ≥ 8, one has

lim
n→∞

1{|G∗n|>0}
1

n
Rρ

n = 0 a.s.

Proof of Theorem 3.4 The convergence of ρ̂n − ρn is a direct consequence of
Eq. (5.15), Proposition 4.14, Lemmas 5.12 and 5.13. The convergence of ρn to ρ is
a consequence of this previous convergence and Theorem 3.1. �

6 Asymptotic normality
To derive the central limit theorems (CLT), we use a CLT for martingales given
in [22, Theorem 2.1.9]. To this aim, we use a new filtration: instead of using the
generation-wise filtration, we will use the sister pair-wise one. Let

GOp = O ∨ σ{δ1X1, (δ2kX2k, δ2k+1X2k+1), 1 ≤ k ≤ p}

be the σ-algebra generated by the whole history O of the GW process and all
observed individuals up to the offspring of individual p. Hence (ǫ2k, ǫ2k+1) is GOk -
measurable. In all the sequel, we will work on the non-extinction probability space
(E ,PE) and we denote by EE the corresponding expectation.

Proof of Theorem 3.5, first step For a fixed integer n ≥ 1, let us define the
GOp -martingale (M (n)

p ){p≥1} by

M (n)
p =

1

|T∗
n|1/2

p∑

k=1

Dk with Dk = (ǫ2k, Xkǫ2k, ǫ2k+1, Xkǫ2k+1)
t .

Under (H.1-5), Dk is clearly a GOk -martingale difference sequence. For all n, νn =
|Tn| = (2n+1 − 1) is a (GOn )-stopping time. Using Eq. (5.11), we have

M (n)
νn

=
1

|T∗
n|1/2

|Tn|∑

k=1

Dk =
1

|T∗
n|1/2

Mn+1.

In order to apply Theorem 2.1.9 of [22] we compute the increasing process of (M (n)
p ).

As the non-extinction set E ∈ GOk for all k ≥ 1, one has

EE [DkD
t
k|GOk−1] = E[DkD

t
k|GOk−1] = γk ⊗

(
1 Xk

Xk X2
k

)
,
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where γk is defined in Eq. (5.12). Lemma 5.4 gives the following PE a.s. limit

1

|T∗
n|
∑

k∈T∗n

EE [DkD
t
k|GOk−1] −−−→

n→∞
Γ a.s.

Therefore, the first assumption of Theorem 2.1.9 of [22] holds under PE . Let us now
turn to the second condition. Thanks to Hölder and Tchebycheff inequalities, we
have

1

|T∗
n|

νn∑

k=1

E
(
‖Dk‖2

1{‖M (n)
k −M

(n)
k−1‖>ǫ} | G

O
k−1

)

≤ 1

|T∗
n|1/2

(
νn∑

k=1

E[‖Dk‖4|GOk−1]

|T∗
n|

)1/2( νn∑

k=1

E[‖Dk‖2|GOk−1]

ǫ2|T∗
n|

)1/2

.

We can easily prove that E[‖Dk‖4|GOk−1] and E[‖Dk‖2|GOk−1] are polynomials func-
tions in Xk of degree 8 and 4. Thanks to γ ≥ κ≥8 and Proposition 4.11, we get the
Lindeberg condition. We can now conclude that under PE one has

1

|T∗
n−1|1/2

∑

k∈Tn−1

Dk =
1

|T∗
n−1|1/2

Mn
L−→ N (0,Γ).

Finally, result (3.5) follows from Eq. (5.10) and Proposition 4.14 together with Slut-
sky’s Lemma. �

Proof of Theorem 3.5, second step We apply Theorem 2.1.9 of [22] again to the
sequences (Mσ(n)

p ){p≥1} of GOp -martingales defined by

|T∗
n−1|1/2Mσ(n)

p =

p∑

k=1

Dσ

k , Dσ
k =




ǫ22k + ǫ22k+1 − E[ǫ22k + ǫ22k+1 | FO
ℓ ]

2Xk(ǫ
2
2k − E[ǫ22k | FO

ℓ ])
2Xk(ǫ

2
2k+1 − E[ǫ22k+1 | FO

ℓ ])
X2

k(ǫ22k + ǫ22k+1 − E[ǫ22k + ǫ22k+1 | FO
ℓ ])


 .

Set νn = |Tn−1| = 2n − 1, thus, one has |T∗
n−1|1/2Mσ(n)

νn
= Un−1(σn − σ). We have

to study the limit Γσ of |T∗
n−1|−1∑

k∈Tn−1
EE [D

σ

k (Dσ

k )t | GOk−1]. In order to compute
the conditional expectation, recall that E[εp

2η
q
2ε

r
3η

s
3] = ϑ(p, q, r, s), and let us denote,

for k ≥ 1

Ai(k) = δ2k+i

( 4∑

r=0

Cr
4ϑ((1 − i)(4− r), (1− i)r, i(4− r), ir)Xr

k

−
(
σ4

ε + 4ρiiσ
2
εXk + (4ρ2

ii + 2σ2
εσ

2
η)X

2
k + 4ρiiσ

2
ηX

3
k + σ4

ηX
4
k

))
,

A01(k) = δ2kδ2k+1

( 2∑

r=0

2∑

s=0

Cr
2C

s
2ϑ(2− r, r, 2− s, s)Xr+s

k

−
(
σ4

ε + 2σ2
ε(ρ00 + ρ11)Xk + (2σ2

εσ
2
η + 4ρ00ρ11)X

2
k

+2σ2
η(ρ00 + ρ11)X

3
k + σ4

ηX
4
k

))
,
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and Bi(k) = Ai(k) + A01(k). Using these notations, we obtain

EE [D
σ

k (Dσ

k )t | GOk−1]

=




(B0 +B1)(k) 2XkB0(k) 2XkB1(k) X2
k(B0 +B1)(k)

2XkB0(k) 4X2
kA0(k) 4X2

kA01(k) 2X3
kB0(k)

2XkB1(k) 4X2
kA01(k) 4X2

kA1(k) 2X3
kB1(k)

X2
k(B0 +B1)(k) 2X3

kB0(k) 2X3
kB1(k) X4

k(B0 +B1)(k)


 .

We obtain the PE a.s. limit of the above quantity thanks to Proposition 4.11:

lim
n→∞

1

|T∗
n−1|

∑

k∈Tn−1

Ai(k)X
q
k = Aq

i and lim
n→∞

1

|T∗
n−1|

∑

k∈Tn−1

A01(k)X
q
k = Aq

01,

with

Aq
i =

4∑

r=0

Cr
4ϑ((1− i)(4− r), (1− i)r, i(4 − r), ir)ℓi(r + q)

−
(
σ4

εℓi(q) + 4ρiiσ
2
εℓi(1 + q) + (4ρ2

ii + 2σ2
εσ

2
η)ℓi(2 + q)

+4ρiiσ
2
ηℓi(3 + q) + σ4

ηℓi(4 + q)
)
,

Aq
01 =

2∑

r=0

2∑

s=0

Cr
2C

s
2ϑ(2 − r, r, 2− s, s)ℓ01(r + s+ q)

−
(
σ4

εℓ01(q) + 2σ2
ε(ρ00 + ρ11)ℓ01(1 + q) + (2σ2

εσ
2
η + 4ρ00ρ11)ℓ01(2 + q)

+2σ2
η(ρ00 + ρ11)ℓ01(3 + q) + σ4

ηℓ01(4 + q)
)
.

We also set Bq
i = Aq

i + Aq
01. With these notations, we are able to explicit the limit

matrix Γσ of < Mσ(n) >νn

Γσ =




B0
0 +B0

1 2B1
0 2B1

1 B2
0 +B2

1

2B1
0 4A2

0 4A2
01 2B3

0

2B1
1 4A2

01 4A2
1 2B3

1

B2
0 +B2

1 2B3
0 2B3

1 B4
0 +B4

1


 (6.1)

The first assumption of Theorem 2.1.9 of [22] holds under PE and we prove the
second one as in the first step. We then conclude that under PE one has

Mσ(n)
νn

= |T∗
n−1|−1/2

∑

k∈Tn−1

Dσ

k = |T∗
n−1|−1/2Un−1(σn − σ)

L−→ N (0,Γσ).

We conclude using Proposition 4.14, Theorem 3.3 and Slutsky’s Lemma. �

Proof of Theorem 3.5, third step We use again Theorem 2.1.9 of [22] with to
the sequence of GOp -martingales (Mρ(n)

p ){p≥1} defined by

|T∗
n−1|1/2Mρ(n)

p =

p∑

k=1

Dρ

k , Dρ

k =




ǫ2kǫ2k+1 − E[ǫ2kǫ2k+1 | FO
ℓ ]

2Xk

(
ǫ2kǫ2k+1 − E[ǫ2kǫ2k+1 | FO

ℓ ]
)

X2
k

(
ǫ2kǫ2k+1 − E[ǫ2kǫ2k+1 | FO

ℓ ]
)


 .
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Setting again νn = |Tn−1|, we have |T∗
n−1|1/2Mρ(n)

νn
= V n−1(ρn − ρ). Set

C(k)

= δ2kδ2k+1

(
(ϑ(2, 0, 2, 0)− ρ2

ε) + 2
(
ϑ(2, 0, 1, 1) + ϑ(1, 1, 2, 0)− 2ρρε

)
Xk

+
(
ϑ(0, 2, 2, 0) + ϑ(2, 0, 0, 2) + 4ϑ(1, 1, 1, 1)− 4ρ2 − 2ρε ρη

)
X2

k

+2
(
ϑ(0, 2, 1, 1) + ϑ(1, 1, 0, 2)− 2ρρη

)
X3

k +
(
ϑ(0, 2, 0, 2)− ρ2

η

)
X4

k

)
,

so that we are now able to write

EE [D
ρ

k(Dρ

k)t | GOk−1] = C(k)




1 2Xk X2
k

2Xk 4X2
k 2X3

k

X2
k 2X3

k X4
k


 .

For the determination of the limit Γρ of |T∗
n−1|−1

∑
k∈Tn−1

EE [D
ρ

k(Dρ

k)t | GOk−1], let
us remark, using Proposition 4.11, that

lim
n→∞

1

|T∗
n−1|

∑

k∈Tn−1

C(k)Xq
k = Cq a.s.

with

Cq = (ϑ(2, 0, 2, 0)− ρ2
ε)ℓ01(q) + 2

(
ϑ(2, 0, 1, 1) + ϑ(1, 1, 2, 0)− 2ρρε

)
ℓ01(1 + q)

+
(
ϑ(0, 2, 2, 0) + ϑ(2, 0, 0, 2) + 4ϑ(1, 1, 1, 1)− 4ρ2 − 2ρε ρη

)
ℓ01(2 + q)

+2
(
ϑ(0, 2, 1, 1) + ϑ(1, 1, 0, 2)− 2ρρη

)
ℓ01(3 + q)

+
(
ϑ(0, 2, 0, 2)− ρ2

η

)
ℓ01(4 + q).

The matrix Γρ is thus given by

Γρ =




C0 2C1 C2

2C1 4C2 2C3

C2 2C3 C4


 . (6.2)

The first assumption of Theorem 2.1.9 of [22] holds under PE . We prove the second
one as in the previous steps, and finally obtain that under PE one has

Mρ(n)
νn

= |T∗
n−1|−1/2

∑

k∈Tn−1

Dρ

k = |T∗
n−1|−1/2V n−1(ρn − ρ)

L−→ N (0,Γρ).

We conclude using Proposition 4.14 and Theorem 3.4. �

7 Application to real data
We have applied our estimation procedure to the Escherichia coli data of [11]. E.
coli is a rod-shaped bacterium that reproduces by dividing in the middle. Each cell
has thus a new end (or pole), and an older one. The cell inheriting the old pole of
its mother is called the old pole cell, its sister is called the new pole cell. Hence,
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a b c d
0.0363 0.0266 0.0306 0.1706

[0.0275, 0.0450] [−0.2094, 0.2627] [0.0216, 0.0396] [−0.0709, 0.4120]

Table 1: Estimation of θ on the data set penna-2002-10-04-4

σ2
ε σ2

η

0.0004 0.2431
[−0, 0002, 0.0010] [−0.0750, 0.5613]

Table 2: Estimation of noise variances on the data set penna-2002-10-04-4

each cell has a type: old pole (even) or new pole (odd), inducing asymmetry in the
cell division. Stewart et al. [11] filmed colonies of dividing cells, determining the
complete lineages and the growth rate of each cell. Several attempts have already
been made to fit BAR processes to these data, see [20, 12, 15, 16], but only with
fixed coefficients models. In particular, [20] suggests that such models cannot ex-
plain all the randomness of the data. We have run our estimators on the data set
penna-2002-10-04-4. It is the largest one of the experiment. It contains 663 cells
up to generation 9. Table 1 gives the estimation θ̂9 of θ with the 95% Confidence
Interval (C.I.) of each coefficient. Note that our estimator θ̂n is exactly the same as
in [15], so that we obtain the same point estimation. The confidence intervals are
wider, as the variance is different. More precisely, the variance is given by the CLT
for θ in Eq. (3.5). It can be approximated by |T∗

8|S−1
8 Γ8S

−1
8 thanks to the conver-

gences given in Proposition 4.14 and Lemma 5.4. Table 2 gives the estimation of the
variance coefficients σ2

ε and σ2
η of σ (other covariance coefficients of σ̂9 and ρ̂9 can be

computed but are less easy to interpret). The variance of these parameters is again
given by the central limit Theorem 3.5. To obtain confidence intervals, one needs an
estimation of the joint moments of (ε2, η2, ε3, η3) up to the order 4. Such estimators
can be easily derived following the same ideas as in Section 3.1. Theorem 3.5 allows
to build a positivity test for σ2

ε and σ2
η. The p-value of the test H0 : σ2

ε = 0 (resp.
H0 : σ2

η = 0) is p = 0.0799 (resp. p = 0.0671). We are not far to support the validity
of the random coefficients model on this data set.
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Abstract

This paper proposes a rigorous methodology to study cell division data consisting in several
observed genealogical trees of possibly different shapes. Our procedure allows us to fully take
into account missing observations, data from different trees as well as the dependence structure
within genealogical trees. It also enables us to use all the information available without the
drawbacks of low accuracy for estimators or low power for tests on small single trees. We model
the data by an asymmetric bifurcating autoregressive process and take into account possibly
missing observations by modeling the genealogies with a two-type Galton Watson process. We
give least-squares estimators of the unknown parameters of the processes and derive symmetry
tests. Our results are applied on real data of Escherichia coli division.

1 Introduction
Cell lineage data consist of observations of some quantitative characteristic of the cells (e.g. their
length, growth rate, . . . ) over several generations descended from an initial cell. Track is kept
of the genealogy to study the inherited effects on the evolution of the characteristic. As a cell
usually gives birth to two offspring by division, such genealogies are structured as binary trees.
[2] first adapted autoregressive processes to this binary tree structure by introducing bifurcating
autoregressive processes (BAR). This parametric model takes into account both the environmental
and inherited effects. Inference on this model has been proposed based on either a single tree
growing to infinity, see e.g. [2], [11], [13], [17] or for an asymptotically infinite number of small
replicated trees, see e.g. [14], [12].

More recently, studies of aging in single cell organisms by [16] suggested that cell division may
not be symmetric. An asymmetric BAR model was therefore proposed by [8], where the two sets
of parameters corresponding to sister cells are allowed to be different. Inference for this model was
only investigated for single trees growing to infinity, see [8], [1] for the fully observed model or [5],
[3], [4] where missing data are taken into account.

Cell division data often consist in recordings over several genealogies of cells evolving in similar
experimental conditions. For instance, [16] filmed 94 colonies of Escherichia coli cells dividing
between four and nine times. We therefore propose a new rigorous approach to take into account
all the available information. Indeed, we propose an inference based on a finite fixed number of
replicated trees when the total number of observed cells tends to infinity. We use the missing
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data asymmetric BAR model introduced by [3]. In this approach, the observed genealogies are
modeled with a two-type Galton Watson (GW) process. However, we propose a different least-
squares estimator for the parameters of the BAR process that does not correspond to the single-tree
estimators averaged on the replicated trees. We also propose an estimator of the parameters of
the GW process specific to our binary tree structure and not based simply on the observation
of the number of cells of each type in each generation as in [7], [15]. We study the consistency
and asymptotic normality of our estimators and derive asymptotic confidence intervals as well as
Wald’s type tests to investigate the asymmetry of the data for both the BAR and GW processes.
Our results are applied to the Escherichia coli data of [16].

The paper is organized as follows. In Section 2, we present the BAR and observations models.
In Section 3 we give our estimators and state their asymptotic properties. In Section 4, we propose
a new investigation of [16] data. The precise statement of the convergence results, the explicit
form of the asymptotic variance of the estimators and the convergence proofs are postponed to the
appendix.

2 Model
Our aim is to estimate the parameters of coupled BAR and GW processes through m i.i.d. real-
izations of the processes. We first define our parametric model and introduce our notation. The
BAR and GW processes have the same dynamics as in [3], the main difference is that our inference
is here based on several i.i.d. realizations of the processes, instead of a single one. Additional
notation together with the precise technical assumptions are specified in A.

2.1 Bifurcating autoregressive model
Our model is as follows. Consider m i.i.d. replications of the asymmetric BAR process with
coefficients (a, b, c, d) ∈ R4. More precisely, for 1 ≤ j ≤ m, the first cell in genealogy j is labelled
(j, 1) and for k ≥ 1, the two offspring of cell (j, k) are labelled (j, 2k) and (j, 2k+1). As we consider
an asymmetric model, each cell has a type defined by its label: (j, 2k) has type even and (j, 2k+ 1)
has type odd. The characteristic of cell k in genealogy j is denoted by X(j,k). The BAR processes
are defined recursively as follows: for all 1 ≤ j ≤ m and k ≥ 1, one has

{
X(j,2k) = a + bX(j,k) + ε(j,2k),
X(j,2k+1) = c + dX(j,k) + ε(j,2k+1).

(1)

Let also σ2 be the variance and ρ the covariance of the noise sequence

σ2 = E[ε2(j,2k)] = E[ε2(j,2k+1)], ρ = E[ε(j,2k)ε(j,2k+1)].

Our goal is to estimate the parameters (a, b, c, d) and (σ, ρ), and then test if (a, b) = (c, d) or not.

2.2 Observation process
We now turn to the observation process (δ(j,k)) that encodes for the presence or absence of cell
measurements in the available data

δ(j,k) =

{
1 if cell k in genealogy j is observed,
0 if cell k in genealogy j is not observed.

To take into account possible asymmetry in the observation process, we use a two-type Galton
Watson model. The relevance of this model to E. coli data is discussed in section 4. Here again
we suppose all the m observation processes to be drawn independently from the same two-type
GW process. More precisely, for all 1 ≤ j ≤ m, we define the observation process (δ(j,k))k≥1 for
the j-th genealogy as follows. We set δ(j,1) = 1 and the (δ(j,2k), δ(j,2k+1)) are drawn independently
from one another with a law depending on the type of cell k. More precisely, for i ∈ {0, 1}, if k is
of type i one has

P
(

(δ(j,2k), δ(j,2k+1)) = (l0, l1)
∣∣∣ δ(j,k) = 1

)
= p(i)(l0, l1),

2



Figure 1: A tree of observed cells.

for all (l0, l1) ∈ {0, 1}2. Thus, p(i)(l0, l1) is the probability that a cell of type i has l0 daughter
of type 0 and l1 daughter of type 1. If a cell is not observed, all its descendants are missing as
well: if δ(j,k) = 0 for some k ≥ 2, then for all its descendants l, δ(j,l) = 0. Figure 1 gives an
example of realization of an observation process. We also assume that the observation processes
are independent from the BAR processes.

3 Inference
Our first goal is to estimate the reproduction probabilities p(i)(l0, l1) of the GW process from the
m genealogies of observed cells up to the n-th generation to be able to test the symmetry of the
GW model itself. Our second goal is to estimate θ = (a, b, c, d)t from all the observed individuals
of the m trees up to the n-th generation. We then give the asymptotic properties of our estimator
to be able to build confidence intervals and symmetry tests for θ.

Denote by |T∗n| the total number of observed cells in the m trees up to the n-th generation of
offspring from the original ancestors, and let

E = { lim
n→∞

|T∗n| =∞}

be the non extinction set, on which the global cell population grows to infinity. Conditions for the
probability of non-extinction to be positive are given in A.

3.1 Estimation of the reproduction law of the GW process
There are many references on the inference of a multi-type GW process, see for instance [7] and
[15]. Our context of estimation is very specific because the information given by (δ(j,k)) is more
precise than that given by the number of cells of each type in a given generation that is usually used
in the literature. Indeed, not only do we know the number of cells of each type at each generation,
but we also know their precise positions on the binary tree of cell division. The empiric estimators
of the reproduction probabilities using data up to the n-th generation are then, for i, l0, l1 in {0, 1}

p̂(i)
n (l0, l1) =

∑m
j=1

∑
k∈Tn−2

δ(j,2k+i)φl0(δ(j,2(2k+i)))φl1(δ(j,2(2k+i)+1))∑m
j=1

∑
k∈Tn−2

δ(j,2k+i)
,

where φ0(x) = 1− x, φ1(x) = x, and if the denominator is non zero, the estimator equalling zero
otherwise. Note that the numerator is just the number of cells of type i in all the trees up to
generation n − 1 that have exactly l0 daughter of type 0 and l1 daughter of type 1 in the n-th
generation. The denominator is the total number of cells of type i in all the trees up to generation
n− 1. Set also

p(i) = (p(i)(0, 0), p(i)(0, 1), p(i)(1, 0), p(i)(1, 1))t

the vector of the 4 reproduction probabilities for a mother of type i, p = ((p(0))t, (p(1))t)t the
vector of all 8 reproduction probabilities and p̂n its empirical estimator.
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3.2 Least-squares estimation for the BAR parameters
For the parameters of the BAR process, let us denote θ = (a, b, c, d)t. We use the standard least
squares (LS) estimator θ̂n which minimizes

∆n(θ) =
m∑

j=1

∑

k∈Tn−1

δ(j,2k)(X(j,2k) − a− bX(j,k))2 + δ(j,2k+1)(X(j,2k+1) − c− dX(j,k))2.

Consequently, for all n ≥ 1 we have θ̂n = (ân, b̂n, ĉn, d̂n)t with

θ̂n = Σ−1
n−1

m∑

j=1

∑

k∈Tn−1

(
δ(j,2k)X(j,2k), δ(j,2k)X(j,k)X(j,2k), δ(j,2k+1)X(j,2k+1), δ(j,2k+1)X(j,k)X(j,2k+1)

)t

(2)
where, for i ∈ {0, 1} one has

Σn =
(

S0
n 0

0 S1
n

)
, Sin =

m∑

j=1

∑

k∈Tn

δ(j,2k+i)

(
1 X(j,k)

X(j,k) X2
(j,k)

)
.

Note that in the normalizing matrices Sin the sum is over all observed cells for which a daughter
of type i is observed, and not merely over all observed cells. To estimate the variance parameters
σ2 and ρ, we define the empiric residuals. For all 2` ≤ k ≤ 2`+1 − 1 and 1 ≤ j ≤ m set

{
ε̂(j,2k) = δ(j,2k)(X(j,2k) − â` − b̂`X(j,k)),

ε̂(j,2k+1) = δ(j,2k+1)(X(j,2k+1) − ĉ` − d̂`X(j,k)).
(3)

We propose the following empirical estimators

σ̂2
n =

1
|T∗n|

m∑

j=1

∑

k∈Tn−1

(ε̂2(j,2k) + ε̂2(j,2k+1)), ρ̂n =
1

|T∗01n−1|
m∑

j=1

∑

k∈Tn−1

ε̂(j,2k)ε̂(j,2k+1),

where |T∗01n | is the set of all the cells which have exactly two offspring in them trees up to generation
n.

3.3 Consistency and normality
We can now state the convergence results we obtain for the estimators above. The assumptions
(H.1) to (H.6) are given in A.2. These results hold on the non extinction set E .

Theorem 3.1 Under assumptions (H.5-6) and for all i, l0 and l1 in {0, 1}, p̂(i)
n (l0, l1) converges

to p(i)(l0, l1) almost surely on E. Under assumptions (H.0-6), θ̂n, σ̂2
n and ρ̂n converge to θ, σ2 and

ρ respectively, almost surely on E.
The asymptotic normality results are only valid conditionally to the non extinction of the global
cell population.

Theorem 3.2 Under assumptions (H.5-6) we have
√
|T∗n−1|(p̂n − p) L−→ N (0,V),

and under assumptions (H.0-6), we have
√
|T∗n−1|(θ̂n − θ)

L−→ N (0,Γθ),
√
|T∗n|(σ̂2

n − σ2) L−→ N (0, γσ),
√
|T∗01n−1|(ρ̂n − ρ) L−→ N (0, γρ),

conditionally to E. The explicit form of the variance matrices V and Γθ and of γσ and γρ is given
in Eq. (6), (7), (9) and (10) respectively.

The proofs of these results are given in B.2 and B.3 for the GW process and in C.2 and C.3 for
the BAR process. From the asymptotic normality, one can naturally construct confidence intervals
and tests. Their explicit formulas are given in B.4 and C.4.
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4 Data analysis
We applied our procedure to the Escherichia coli data of [16]. The biological issue addressed is
aging in single cell organisms. E. coli is a rod-shaped bacterium that reproduces by dividing in
the middle. Each cell inherits an old end or pole from its mother, and a new one coming from the
division. The cell that inherits the old pole of its mother is called the old pole cell, the other one
is called the new pole cell. Therefore, each cell has a type: old pole or new pole cell that can be
interpreted as an age, inducing asymmetry in the cell division. On a binary tree, the new pole cells
are labelled by an even number and the old pole cells by an odd number.

[16] filmed 94 colonies of dividing E. coli cells, determining the complete lineage and the growth
rate of each cell. The 94 data sets gather 22394 cells (11189 of type even and 11205 of type odd).
The number of divisions goes from four to nine. Not a single data tree is complete. Missing data
mainly do not come from cell death (only 16 cells are recorded to die) but from measurement
difficulties due mostly to overlapping cells or cells wandering away from the field of view. Note also
that for a growth rate to be recorded, the cell needs to be observed through its whole life cycle. If
this is not the case, there is no record at all, so that a censored data model is not relevant. The
observed average growth rate of even (resp. odd) cells is 0.0371 (resp. 0.0369). These data were
investigated in [16, 9, 8, 3, 4].

[16] proposed a statistical study of the averaged genealogy and pair-wise comparison of sister
cells. They concluded that the old pole cells exhibit cumulatively slowed growth, less offspring
biomass production and an increased probability of death whereas single-experiment analyses did
not. However they assumed independence between the averaged couples of sister cells, which does
not hold in such genealogies.

The other studies are based on single-tree analyses instead of averaging all the genealogical
trees. [9] model the growth rate by a Markovian bifurcating process, but their procedure does
not take into account the dependence between pairs of sister cells either. The asymmetry was
rejected (p-value< 0.1) in half of the experiments so that a global conclusion was difficult. [8] has
then investigated the asymptotical properties of a more general asymmetric Markovian bifurcating
autoregressive process, and he rigorously constructed a Wald’s type test to study the asymmetry
of the process. However, his model does not take into account the possible missing data from the
genealogies. The author investigates the method on the 94 data sets but it is not clear how he
manages missing data. More recently, [3] proposed a single-tree analysis with a rigorous method
to deal with the missing data and carried out their analysis on the largest data set, concluding
to asymmetry on this single set. Further single tree studies of the 51 data sets issued from the
94 colonies containing at least 8 generations were conducted in [4]. The symmetry hypothesis is
rejected in one set out of four for (a, b) = (c, d) and one out of eight for a/(1 − b) = c/(1 − d)
forbidding a global conclusion. Simulation studies tend to prove that the power of the tests on
single trees is quite low for only eight or nine generations. This is what motivated the present
study and urged us to use all the data available in one global estimation rather than single tree
analyses.

In this section, we propose a new investigation of E. coli data of [16] where for the first time the
dependence structure between cells within a genealogy is fully taken into account, missing data are
taken care of rigorously, all the available data, i.e. the 94 sets, are analyzed at once and both the
growth rate and the number/type of descendants are investigated. It is sensible to consider that
all the data sets correspond to BAR processes with the same coefficients as the experiments where
conducted in similar conditions. Moreover, a direct comparison of single tree estimations would
be meaningless as the data trees do not all have the same number of generations, and it would be
impossible to determine whether variations in the computed single tree estimators come from an
intrinsic variability between trees or just the low accuracy of the estimators for small trees. The
original estimation procedure described in this paper enables us to use all the information available
without the drawbacks of low accuracy for estimators or low power for tests on small single trees.

4.1 Symmetry of the BAR process
We now give the results of our new investigation of the E. coli growth rate data of [16]. We
suppose that the growth rate of cells in each lineage is modeled by the BAR process defined in
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Eq. (1) and observed through the two-type GW process defined in section 2.2. The experiments
were independent and lead in the same conditions corresponding to independence and identical
distribution of the processes (X(j,·), δ(j,·)), 1 ≤ j ≤ m.

We first give the point and interval estimation for the various parameters of the BAR process.
Table 1 gives the estimation θ̂9 of θ with the 95% confidence interval (CI) of each coefficient. The

Table 1: Estimation and 95 % CI of θ.
parameter estimation CI parameter estimation CI

a 0.0203 [0.0197; 0.0210] c 0.0195 [0.0188; 0.0201]
b 0.4615 [0.4437; 0.4792] d 0.4782 [0.4605; 0.4959]

confidence intervals of b and d show that the non explosion assumption |b| < 1 and |d| < 1 is
satisfied.

Table 2 gives the estimation σ̂2
9 of σ2 and ρ̂9 of ρ with the 95% CI of each coefficient.

Table 2: Estimation and 95 % CI of σ2 and ρ
parameter estimation CI

σ2 1.81 · 10−5 [1.12 · 10−5; 2.50 · 10−5]
ρ 0.48 · 10−5 [0.44 · 10−5; 0.52 · 10−5]

We now turn to the results of symmetry tests. The hypothesis of equality of the couples
(a, b) = (c, d) is strongly rejected (p-value = 10−5). The hypothesis of the equality of the two fixed
points a/(1− b) (estimated at 0.03773) and c/(1− d) (estimated at 0.03734) of the BAR process is
also rejected (p-value = 2 · 10−3). We can therefore rigorously confirm that there is a statistically
significant asymmetry in the division of E. coli.

4.2 Symmetry of the GW process
Let us now turn to the asymmetry of the GW process itself. Note that to our best knowledge, it
is the first time this question is investigated for the E. coli data of [16]. However, it seems natural
to investigate whether old pole cells have a different reproduction law from new pole ones, since
aging may also induce changes in the reproduction laws.

We estimated the parameters p(i)(l0, l1) of the reproduction laws of the underlying GW process.
Table 3 gives the estimations p̂(i)

9 (l0, l1) of the p(i)(l0, l1). The estimation of the dominant eigenvalue

Table 3: Estimation and 95 % CI of p.
parameter estimation CI parameter estimation CI

p(0)(1, 1) 0.56060 [0.56055; 0.56065] p(1)(1, 1) 0.55928 [0.55923; 0.55933]
p(0)(1, 0) 0.03621 [0.03620; 0.03622] p(1)(1, 0) 0.04707 [0.04706; 0.04708]
p(0)(0, 1) 0.04740 [0.04739; 0.04741] p(1)(0, 1) 0.03755 [0.03754; 0.03756]
p(0)(0, 0) 0.35579 [0.35574; 0.35583] p(1)(0, 0) 0.35611 [0.35606; 0.35616]

π of the descendants matrix of the GW processes (characterizing extinction, see A.1) is π̂9 = 1.204
with CI [1.191; 1.217]. The non-extinction hypothesis (π > 1) is thus satisfied.

The means of the two reproduction laws p(0) and p(1) are estimated at m̂0
9 = 1.2048 and

m̂1
9 = 1.2032 respectively. The hypothesis of the equality of the mean numbers of offspring is not

rejected (p-value = 0.9). However, Table 3 shows that there is a statistically significative difference
between vectors p(0) and p(1) as none of the confidence intervals intersect. Indeed, the symmetry
hypothesis p(0) = p(1) is rejected with p-value = 2 · 10−5. However, it is not possible to interpret
this asymmetry in terms of the division of E. coli, since the cause of missing data is mostly due to
observation difficulties rather than some intrinsic behavior of the cells.
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5 Conclusion
In this paper, we first propose a statistical model to estimate and test asymmetry of a quantitative
characteristic associated to each node of a family of incomplete binary trees, without aggregating
single tree estimators. An immediate application is the investigation of asymmetry in cell lineage
data. This model of coupled GW-BAR process generalizes all the previous methods on this subject
in the literature because it rigorously takes into account:

• the dependence of the characteristic of a cell to that of its mother and the correlation between
two sisters through the BAR model,

• the possibly missing data through the GW model,

• the information from several sets of data obtained in similar experimental conditions without
the drawbacks of poor accuracy or power for small single trees.

Furthermore, we propose the estimation of parameters of a two-type GW process in a specific
context of a binary tree and a fine observation, namely the presence or absence of each cell of the
complete binary tree is known. Again the asymmetry of the parameters of the GW process could
be applied to cell lineage data and be interpreted as a difference in the reproduction laws between
the two different types of cell.

We applied our procedure to the E. coli stat of [16] and concluded there exists a statistically
significant asymmetry in this cell division.

A Technical assumptions and notation
Our convergence results rely on martingale theory and the use of several carefully chosen filtrations
regarding the BAR and/or GW process. The approach is similar to that of [3, 4], but their results
cannot be directly applied here. This is mainly due to our choice of the global non extinction set
as the union and not the intersection of the extinction sets of each replicated process. We now give
some additional notation and the precise assumptions of our convergence theorems.

A.1 Generations and extinction
We first introduce some notation about the complete and observed genealogy trees that will be used
in the sequel. For all n ≥ 1, denote the n-th generation of any given tree by Gn = {k, 2n ≤ k ≤
2n+1 − 1}. In particular, G0 = {1} is the initial generation, and G1 = {2, 3} is the first generation
of offspring from the first ancestor. Denote by Tn =

⋃n
`=0 G` the sub-tree of all individuals from

the original individual up to the n-th generation. Note that the cardinality |Gn| of Gn is 2n, while
that of Tn is |Tn| = 2n+1 − 1. Finally, we define the sets of observed individuals in each tree
G∗j,n = {k ∈ Gn : δ(j,k) = 1} and T∗j,n = {k ∈ Tn : δ(j,k) = 1}, and set

|G∗n| =
m∑

j=1

|G∗j,n| and |T∗n| =
m∑

j=1

|T∗j,n|,

the total number of observed cells in allm trees in generation n and up to generation n respectively.
We next need to characterize the possible extinction of the GW processes, that is where |T∗n| does
not tend to infinity with n. For 1 ≤ j ≤ m and n ≥ 1, we define the number of observed cells
among the n-th generation of the j-th tree, distinguishing according to their type, by

Z0
j,n =

∑

k∈Gn−1

δ(j,2k) and Z1
j,n =

∑

k∈Gn−1

δ(j,2k+1),

and we set Zj,n = (Z0
j,n, Z

1
j,n). For all j, the process (Zj,n) thus defined is a two-type GW process,

see [10]. We define the descendants matrix P of the GW process by

P =
(
p00 p01

p10 p11

)
,
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where pi0 = p(i)(1, 0) + p(i)(1, 1) and pi1 = p(i)(0, 1) + p(i)(1, 1), for i ∈ {0, 1}. The quantity
pil is thus the expected number of descendants of type l of an individual of type i. It is well-
known that when all the entries of the matrix P are positive, P has a positive strictly dominant
eigenvalue, denoted π, which is also simple and admits a positive left eigenvector, see e.g. [10,
Theorem 5.1]. In that case, we denote by z = (z0, z1) the left eigenvector of P associated with
the dominant eigenvalue π and satisfying z0 + z1 = 1. Let Ej =

⋃
n≥1{Zj,n = (0, 0)} be the event

corresponding to the case when there are no cells left to observe in the j-th tree. We will denote
Ej the complementary set of Ej . We are interested in asymptotic results on the set where there is
an infinity of X(j,k) to be observed that is on the union of the non-extinction sets Ej denoted by

E =
m⋃

j=1

Ej = { lim
n→∞

|T∗n| =∞}.

Note that we allow some trees to extinct, as long as there is at least one tree still growing.

A.2 Assumptions
Our inference is based on the m i.i.d. replicas of the observed BAR process, i.e. the available
information is given by the sequence (δ(j,k), δ(j,k)X(j,k))1≤j≤m,k≥1. We first introduce the natural
generation-wise filtrations of the BAR processes. For all 1 ≤ j ≤ m, denote by Fj = (Fj,n)n≥1 the
natural filtration associated with the j-th copy of the BAR process, which means that Fj,n is the σ-
algebra generated by all individuals of the j-th tree up to the n-th generation, Fj,n = σ{X(j,k), k ∈
Tn}. For all 1 ≤ j ≤ m, we also define the observation filtrations as Oj,n = σ{δ(j,k), k ∈ Tn}, and
the sigma fields Oj = σ{δ(j,k), k ≥ 1}.

We make the following main assumptions on the BAR and GW processes.

(H.0) The parameters (a, b, c, d) satisfy the usual stability assumption 0 < max{|b|, |d|} < 1.

(H.1) For all 1 ≤ j ≤ m, n ≥ 0, k ∈ Gn+1, E[ε16(j,k)] <∞ and E[X16
(j,1)] <∞.

For all 1 ≤ j ≤ m, n ≥ 0 and k ∈ Gn+1, one a.s. has

E[ε(j,k)|Fj,n] = 0, E[ε2(j,k)|Fj,n] = σ2, E[ε3(j,k)|Fj,n] = λ, E[ε4(j,k)|Fj,n] = τ4,

E[ε8(j,k)|Fj,n] = γ8, E[ε16(j,k)|Fj,n] = µ16.

For all 1 ≤ j ≤ m, n ≥ 0, k ∈ Gn, one a.s. has

E[ε(j,2k)ε(j,2k+1)|Fj,n] = ρ, E[ε2(j,2k)ε
2
(j,2k+1)|Fj,n] = ν2, E[ε8(j,2k)ε

8
(j,2k+1)|Fj,n] = η8,

E[ε2(j,2k)ε(j,2k+1)|Fj,n] = α, E[ε(j,2k)ε2(j,2k+1)|Fj,n] = β.

(H.2) For all 1 ≤ j ≤ m and n ≥ 0 the vectors {(ε(j,2k), ε(j,2k+1)), k ∈ Gn} are conditionally
independent given Fj,n.

(H.3) The sequences (ε(1,k))k≥2, (ε(2,k))k≥2, . . . , (ε(m,k))k≥2 are independent. The random vari-
ables (X(j,1))1≤j≤m are independent and independent from the noise sequences.

(H.4) For all 1 ≤ j ≤ m, the sequence (δ(j,k))k≥1 is independent from the sequences (X(j,k))k≥1

and (ε(j,k))k≥2.

(H.5) The sequences (δ(1,k))k≥2, (δ(2,k))k≥2, . . . , (δ(m,k))k≥2 are independent.

We also make the following super criticality assumption on the matrix P.

(H.6) All entries of the matrix P are positive: for all (i, l) ∈ {0, 1}2, pil > 0, and the dominant
eigenvalue is greater than one: π > 1 .

If π > 1, it is well known, see e.g. [10], that the extinction probability of the GW processes is less
than one: for all 1 ≤ j ≤ m, P(Ej) = p < 1. Under assumptions (H.5-6), one thus clearly has
P(E) = 1− pm > 0.
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A.3 Additional estimators
From the estimators of the reproductions probabilities of the GW process, one can easily construct
an estimator of the spectral radius π of the descendants matrix P of the GW process. Indeed, P is
a 2×2 matrix so that its spectral radius can be computed explicitly as a function of its coefficients,
namely

π =
1
2

(
tr(P) +

(
tr(P)2 − 4 det(P)

)1/2)
.

Replacing the coefficients of P by their empirical estimators, one obtains

π̂n =
1
2
(
T̂n + (T̂ 2

n − 4D̂n)1/2
)
.

where

T̂n = p̂(0)
n (1, 0) + p̂(0)

n (1, 1) + p̂(1)
n (0, 1) + p̂(1)

n (1, 1),

D̂n = (p̂(0)
n (1, 0) + p̂(0)

n (1, 1))(p̂(1)
n (0, 1) + p̂(1)

n (1, 1))− (p̂(0)
n (0, 1) + p̂(0)

n (1, 1))(p̂(1)
n (1, 0) + p̂(1)

n (1, 1))

are the empirical estimator of the trace tr(P) and the determinant det(P) respectively. Finally,
to compute confidence intervals for σ2 and ρ, we need an estimation of higher moments. We use
again empirical estimators

τ̂4
n =

1
|T∗n|

m∑

j=1

∑

k∈Tn−1

(ε̂4(j,2k) + ε̂4(j,2k+1)), ν̂2
n =

1
|T∗01n−1|

m∑

j=1

∑

k∈Tn−1

ε̂2(j,2k)ε̂
2
(j,2k+1).

B Convergence of estimators for the GW process
We now prove the convergence of the estimators for the GW process, that is the first parts of
Theorems 3.1 and 3.2, together with additional technical results.

B.1 Preliminary results: from single trees to multiple trees
Our first objective is to show that we can adapt the results in [3] to the multiple tree framework.
To this aim, we first need to recall Lemma A.3 of [1].

Lemma B.1 Let (An) be a sequence of real-valued matrices such that

∞∑

n=0

‖An‖ <∞ and lim
n→∞

n∑

k=0

Ak = A.

In addition, let (Xn) be a sequence of real-valued vectors which converges to a limiting value X.
Then, one has

lim
n→∞

n∑

`=0

An−`X` = AX.

The next result is an adaptation of Lemma A.2 in [1] to the GW tree framework. It gives a
correspondence between sums on one generation and sums on the whole tree.

Lemma B.2 Let (xn) be a sequence of real numbers and π > 1. One has

lim
n→∞

1
πn

∑

k∈Tn

xk = x⇐⇒ lim
n→∞

1
πn

∑

k∈Gn

xk =
π − 1
π

x.

Proof: Suppose that π−n
∑
k∈Tn

xk converges to x. Then one has

1
πn

∑

k∈Gn

xk =
1
πn

∑

k∈Tn

xk −
1
π

1
πn−1

∑

k∈Tn−1

xk −−−−→
n→∞

x− 1
π
x =

π − 1
π

x.
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Conversely, if π−n
∑
k∈Gn

xk converges to y, as Tn = ∪n`=0G`, one has

1
πn

∑

k∈Tn

xk =
n∑

`=0

1
πn−`

1
π`

∑

k∈G`

xk −−−−→
n→∞

π

π − 1
y,

using Lemma B.1 with An = π−n and Xn = π−n
∑
k∈Gn

xk. �

We now adapt Lemma 2.1 of [3] to our multiple tree framework.

Lemma B.3 Under assumption (H.5-6), there exist a nonnegative random variable W such that
for all sequences (x(1,n)), . . . , (x(m,n)) of real numbers one has a.s.

lim
n→∞

1{|G∗n|>0}
|T∗n|

m∑

j=1

∑

k∈Tn

x(j,k) = x1E ⇐⇒ lim
n→∞

1
πn

m∑

j=1

∑

k∈Tn

x(j,k) = x
π

π − 1
W.

Proof: We use a well known property of super-critical GW processes, see e.g. [10]: for all j, there
exists a non negative random variable Wj such that

lim
n→∞

|T∗j,n|
πn

=
π

π − 1
Wj a.s. (4)

and in addition {Wj > 0} = Ej = lim{|G∗j,n| > 0}. Therefore, one has

lim
n→∞

m∑

j=1

|T∗j,n|
πn

= lim
n→∞

|T∗n|
πn

=
π

π − 1

m∑

j=1

Wj a.s.

The result is obtained by setting W =
∑m
j=1Wj and noticing that E = ∪mj=1Ej = {∑m

j=1Wj >
0} = lim{|G∗n| > 0}. �

Finally, the main result of this section is new and explains how convergence results on multiple
trees can be obtained from convergence results on a single tree. This will allow us to directly use
results from [3] in all the sequel.

Lemma B.4 Let (x(1,n)), . . . , (x(m,n)) be m sequences of real numbers such that for all 1 ≤ j ≤ m
one has the a.s. limit

lim
n→∞

1{|G∗j,n|>0}

|T∗j,n|
∑

k∈Tn

x(j,k) = `1Ej
, (5)

then under assumptions (H.5-6) one also has

lim
n→∞

1{|G∗n|>0}
|T∗n|

m∑

j=1

∑

k∈Tn

x(j,k) = `1E a.s.

Proof: Equations (5) and (4) yield, for all j,

lim
n→∞

1
πn

∑

k∈Tn

x(j,k) = `
π − 1
π

Wj .

Summing over j, one obtains

lim
n→∞

1
πn

m∑

j=1

∑

k∈Tn

x(j,k) = `
π − 1
π

m∑

j=1

Wj = `
π − 1
π

W.

Finally, we use Lemma B.3 to conclude. �
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B.2 Strong consistency for the estimators of the GW process

To prove the convergence of the p̂(i)
n (l0, l1) we first need to derive a convergence result for a sum

of independent GW processes.

Lemma B.5 Suppose that assumptions (H.5-6) are satisfied. Then for i ∈ {0, 1} one has

lim
n→∞

1{|G∗n|>0}|T∗n|−1
m∑

j=1

∑

k∈Tn−1

δ(j,2k+i) = zi1E a.s.

Proof Remarking that
∑m
j=1

∑
k∈Tn−1

δ(j,2k+i) =
∑m
j=1

∑n
l=1 Z

i
j,l, the lemma is a direct conse-

quence of Lemma B.4 and the well-known property of super-critical GW processes 1{|G∗j,n|>0}|T∗j,n|−1
∑n
l=1 Zj,l →

z1E , for all 0 ≤ j ≤ m. �

Proof of Theorem 3.1, first part We give the details of the convergence of p̂(1)
n (1, 1) to p(1)(1, 1), the

other convergences are derived similarly. The proof relies on the convergence of square integrable
scalar martingales. Set

Mn =
m∑

j=1

∑

k∈Tn−2

δ(j,2k+1)

(
δ(j,4k+2)δ(j,4k+3) − p(1)(1, 1)

)
.

We are going to prove that (Mn) is a martingale for a well chosen filtration. Recall that Oj,n =
σ{δ(j,k), k ∈ Tn}, and set On = ∨mj=1Oj,n. Then (Mn) is clearly a square integrable real (On)-
martingale. Using the independence assumption (H.5), its increasing process is

< M >n=
m∑

j=1

∑

k∈Tn−2

δ(j,2k+1)p
(1)(1, 1)

(
1− p(1)(1, 1)

)
= p(1)(1, 1)

(
1− p(1)(1, 1)

) m∑

j=1

n−1∑

`=0

Z1
j,`.

Hence, Lemma B.5 implies that |T∗n−1|−1 < M >n converges almost surely on the non extinction
set E . The law of large numbers for scalar martingales thus yields that |T∗n−1|−1Mn tends to 0 as
n tends to infinity on E . Finally, notice that

p̂(1)
n (1, 1)− p(1)(1, 1) =

Mn∑m
j=1

∑
k∈Tn−2

δ(j,2k+1)
=

Mn∑m
j=1

∑n−1
`=0 Z

1
j,`

,

so that Lemma B.5 again implies the almost sure convergence of p̂(1)
n (1, 1) to p(1)(1, 1) on the non

extinction set E . �

As a direct consequence, one obtains the a.s. convergence of π̂n to π on E .

B.3 Asymptotic normality for the estimators of the GW process
As P(E) 6= 0, we can define a new probability PE by PE(A) = P(A ∩ E)/P(E) for all event A. In
all the sequel of this section, we will work on the space E under the probability PE and we denote
by EE the corresponding expectation. We can now turn to the proof of the asymptotic normality
of p̂n. The proof also relies on martingale theory. As the normalizing term in our central limit
theorem is random, we use the central limit theorem for martingales given in Theorem 2.1.9 of [6]
that we first recall as Theorem B.6 for self-completeness.

Theorem B.6 Suppose that (Ω,A, P ) is a probability space and that for each n we have a filtration
Fn = (F (n)

k ), a stopping time νn relative to Fn and a real, square-integrable vector martingale
M (n) = (M (n)

k )k≥0 which is adapted to Fn and has hook denoted by < M >(n). We make the
following two assumptions.

A.1 For a deterministic symmetric positive semi-definite matrix Γ

< M >(n)
νn

P−→ Γ.

11



A.2 Lindeberg’s condition holds; in other words, for all ε > 0,
νn∑

k=1

E
(
‖M (n)

k −M (n)
k−1‖21{‖M(n)

k −M(n)
k−1‖>ε}

| F (n)
k−1

)
P−→ 0.

Then:
M (n)
νn

L−→ N (0,Γ).

Proof of Theoremn3.2, first part First, set

V =
(

V0/z0 0
0 V1/z1

)
(6)

where for all i in {0, 1}, Vi = Wi − p(i)(p(i))t, Wi is a 4 × 4 matrix with the entries of p(i) on
the diagonal and 0 elsewhere. We are going to prove that V is the asymptotic variance of p̂n − p
suitably normalized. We use Theorem B.6. We first need to define a suitable filtration. Here, we
use the first cousins filtration defined as follows. Let

Hj,p = σ{δ(j,1), . . . δ(j,3), (δ(j,4k), . . . , δ(j,4k+3)), 1 ≤ k ≤ p}
be the σ-field generated by all the 4-tuples of observed cousin cells up the granddaughters of
cell (j, p) in the j-th tree and Hp = ∨mj=1Hj,p. Hence, the 4-tuple (δ(j,4k), . . . , δ(j,4k+3)) is Hk-
measurable for all j. By definition of the reproduction probabilities p(i)(l0, l1), the processes

(
δ(j,2k+i)(φl0(δ(j,2(2k+i)))φl1(δ(j,2(2k+i)+1))− p(i)(l0, l1)

)
k≥1

are (Hk)-martingale difference sequences. We thus introduce a sequence of (Hk)-martingales
(M(n)

p ){p≥1} defined for all n ≥ 1 and p ≥ 1 by

M(n)
p = |T∗n−1|−1/2

p∑

k=1

m∑

j=1

D(j,k),

with D(j,k) =
(
(D0

(j,k))
t, (D1

(j,k))
t
)t and

Di
(j,k) = δ(j,2k+i)




(1− δ(j,2(2k+i)))(1− δ(j,2(2k+i)+1))− p(i)(0, 0)
(1− δ(j,2(2k+i)))δ(j,2(2k+i)+1) − p(i)(0, 1)
δ(j,2(2k+i))(1− δ(j,2(2k+i)+1))− p(i)(1, 0)
δ(j,2(2k+i))δ(j,2(2k+i)+1) − p(i)(1, 1)


 .

We also introduce the sequence of stopping times νn = |Tn−2| = 2n−1 − 1. One has

EE [D(j,k)Dt
(j,k)|Hk−1] =

(
δ(j,2k)V0 0

0 δ(j,2k+1)V1

)
.

Therefore the one has < M(n) >νn
= |T∗n−1|−1

∑m
j=1

∑n−1
`=0

(
Z0
j,`V

0 0
0 Z1

j,`V
1

)
, so that its PE

almost sure limit is
Γ′ =

(
z0V0 0

0 z1V1

)
,

thanks to Lemma B.5. Therefore, assumption A.1 of Theorem B.6 holds under PE . The Lindeberg
condition A.2 is obviously satisfied as we deal with finite support distributions. We then conclude
that under PE one has

|T∗n−1|−1/2M(n)
νn

= |T∗n−1|−1/2
m∑

j=1

∑

k∈T∗n−2

D(j,k)
L−→ N (0,Γ′).

Using the relation

p̂n − p =

(
(
∑m
j=1

∑n−1
`=0 Z

0
j,`)I4 0

0 (
∑m
j=1

∑n−1
`=0 Z

1
j,`)I4

)−1

M(n)
νn
,

Lemma B.5 and Slutsky’s Lemma give the first part of Theorem 3.2. �
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B.4 Interval estimation and tests for the GW process
From the central limit theorem 3.2 one can easily build asymptotic confidence intervals for our
estimators. In our context, Yn and Y ′n being two random variables, we will say that [Yn;Y ′n] is an
asymptotic confidence interval with confidence level 1 − ε for the parameter Y if PE

(
Yn ≤ Y ≤

Y ′n
)
−−−−→
n→∞

(1 − ε). For any 0 ≤ ε ≤ 1, let q1−ε/2 be the 1 − ε/2 quantile of the standard normal
law.

For all n ≥ 2, define the 8× 8 matrix

V̂n =

(
V̂0
n

(∑m
j=1

∑
k∈Tn−2

δ(j,2k)
)−1 0

0 V̂1
n

(∑m
j=1

∑
k∈Tn−2

δ(j,2k+1)

)−1
,

)

where for all i in {0, 1}, V̂i
n = Ŵi

n − p̂(i)
n (p̂(i)

n )t, Ŵi
n is a 4× 4 matrix with the entries of p̂(i)

n on
the diagonal and 0 elsewhere. Thus, |T∗n−1|V̂n is an empirical estimator of the covariance matrix
V.

Theorem B.7 Under assumptions (H.5-6), for i, l0, l1 in {0, 1} and for any 0 < ε < 1, the random
interval defined by

[
p̂(i)
n (l0, l1)− q1−ε/2(V̂1/2

n )`,` ; p̂(i)
n (l0, l1) + q1−ε/2(V̂1/2

n )`,`
]

is an asymptotic confidence interval with level 1− ε for p(i)(l0, l1); where (`, `) is the coordinate of
Vn corresponding to p(i)(l0, l1), namely ` = 4i+ 1 + 2l0 + l1.

Proof This is a straightforward consequence of the central limit Theorem 3.2 together with Stul-
sky’s lemma as limn→∞ |T∗n−1|V̂n = V PE a.s. thanks to Lemma B.5 and Theorem 3.1. �

Set Ĝn = F̂tnV̂nF̂n, where F̂n is the 8× 1 vector defined by

F̂n =
1
2
(

0, 0, 1, 1, 0, 1, 0, 1
)t +

1
2

(T̂ 2
n − 4D̂n)−1/2Ĥn

and

Ĥn =




0
2p̂(1)
n (1, 0) + 2p̂(1)

n (1, 1)
p̂
(0)
n (1, 0) + p̂

(0)
n (1, 1)− p̂(1)

n (0, 1)− p̂(1)
n (1, 1)

p̂
(0)
n (1, 0) + p̂

(0)
n (1, 1)− p̂(1)

n (0, 1) + 2p̂(1)
n (1, 0) + p̂

(1)
n (1, 1)

0
−p̂(0)

n (1, 0)− p̂(0)
n (1, 1) + p̂

(1)
n (0, 1) + p̂

(1)
n (1, 1)

2p̂(0)
n (0, 1) + 2p̂(0)

n (1, 1)
2p̂(0)
n (0, 1)− p̂(0)

n (1, 0) + p̂
(0)
n (1, 1) + p̂

(1)
n (0, 1) + p̂

(1)
n (1, 1)




.

Theorem B.8 Under assumptions (H.5-6), for any 0 < ε < 1 one has that
[
π̂n − q1−ε/2Ĝ1/2

n ; π̂n + q1−ε/2Ĝ
1/2
n

]

is an asymptotic confidence interval with level 1− ε for π.

Proof This is again a straightforward consequence of the central limit Theorem 3.2 together with
Stulsky’s lemma as F̂n is the gradient of the function that maps the vector p̂ onto the estimator
π̂n. �

We propose two symmetry tests for the GW process. The first one compares the average number
of offspring m0 of a cell of type 0: m0 = p(0)(1, 0) + p(0)(0, 1) + 2p(0)(1, 1) to that of a cell of type
1: m1 = p(1)(1, 0) + p(1)(0, 1) + 2p(1)(1, 1). Denote by m̂0

n and m̂1
n their empirical estimators. Set

• Hm
0 : m0 = m1 the symmetry hypothesis,
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• Hm
1 : m0 6= m1 the alternative hypothesis.

Let Y mn be the test statistic defined by

Y mn = |T∗n−1|1/2(∆̂m
n )−1/2(m̂0

n − m̂1
n),

where ∆̂m
n = |T∗n−1|dgtmV̂ndgm and dgm = (0, 1, 1, 2, 0 − 1,−1,−2)t. This test statistic has the

following asymptotic properties.

Theorem B.9 Under assumptions (H.5-6) and the null hypothesis Hm
0 , one has

(Y mn )2 L−→ χ2(1)

on (E ,PE); and under the alternative hypothesis Hm
1 , almost surely on E one has

lim
n→∞

(Y mn )2 = +∞.

Proof Let gm be the function defined from R8 onto R by gm(x1, . . . , x8) = x2+x3+2x4−x6−x7−2x8

so that dgm is the gradient of gm. Thus, the central limit Theorem 3.2 yields
√
|T∗n−1|

(
gm(p̂n)− gm(p)

) L−→ N (0,dgm
tVdgm) = N (0,∆m)

on (E ,PE). Under the null hypothesis Hm
0 , gm(p) = 0, so that one has

|T∗n−1|(∆m)−1gm(p̂n)2 L−→ χ2(1)

on (E ,PE). Lemma B.5 and Theorem 3.1 give the almost sure convergence of ∆̂m
n to ∆m. Hence

Slutsky’s Lemma yields the expected result. Under the alternative hypothesis Hm
1 , one has

Y mn = (∆̂m
n )−1/2

(√
|T∗n−1|

(
gm(p̂n)− gm(p)

)
+
√
|T∗n−1|gm(p)

)
.

The first term converges to a centered normal law and the second term tends to infinity as |T∗n−1|
tends to infinity a.s. on (E ,PE). �

Our next test compares the reproduction probability vectors of mother cells of type 0 and 1.

• Hp
0 : p(0) = p(1) the symmetry hypothesis,

• Hp
1 : p(0) 6= p(1) the alternative hypothesis.

Let (Yp
n)tYp

n be the test statistic defined by

Yp
n = |T∗n−1|1/2(∆̂p

n)−1/2(p̂(0) − p̂(1)),

where ∆̂p
n = |T∗n−1|dgtpV̂ndgp and dgp =

(
I4

−I4

)
. This test statistic has the following asymp-

totic properties.

Theorem B.10 Under assumptions (H.5-6) and the null hypothesis Hp
0 , one has

(Yp
n)tYp

n
L−→ χ2(4)

on (E ,PE); and under the alternative hypothesis Hp
1 , almost surely on E one has

lim
n→∞

‖Yp
n‖2 = +∞.

Proof We mimic the proof of Theorem B.9 with gp the function defined from R8 onto R4 by
gp(x1, . . . , x8) = (x1 − x5, x2 − x6, x3 − x7, x4 − x8)t, so that dgp is the gradient of gp. �
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C Convergence of estimators for the BAR process
We now prove the convergence of the estimators for the BAR process, that is the parts of Theo-
rems 3.1 and 3.2 concerning θ̂n, σ̂2

n and ρ̂n, together with additional technical results, especially
the convergence of higher moment estimators required to estimate the asymptotic variances.

C.1 Preliminary results: laws of large numbers
In this section, we want to study the asymptotic behavior of various sums of observed data. Most
of the results are directly taken from [3]. All external references in this section refer to that paper
that will not be cited each time. However, we need additional results concerning higher moments
of the BAR process in order to obtain the consistency of τ̂4

n and ν̂2
n, as there is no such result in

[3]. We also give all the explicit formulas so that the interested reader can actually compute the
various asymptotic variances.

Again, our work relies on the strong law of large numbers for square integrable martingales.
To ensure that the increasing processes of our martingales are at most O(πn) we first need the
following lemma.

Lemma C.1 Under assumptions (H.0-6), for all i ∈ {0, 1} one has

m∑

j=1

∑

k∈Tn

δ(j,2k+i)X
8
(j,k) = O(πn) a.s.

Proof The proof follows the same lines as that of Lemma 6.1. The constants before the terms Ain,
Bin and Cin therein are replaced respectively by (4/(1 − β))7, α8(4/(1 − β))7 and 28; in the term
Ain, ε2 is replaced by ε8; in the term Cin, β2rk is replaced by β8rk ; the term Bin is unchanged. In
the expression of E[(Y i`,p)

2], one just needs to replace τ4 by µ16, σ4 by γ16 and ν2τ4 by η8. Note
that the various moments of the noise sequence are defined in assumption (H.1). The rest of the
proof is unchanged. �

We also state some laws of large numbers for the noise processes.

Lemma C.2 Under assumptions (H.0-6), for all i ∈ {0, 1} and for all integers 0 ≤ q ≤ 4, one has

1
πn

m∑

j=1

∑

k∈Tn−1

δ(j,2k+i)ε
q
(j,2k+i) =

π

π − 1
WziE[εq(1,2+i)] a.s.

Proof This is also a direct consequence of [3] thanks to Lemmas B.3 and B.4. Lemma 5.3 provides
the result for q = 0, Lemma 5.5 for q = 1, Corollary 5.6 for q = 2 and Lemma 5.7 for q = 4. The
result for q = 3 is obtained similarly. �

In view of these new stronger results, we can now state our first laws of large numbers for the
observed BAR process. For i ∈ {0, 1} and all integers 1 ≤ q ≤ 4 let us now define

Hi
n(q) =

m∑

j=1

Hi
j,n(q) =

m∑

j=1

∑

k∈Tn

δ(j,2k+i)X
q
(j,k), H01

n (q) =
m∑

j=1

H01
j,n(q) =

m∑

j=1

∑

k∈Tn

δ(j,2k)δ(j,2k+1)X
q
(j,k),

and Hn(q) = (H0
n(q), H1

n(q))t.

Lemma C.3 Under assumptions (H.0-6) and for all integers 1 ≤ q ≤ 4, one has the following a.s.
limits on the non extinction set E

lim
n→∞

1{|G∗n|>0}|T∗n|−1Hn(q) = h(q) = (I2 − P̃q)−1Pth̃(q),

lim
n→∞

1{|G∗n|>0}|T∗n|−1H01
n (q) = h01(q) = p(0)(1, 1)

(
h̃0(q) + bq

h0(q)
π

)
+ p(1)(1, 1)

(
h̃1(q) + dq

h1(q)
π

)
,
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where

P̃q = π−1Pt

(
bq 0
0 dq

)
, h(q) =

(
h0(q)
h1(q)

)
, h̃(q) =

(
h̃0(q)
h̃1(q)

)
,

and

h̃0(1) = az0, h̃1(1) = cz1,

h̃0(2) = (a2 + σ2)z0 + 2abh0(1)π−1, h̃1(2) = (c2 + σ2)z1 + 2cdh1(1)π−1,

h̃0(3) = (a3 + 3aσ2 + λ)z0 + 3b(a2 + σ2)h0(1)π−1 + 3ab2h0(2)π−1,

h̃1(3) = (c3 + 3cσ2 + λ)z1 + 3d(c2 + σ2)h1(1)π−1 + 3cd2h1(2)π−1,

h̃0(4) = (a4 + 6a2σ2 + 4aλ+ τ4)z0 + 4b(a3 + 3aσ2 + λ)h0(1)π−1 + 6b2(a2 + σ2)h0(2)π−1 + 4ab3h0(3)π−1,

h̃1(4) = (c4 + 6c2σ2 + 4cλ+ τ4)z1 + 4d(c3 + 3cσ2 + λ)h1(1)π−1 + 6d2(c2 + σ2)h1(2)π−1 + 4cd3h1(3)π−1.

Proof The results for q = 1 and q = 2 come from Propositions 6.3, 6.5 and 6.6 together with
Lemma B.4. The proofs for q ≥ 3 follow the same lines, using Lemma C.2 when required and
Lemma C.1 to bound the increasing processes of the various martingales at stake. �

To prove the consistency of our estimators, we also need some additional families of laws of
large numbers.

Lemma C.4 Under assumptions (H.0-6), for i ∈ {0, 1} and for all integers 1 ≤ p + q ≤ 4, one
has the following a.s. limits

1{|G∗n|>0}|T∗n|−1
m∑

j=1

∑

k∈Tn

δ(j,2k+i)X
p
(j,k)ε

q
(j,2k+i) = E[εq2+i]h

i(p)1E .

Proof The proof is similar to that of Theorem 3.1. For all 1 ≤ j ≤ m, one has

∑

k∈Tn

δ(j,2k+i)X
p
(j,k)ε

q
(j,2k+i) =

n∑

`=0

∑

k∈G`

δ(j,2k+i)X
p
(j,k)

(
εq(j,2k+i) − E[εq(j,2k+i) | FOj,`]

)
+ E[εq2+i]

∑

k∈Tn

δ(j,2k+i)X
p
(j,k),

as the conditional moment of ε2k+i are constants by assumption (H.1). The first term is a square
integrable (FOj,n)-martingale and its increasing process is O(πn) thanks to Lemma C.1, thus the
first term is o(πn). The limit of the second term is given by Lemma C.3. �

Lemma C.5 Under assumptions (H.0-6), for i ∈ {0, 1} and for all integers 1 ≤ q ≤ 4, one has
the following a.s. limits

1{|G∗n|>0}|T∗n|−1
m∑

j=1

∑

k∈Tn

δ(j,2k+i)X
q
(j,2k+i) =

(
πh̃i(q) + bqhi(q)

)
1E .

Proof The proof is obtained by replacing X(j,2k+i) by a+ bXk + ε2k if i = 0 or c+ dXk + ε2k+1 if
i = 1. One then develops the exponent and uses Lemmas B.5, C.2, C.3 and C.4 to conclude. �

Lemma C.6 Under assumptions (H.0-6), for i ∈ {0, 1} and for all integers 1 ≤ p + q ≤ 4, one
has the following a.s. limits

1{|G∗n|>0}|T∗n|−1
m∑

j=1

∑

k∈Tn

δ(j,2k+i)X
p
(j,k)X

q
(j,2k+i) = hi(p, q)1E ,

with

h0(p, 1) = ah0(p) + bh0(p+ 1), h1(p, 1) = ch1(p) + dh1(p+ 1)),
h0(p, 2) = (a2 + σ2)h0(p) + 2abh0(p+ 1) + b2h0(p+ 2),
h1(p, 2) = (c2 + σ2)h1(p) + 2cdh1(p+ 1) + d2h1(p+ 2),
h0(p, 3) = (a3 + 3aσ2 + λ)h0(p) + 3b(a2 + σ2)h0(p+ 1) + 3ab2h0(p+ 2) + b3h0(p+ 3),
h1(p, 3) = (c3 + 3cσ2 + λ)h1(p) + 3d(c2 + σ2)h1(p+ 1) + 3cd2h1(p+ 2) + d3h1(p+ 3),

where we used the convention hi(0) = ziπ.
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Proof As above, the proof is obtained by replacing X(j,2k+i) and developing the exponents. Then
one uses Lemmas B.5, C.2, C.3 and C.4 to compute the limits. �

Lemma C.7 Under assumptions (H.5-6), one has the following a.s. limit

1{|G∗n|>0}|T∗n|−1
m∑

j=1

∑

k∈Tn

δ(j,2(2k+i))δ(j,2(2k+i)+1) = p(i)(1, 1)ziπ1E .

Proof First note that δ(j,2(2k+i))δ(j,2(2k+i)+1) = δ(j,2k+i)δ(j,2(2k+i))δ(j,2(2k+i)+1). The proof is then
similar to that of Theorem 3.1. One adds and subtract p(i)(1, 1) so that a martingale similar to
(Mn) naturally appears. The limit of the remaining term is given by Lemma B.5. �

Lemma C.8 Under assumptions (H.0-6), for all integers 0 ≤ p+ q+ r ≤ 4, one has the following
a.s. limits

1{|G∗n|>0}|T∗n|−1
m∑

j=1

∑

k∈Tn

δ(j,2k)δ(j,2k+1)X
p
(j,k)ε

q
(j,2k)ε

r
(j,2k+1) = E[εq2ε

r
3]h01(p)1E ,

where we used the convention h01(0) = p(0)(1, 1)z0 + p(1)(1, 1)z1.

Proof The proof is similar to Lemma C.4, one adds and subtracts the constant E[εq(j,2k)ε
r
(j,2k+1) | FOj,`].

�

Lemma C.9 Under assumptions (H.0-6), for all integers 1 ≤ p+ q+ r ≤ 4, one has the following
a.s. limits

1{|G∗n|>0}|T∗n|−1
m∑

j=1

∑

k∈Tn

δ(j,2k)δ(j,2k+1)X
p
(j,k)X

q
(j,2k)X

r
(j,2k+1) = h01(p, q, r)1E ,

with

h01(p, 1, 0) = ah01(p) + bh01(p+ 1), h01(p, 0, 1) = ch01(p) + dh01(p+ 1)),
h01(p, 2, 0) = (a2 + σ2)h01(p) + 2abh01(p+ 1) + b2h01(p+ 2),
h01(p, 0, 2) = (c2 + σ2)h01(p) + 2cdh01(p+ 1) + d2h011(p+ 2),
h01(p, 3, 0) = (a3 + 3aσ2 + λ)h01(p) + 3b(a2 + σ2)h01(p+ 1) + 3ab2h01(p+ 2) + b3h01(p+ 3),
h01(p, 0, 3) = (c3 + 3cσ2 + λ)h01(p) + 3d(c2 + σ2)h01(p+ 1) + 3cd2h01(p+ 2) + d3h01(p+ 3),
h01(p, 1, 1) = (ac+ ρ)h01(p) + (ad+ bc)h01(p+ 1) + bdh01(p+ 2),
h01(p, 2, 1) = ((a2 + σ2)c+ 2aρ+ α)h01(p) + ((a2 + σ2)d+ 2(ac+ ρ)b)h01(p+ 1)

+b(2ad+ bc)h01(p+ 2) + b2dh01(p+ 3),
h01(p, 1, 2) = ((c2 + σ2)a+ 2cρ+ β)h01(p) + ((c2 + σ2)b+ 2(ac+ ρ)d)h01(p+ 1)

+d(ad+ 2bc)h01(p+ 2) + bd2h01(p+ 3),
h01(0, 2, 2) = (a2c2 + a2σ2 + c2σ2 + ν2 + 2aβ + 2cα+ 4acρ)h01(0)

+2(b(a(c2 + σ2) + β + 2cρ) + d(c(a2 + σ2) + α+ 2aρ))h01(1)
(b2(c2 + σ2) + d2(a2 + σ2) + 4bd(ac+ ρ))h01(2) + 2bd(ad+ bc)h01(3) + b2d2h01(4).

Proof The proof is obtained by replacing X(j,2k) by a+ bXk + ε2k, X(j,2k) by c+ dXk + ε2k+1 and
developing the exponents. One uses Lemmas C.3 and C.8 to compute the limits. �

To conclude this section, we prove the convergence of the normalizing matrices S0
n, S1

n and S01
n

where

S01
n =

m∑

j=1

∑

k∈Tn

δ(j,2k)δ(j,2k+1)

(
1 X(j,k)

X(j,k) X2
(j,k)

)
,

with the sum taken over all observed cells that have observed daughters of both types.

17



Lemma C.10 Suppose that assumptions (H.0-6) are satisfied. Then, there exist definite positive
matrices L0, L1 and L01 such that for i ∈ {0, 1} one has

lim
n→∞

1{|G∗n|>0}|T∗n|−1Sin = 1EL
i, lim

n→∞
1{|G∗n|>0}|T∗n|−1S01

n = 1EL
01 a.s.

where
Li =

(
hi(0) hi(1)
hi(1) hi(2)

)
, L01 =

(
h01(0) h01(1)
h01(1) h01(2)

)
.

Proof This is a direct consequence of Lemmas B.5 and C.3. �

C.2 Strong consistency for the estimators of the BAR process
We could obtain the convergences of our estimators by sharp martingales results as in [3], see
also B.2. However, we chose the direct approach here. Indeed, our convergences are now direct
consequences of the laws of large numbers given in C.1.

Proof of Theorem 3.1, convergence of θ̂n This is a direct consequence of Lemmas C.10 and C.6.
Indeed, by Lemma C.6 one has

1{|G∗n−1|>0}

|T∗n−1|
Σn−1θ̂n =

1{|G∗n−1|>0}

|T∗n−1|
m∑

j=1

∑

k∈Tn−1




δ(j,2k)X(j,2k)

δ(j,2k)X(j,k)X(j,2k)

δ(j,2k+1)X(j,2k+1)

δ(j,2k+1)X(j,k)X(j,2k+1)


 −−−−→n→∞

(
L0 0
0 L1

)
θ1E .

And one concludes using Lemma C.10. �

Proof of Theorem 3.1, convergence of σ̂2
n and ρ̂n This result is not as direct as the preceding one

because of the presence of the ε̂k in the various estimators. Take for instance the estimator σ̂2
n.

For all 1 ≤ j ≤ m, one has

∑

k∈Tn−1

ε̂2(j,2k) =
n−1∑

`=0

∑

k∈G`

δ(j,2k)(X(j,2k) − â` − b̂`X(j,k))2

=
∑

k∈Tn−1

δ(j,2k)X
2
(j,2k) +

m∑

j=1

n−1∑

`=0

â2
`

∑

k∈G`

δ(j,2k) + 2
n−1∑

`=0

â`b̂`
∑

k∈G`

δ(j,2k)X(j,k)

+
n−1∑

`=0

b̂2`
∑

k∈G`

δ(j,2k)X
2
(j,k) − 2

n−1∑

`=0

â`
∑

k∈G`

δ(j,2k)X(j,2k)2
n−1∑

`=0

b̂`
∑

k∈G`

δ(j,2k)X(j,k)X(j,2k).

Let us study the limit of the last term. One has

1
πn

n−1∑

`=0

b̂`
∑

k∈G`

δ(j,2k)X(j,k)X(j,2k) =
1
π

n−1∑

`=0

1
πn−1−`

(
b̂`

1
π`

∑

k∈G`

δ(j,2k)X(j,k)X(j,2k)

)
.

We now use Lemma B.1 with An = π−n and Xn = b̂nπ
−n∑

k∈Gn
δ(j,2k)X(j,k)X(j,2k). We know

from Lemma C.6 together with Lemma B.2 that π−n
∑
k∈Gn

δ(j,2k)X(j,k)X(j,2k) converges to h0(1, 1)Wj ,
and the previous proof gives the convergence of b̂n. Thus, one obtains

1
πn

n−1∑

`=0

b̂`
∑

k∈G`

δ(j,2k)X(j,k)X(j,2k) −−−−→
n→∞

π2

π − 1
Wjbh

0(1, 1),

so that using Lemma B.4 one has

1{|G∗n|>0}
|T∗n|

m∑

j=1

n−1∑

`=0

b̂`
∑

k∈G`

δ(j,2k)X(j,k)X(j,2k) −−−−→
n→∞

bh0(1, 1)π−1.
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We deal with the other terms in the decomposition of the sum of ε̂22k in a similar way, using either
Lemma C.3, C.5 or C.6. We can also do the same for the sums of ε̂22k+1. Finally, one obtains the
almost sure limit on E

σ̂2
n −−−−→

n→∞
h̃0(2) + b2h0(2)π−1 + h̃1(2) + d2h1(2)π−1 + a2z0 + c2z1 + 2abh0(1)π−1 + 2cdh1(1)π−1 + b2h0(2)π−1

+d2h1(2)π−1 − 2a
(
h̃0(1) + b2h0(1)π−1

)
− 2c

(
h̃1(1) + d2h1(1)π−1

)
− 2bh0(1, 1)π−1 − 2dh1(1, 1)π−1

= (z0 + z1)σ2 = σ2.

To obtain the convergence of ρ̂n the approach is similar, using the convergence results given in
Lemmas C.3, C.7, C.8 and C.9. �

Theorem C.11 Under assumptions (H.0-6), τ̂4
n and ν̂2

n converge almost surely to τ4 and ν2 re-
spectively on E.

Proof We work exactly along the same lines as the previous proof with higher powers. �

C.3 Asymptotic normality for the estimators of the BAR process

We first give the asymptotic normality for θ̂n.

Proof of Theorem 3.2 for θ̂n Define the 4× 4 matrices

Σ =
(

L0 0
0 L1

)
, Γ =

(
σ2L0 ρL01

ρL01 σ2L1

)
, Γθ = Σ−1ΓΣ−1. (7)

We now follow the same lines as the proof of the first part of Theorem 3.2 with a different filtration.
This time we use the observed sister pair-wise filtration defined as follows. For 0 ≤ j ≤ m and
p ≥ 0, let

GOj,p = Oj ∨ σ{δ(j,1)X(j,1), (δ(j,2k)X(j,2k), δ(j,2k+1)X(j,2k+1)), 1 ≤ k ≤ p} (8)

be the σ-field generated by the j-th GW tree and all the pairs of observed sister cells in genealogy
j up to the daughters of cell (j, p), and let GOp = ∨mj=1GOj,p be the σ-field generated by the union of
all GOj,p for 1 ≤ j ≤ m. Hence, for instance, (δ(j,2k)ε(j,2k), δ(j,2k+1)ε(j,2k+1)) is GOk -measurable for
all j. In addition, assumptions (H.1) and (H.4-5) imply that the process

(δ(j,2k)ε(j,2k), X(j,k)δ(j,2k)ε(j,2k), δ(j,2k+1)ε(j,2k+1), X(j,k)δ(j,2k+1)ε(j,2k+1))t

is a (GOk )-martingale difference sequence. Indeed, as the non extinction set E is in GOk for every
k ≥ 1, it is first easy to prove that EE [δ(j,2k)ε(j,2k)|GOk−1] = E[δ(j,2k)ε(j,2k)|GOk−1]. Then, for k ∈ Gn,
using repeatedly the independence properties, one has

E[δ(j,2k)ε(j,2k)|GOk−1] = δ(j,2k)E
[
E[ε(j,2k)|O ∨ Fn ∨ σ(εj,p, 1 ≤ j ≤ m, p ∈ Gn+1, p ≤ 2k − 1)]

∣∣ GOk−1

]

= δ(j,2k)E
[
E[ε(j,2k)|Fn ∨ σ(εj,p, 1 ≤ j ≤ m, p ∈ Gn+1, p ≤ 2k − 1)]

∣∣ GOk−1

]

= δ(j,2k)E
[
E[ε(j,2k)|Fn]

∣∣ GOk−1

]
= δ(j,2k)E

[
E[ε(j,2k)|Fj,n]

∣∣ GOk−1

]
= 0.

We introduce a sequence of (GOk )-martingales (M(n)
p ){p≥1} defined for all n, p ≥ 1 by M(n)

p =
|T∗n|−1/2∑p

k=1 Dk, with

Dk =
m∑

j=1

D(j,k) =
m∑

j=1




δ(j,2k)ε(j,2k)
X(j,k)δ(j,2k)ε(j,2k)
δ(j,2k+1)ε(j,2k+1)

X(j,k)δ(j,2k+1)ε(j,2k+1)


 .
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We also introduce the sequence of stopping times νn = |Tn| = 2n+1 − 1. We are interested in the
convergence of the process M(n)

νn = |T∗n|−1/2∑|Tn|
k=1 Dk. Again, it is easy to prove that

EE [DkDt
k|GOk−1] = E[DkDt

k|GOk−1] =
m∑

j=1

(
σ2ϕ0

(j,k) ρϕ01
(j,k)

ρϕ01
(j,k) σ2ϕ1

(j,k)

)
,

where for i ∈ {0, 1},

ϕi(j,k) = δ(j,2k+i)

(
1 X(j,k)

X(j,k) X2
(j,k)

)
, ϕ01

(j,k) = δ(j,2k)δ(j,2k+1)

(
1 X(j,k)

X(j,k) X2
(j,k)

)
.

Lemma C.10 yields that the PE almost sure limit of the process< M(n) >νn
= |T∗n|−1∑

k∈Tn
EE [DkDt

k|GOk−1]
is Γ, as

∑

k∈Tn

EE [DkDt
k|GOk−1] =

(
σ2S0

n ρS01
n

ρS01
n σ2S1

n

)
.

Therefore, the assumption A.1 of Theorem B.6 holds under PE . Thanks to assumptions (H.1) and
(H.4-5) we can easily prove that for some r > 2, one has supk≥0 E[‖Dk‖r|GOk−1] <∞ a.s. which in
turn implies the Lindeberg condition A.2. We can now conclude that under PE one has

|T∗n−1|−1/2
∑

k∈T∗n−1

Dk
L−→ N (0,Γ).

Finally Eq. (2) implies that
∑
k∈T∗n−1

Dk = Σn−1(θ̂n − θ). Therefore, the result is a direct conse-
quence of Lemma C.10 together with Slutsky’s Lemma. �

We now turn to the asymptotic normality of σ̂2
n and ρ̂n. The direct application of the central

limit theorem for martingales to σ̂2
n and ρ̂n is not obvious because of the ε̂(j,2k+i). We proceed

along the same lines as in the proof of the convergence of σ̂2
n, using the decomposition along the

generations. However, this time we need a convergence rate for θ̂n in order to apply Lemma B.1.

Theorem C.12 Under assumptions (H.0-6), one has

1{|G∗n|>0}‖θ̂n − θ‖2 = O
(

log |T∗n−1|
|T∗n−1|

)
1E a.s.

Proof : This result is based on the asymptotic behavior of the martingale (Mn) defined as follows

Mn =
m∑

j=1

∑

k∈Tn−1




δ(j,2k)ε2j,k,
δ(j,2k)X(j,k)ε(j,2k),
δ(j,2k+1)ε(j,2k+1),

δ(j,2k+1)X(j,k)ε(j,2k+1)


 .

For all n ≥ 2, we readily deduce from the definitions of the BAR process and of our estimator θ̂n
that

θ̂n − θ = Σ−1
n−1

m∑

j=1

∑

k∈Tn−1




δ(j,2k)ε(j,2k)
δ(j,2k)X(j,k)ε(j,2k)
δ(j,2k+1)ε(j,2k+1)

δ(j,2k+1)X(j,k)ε(j,2k+1)


 = Σ−1

n−1Mn.

The sharp asymptotic behavior of (Mn) relies on properties of vector martingales. Thanks to
Lemma B.4, the proof follows exactly the same lines as that of the first part of Theorem 3.2 of [3]
and is not repeated here. �

We can now turn to the end of the proof of Theorem 3.2 concerning the asymptotic normality
of σ̂2

n and ρ̂n.
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Proof of Theorem 3.2, asymptotic normality of σ̂2
n Thanks to Eq. (1) and (3), we decompose σ̂2

n−σ2

into two parts Un and Vn

|T∗n|(σ̂2
n − σ2) =

m∑

j=1

n−1∑

`=0

∑

k∈G`−1

(ε̂2(j,2k) + ε̂2(j,2k+1) − ε2(j,2k) − ε2(j,2k+1))

+
m∑

j=1

n−1∑

`=0

∑

k∈G`−1

δ(j,2k)(ε2(j,2k) − σ2) + δ(j,2k+1)(ε2(j,2k+1) − σ2)

=
m∑

j=1

n−1∑

`=0

∑

k∈G`−1

u(j,k) +
m∑

j=1

n−1∑

`=0

∑

k∈G`−1

v(j,k) = Un + Vn,

with

u(j,k) = δ(j,2k)

(
(a− â`)2 + (b− b̂`)2X2

(j,k) + 2(a− â`)(b− b̂`)X(j,k)

)

+δ(j,2k+1)

(
(c− ĉ`)2 + (d− d̂`)2X2

(j,k) + 2(c− ĉ`l)(d− d̂`)X(j,k)

)
,

v(j,k) = δ(j,2k)

(
2((a− â`) + (b− b̂`)X(j,k))ε(j,2k) + ε2(j,2k) − σ2

)

+δ(j,2k+1)

(
2((c− ĉ`) + (d− d̂`)X(j,k))ε(j,2k+1) + ε2(j,2k+1) − σ2

)
.

We first deal with Un and study the limit of π−n/2Un. Let us just detail the first term

1
πn/2

m∑

j=1

n−1∑

`=0

∑

k∈G`−1

δ(j,2k)(a− â`)2 =
n−1∑

`=0

π(`−n)/2 `

π`/2
(a− â`)2
`π−`


 1
π`

m∑

j=1

∑

k∈G`−1

δ(j,2k)


 =

n−1∑

`=0

π(`−n)/2x`.

On the one hand, Lemmas B.5, B.3 and B.2 imply that π−`
∑
k∈G`−1

δ(j,2k) converges a.s. to a
finite limit. On the other hand, thanks to Theorem C.12, one has (a− â`)2(`π−`)−1 = O(1) a.s.
As a result, one obtains liml→∞ xl = 0 a.s. as π > 1 by assumption. Therefore, Lemma B.1 yields

lim
n→∞

1
πn/2

m∑

j=1

n−1∑

l=0

∑

k∈Gl−1

δj,2k(a− âl)2 = 0 a.s..

The other terms in Un are dealt with similarly, using Lemma C.3 instead of Lemma B.5. One
obtains limn→∞ π−n/2Un = 0 a.s. and as a result Lemma B.3 yields limn→∞ |T∗n|−1/2Un = 0.
Let us now deal with the martingale term Vn. Let us remark that |T∗n|−1/2

Vn = M
(n)
νn with

M (n) = (M (n)
p ){p≥1} the sequence of GOp -martingales defined by

M (n)
p = |T∗n|−1/2

p∑

k=1

vk = |T∗n|−1/2
p∑

k=1

m∑

j=1

v(j,k),

and νn = 2n − 1 (GOp defined by (8)). We want now to apply Theorem B.6 to M (n). Using
Lemmas C.3-C.9 together with Lemma B.1 and Theorem C.12 along the same lines as above, we
obtain the following limit

lim
n→∞

|T∗n|−1
∑

k∈Tn

EE [v
2
k | GOk−1] = (τ4 − σ4) +

2h01(0)
π

(ν2 − σ4) PE a.s.

Therefore, assumption A.1 of Theorem B.6 holds under PE . Thanks to assumptions (H.1) and
(H.4-5) we can prove that for some r > 2, supk≥0 EE [‖vk‖r|GOk−1] < ∞ a.s. which implies the
Lindeberg condition. Therefore, we obtain that under PE

|T∗n|−1/2Vn
L−→ N (0, (τ4 − σ4) +

2h01(0)
π

(ν2 − σ4)).
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If one sets

γσ = (τ4 − σ4) +
2h01(0)
π

(ν2 − σ4), (9)

one obtains the expected result. �

Proof of Theorem 3.2, Asymptotic normality of ρ̂n. Along the same lines, we show the central limit
theorem for ρ̂n. One has

|T∗01n−1|(ρ̂n − ρ) =
m∑

j=1

n−1∑

`=0

∑

k∈G`−1

(ε̂(j,2k)ε̂(j,2k+1) − ε(j,2k)ε(j,2k+1)) =
m∑

j=1

n−1∑

`=0

∑

k∈G`−1

u′(j,k) +
m∑

j=1

n−1∑

`=0

∑

k∈G`−1

v′(j,k) = U ′n + V ′n,

with

u′(j,k) = δ(j,2k)δ(j,2k+1)

(
(a− âl)(c− ĉl) + (b− b̂l)(d− d̂l)X2

(j,k) + ((a− âl)(d− d̂l) + (b− b̂l)(c− ĉl))X(j,k)

)
,

v′(j,k) = δ(j,2k)δ(j,2k+1)

(
((a− âl) + (b− b̂l)X(j,k))ε(j,2k+1) + ((c− ĉl) + (d− d̂l)X(j,k))ε(j,2k) + ε(j,2k)ε(j,2k+1) − ρ

)
.

Thanks to Theorem C.12, it is easy to check that limn→∞ |T∗01n−1|
1/2
U ′n = 0 a.s. Let us define a

new sequence of GOp -martingales (M (n)) by

M (n)
p = |T∗01n−1|

−1/2
p∑

k=1

v′k = |T∗01n−1|
−1/2

p∑

k=1

m∑

j=1

v′(j, k).

We clearly have M (n)
νn = |T∗01n−1|

1/2
V ′n. We obtain the PE - a.s. limit

lim
n→∞

|T∗01n−1|
−1 ∑

k∈Tn

EE [v
2
k | GOk−1] = ν2 − ρ2.

So we have assumption A.1 of Theorem B.6. We also derive the Lindeberg condition A.2. Conse-
quently, we obtain that under PE , one has

√
|T∗01n−1|V ′n

L−→ N (0, ν2 − ρ2).

Setting
γρ = ν2 − ρ2, (10)

completes the proof of Theorem 3.2. �

C.4 Interval estimation and tests for the BAR process

For all n ≥ 1, define the 4× 4 matrices Γ̂n and Ω̂n by

Γ̂n = |T∗n|−1

(
σ̂2
nS0

n ρ̂nS01
n

ρ̂nS01
n σ̂2

nS1
n

)
, and Ω̂n = Σ−1

n Γ̂nΣ−1
n .

Note that the matrix Γ̂n is the empirical estimator of matrix Γ while Ω̂n is the empirical estimator
of the asymptotic variance of θ̂n − θ.

Theorem C.13 Under assumptions (H.0-6), for any 0 < ε < 1, the intervals

[
ân − q1−ε/2(Ω̂1/2

n−1)1,1; ân + q1−ε/2(Ω̂1/2
n−1)1,1

]
,

[̂
bn − q1−ε/2(Ω̂1/2

n−1)2,2; b̂n + q1−ε/2(Ω̂1/2
n−1)2,2

]
,

[
ĉn − q1−ε/2(Ω̂1/2

n−1)3,3; ĉn + q1−ε/2(Ω̂1/2
n−1)3,3

]
,

[
d̂n − q1−ε/2(Ω̂1/2

n−1)4,4; d̂n + q1−ε/2(Ω̂1/2
n−1)4,4

]

are asymptotic confidence intervals with level 1− ε of the parameters a, b, c and d respectively
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Proof This is a straightforward consequence of the central limit Theorem 3.2 together with Stul-
sky’s lemma as limn→∞ |T∗n−1|Ω̂n−1 = Σ−1ΓΣ−1 PE a.s. thanks to Lemma C.10 and Theorem 3.1.
�

Let

ĥ01
n (0) = p̂(0)

n (1, 1)|T∗n|−1
m∑

j=1

∑

k∈Tn−1

δ(j,2k) + p̂(1)
n (1, 1)|T∗n|−1

m∑

j=1

∑

k∈Tn−1

δ(j,2k+1)

be an empirical estimator of h01(0) and

v̂σ,n =
π̂n(τ̂4

n − σ̂4
n) + 2ĥ01

n (0)(ν̂2
n − σ̂4

n)
π̂n

be an empirical estimator of the variance term in the central limit theorem regarding σ2.

Theorem C.14 Under assumptions (H.0-6), for any 0 < ε < 1, the intervals

[
σ̂2
n − q1−ε/2

( v̂σ,n
|T∗n|

)1/2

; σ̂2
n + q1−ε/2

( v̂σ,n
|T∗n|

)1/2]
,

[
ρ̂n − q1−ε/2

( ν̂2
n − ρ̂2

n

|T∗01n−1|
)1/2

; ρ̂n + q1−ε/2
( ν̂2

n − ρ̂2
n

|T∗01n−1|
)1/2]

are asymptotic confidence intervals with level 1− ε of the parameters σ2 and ρ respectively.

Proof This is a again straightforward consequence of the central limit Theorem ?? together with
Stulsky’s lemma as

lim
n→∞

v̂σ,n =
π(τ4 − σ4) + 2h01(0)(ν2 − σ4)

π
, lim

n→∞
ν̂2
n − ρ̂2

n = ν2 − ρ2,

PE almost surely thanks to Lemma B.5 and Theorems 3.1 and C.11. �

We now propose two different symmetry tests for the BAR process based on the central limit
Theorem 3.2. The first one compares the couples (a, b) and (c, d). Set

• Hc
0: (a, b) = (c, d) the symmetry hypothesis,

• Hc
1: (a, b) 6= (c, d) the alternative hypothesis.

Let (Yc
n)tYc

n be the test statistic defined by

Yc
n = |T∗n−1|1/2(∆̂c

n)−1/2(ân − ĉn, b̂n − d̂n)t,

where

∆̂c
n = |T∗n−1|dgc

tΩ̂n−1dgc, dgc =
(

1 0 −1 0
0 1 0 −1

)t
.

Theorem C.15 Under assumptions (H.0-6) and the null hypothesis Hc
0 one has

(Yc
n)tYc

n
L−→ χ2(2)

on (E ,PE); and under the alternative hypothesis Hc
1, almost surely on E one has

lim
n→∞

‖Yc
n‖2 = +∞.

Proof We mimic again the proof of Theorem B.9 with gc the function defined from R4 onto R2 by
gc(x1, x2, x3, x4) =

(
x1 − x3, x2 − x4

)t, so that dgc is the gradient of gc. �

Our last test compares the fixed points a/(1−b) and c/(1−d), which are the asymptotic means
of X(j,2k) and X(j,2k+1) respectively. Set
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• Hf
0: a/(1− b) = c/(1− d) the symmetry hypothesis,

• Hf
1: a/(1− b) 6= c/(1− d) the alternative hypothesis.

Let (Y fn )2 be the test statistic defined by

Y fn = |T∗n−1|1/2(∆̂f
n)−1/2

(
ân/(1− b̂n)− ĉn/(1− d̂n)

)
,

where ∆̂f
n = |T∗n−1|dgf

tΩ̂n−1dgf , and dgf =
(
1/(1−b̂n), ân/(1−b̂n)2,−1/(1−d̂n),−ĉn/(1−d̂n)2

)t
.

This test statistic has the following asymptotic properties.

Theorem C.16 Under assumptions (H.0-6) and the null hypothesis Hf
0, one has

(Y fn )2 L−→ χ2(1)

on (E ,PE); and under the alternative hypothesis Hc
1, almost surely on E one has

lim
n→∞

(Y fn )2 = +∞.

Proof We mimic one last time the proof of Theorem B.9 with gf the function defined from R4 onto
R by gf (x1, x2, x3, x4) =

(
x1/(1− x2)− x3/(1− x4)

)
, so that dgf is the gradient of gf . �
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NUMERICAL METHOD FOR OPTIMAL STOPPING OF
PIECEWISE DETERMINISTIC MARKOV PROCESSES1

BY BENOÎTE DE SAPORTA, FRANÇOIS DUFOUR AND KAREN GONZALEZ

Université de Bordeaux

We propose a numerical method to approximate the value function for
the optimal stopping problem of a piecewise deterministic Markov process
(PDMP). Our approach is based on quantization of the post jump location—
inter-arrival time Markov chain naturally embedded in the PDMP, and path-
adapted time discretization grids. It allows us to derive bounds for the conver-
gence rate of the algorithm and to provide a computable ε-optimal stopping
time. The paper is illustrated by a numerical example.

1. Introduction. The aim of this paper is to propose a computational method
for optimal stopping of a piecewise deterministic Markov process {X(t)} by using
a quantization technique for an underlying discrete-time Markov chain related to
the continuous-time process {X(t)} and path-adapted time discretization grids.

Piecewise-deterministic Markov processes (PDMPs) have been introduced in
the literature by Davis [6] as a general class of stochastic models. PDMPs are a
family of Markov processes involving deterministic motion punctuated by random
jumps. The motion of the PDMP {X(t)} depends on three local characteristics,
namely the flow φ, the jump rate λ and the transition measure Q, which specifies
the post-jump location. Starting from x the motion of the process follows the flow
φ(x, t) until the first jump time T1 which occurs either spontaneously in a Poisson-
like fashion with rate λ(φ(x, t)) or when the flow φ(x, t) hits the boundary of the
state-space. In either case the location of the process at the jump time T1 :X(T1) =
Z1 is selected by the transition measure Q(φ(x,T1), ·). Starting from Z1, we now
select the next interjump time T2 − T1 and postjump location X(T2) = Z2. This
gives a piecewise deterministic trajectory for {X(t)} with jump times {Tk} and
post jump locations {Zk} which follows the flow φ between two jumps. A suitable
choice of the state space and the local characteristics φ, λ and Q provide stochastic
models covering a great number of problems of operations research [6].

Optimal stopping problems have been studied for PDMPs in [3, 5, 6, 9, 11, 13].
In [11] the author defines an operator related to the first jump time of the process
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and shows that the value function of the optimal stopping problem is a fixed point
for this operator. The basic assumption in this case is that the final cost function
is continuous along trajectories, and it is shown that the value function will also
have this property. In [9, 13] the authors adopt some stronger continuity assump-
tions and boundary conditions to show that the value function of the optimal stop-
ping problem satisfies some variational inequalities related to integro-differential
equations. In [6], Davis assumes that the value function is bounded and locally
Lipschitz along trajectories to show that the variational inequalities are necessary
and sufficient to characterize the value function of the optimal stopping problem.
In [5], the authors weakened the continuity assumptions of [6, 9, 13]. A paper re-
lated to our work is [3] by Costa and Davis. It is the only one presenting a compu-
tational technique for solving the optimal stopping problem for a PDMP based on
a discretization of the state space similar to the one proposed by Kushner in [12].
In particular, the authors in [3] derive a convergence result for the approximation
scheme but no estimation of the rate of convergence is derived.

Quantization methods have been developed recently in numerical probability,
nonlinear filtering or optimal stochastic control with applications in finance [1, 2,
14–17]. More specifically, powerful and interesting methods have been developed
in [1, 2, 17] for computing the Snell-envelope associated to discrete-time Markov
chains and diffusion processes. Roughly speaking, the approach developed in [1,
2, 17] for studying the optimal stopping problem for a continuous-time diffusion
process {Y(t)} is based on a time-discretization scheme to obtain a discrete-time
Markov chain {Y k}. It is shown that the original continuous-time optimization
problem can be converted to an auxiliary optimal stopping problem associated
with the discrete-time Markov chain {Y k}. Under some suitable assumptions, a rate
of convergence of the auxiliary value function to the original one can be derived.
Then, in order to address the optimal stopping problem of the discrete-time Markov
chain, a twofold computational method is proposed. The first step consists in ap-
proximating the Markov chain by a quantized process. There exists an extensive
literature on quantization methods for random variables and processes. We do not
pretend to present here an exhaustive panorama of these methods. However, the
interested reader may, for instance, consult [10, 14, 17] and the references therein.
The second step is to approximate the conditional expectations which are used
to compute the backward dynamic programming formula by the conditional ex-
pectation related to the quantized process. This procedure leads to a tractable for-
mula called a quantization tree algorithm (see Proposition 4 in [1] or Section 4.1
in [17]). Providing the cost function and the Markov kernel are Lipschitz, some
bounds and rates of convergence are obtained (see, e.g., Section 2.2.2 in [1]).

As regards PDMPs, it was shown in [11] that the value function of the optimal
stopping problem can be calculated by iterating a functional operator, labeled L

[see (3.5) for its definition], which is related to a continuous-time maximization
and a discrete-time dynamic programming formula. Thus, in order to approximate
the value function of the optimal stopping problem of a PDMP {X(t)}, a natural
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approach would have been to follow the same lines as in [1, 2, 17]. However, their
method cannot be directly applied to our problem for two main reasons related to
the specificities of PDMPs.

First, PDMPs are in essence discontinuous at random times. Therefore, as
pointed out in [11], it will be problematic to convert the original optimization
problem into an optimal stopping problem associated to a time discretization of
{X(t)} with nice convergence properties. In particular, it appears ill-advised to
propose as in [1] a fixed-step time-discretization scheme {X(k�)} of the original
process {X(t)}. Besides, another important intricacy concerns the transition semi-
group {Pt }t∈R+ of {X(t)}. On the one hand, it cannot be explicitly calculated from
the local characteristics (φ,λ,Q) of the PDMP (see [4, 7]). Consequently, it will
be complicated to express the Markov kernel P� associated with the Markov chain
{X(k�)}. On the other hand, the Markov chain {X(k�)} is, in general, not even a
Feller chain (see [6], pages 76 and 77), and therefore it will be hard to ensure it is
K-Lipschitz (see Definition 1 in [1]).

Second, the other main difference stems from the fact that the function appear-
ing in the backward dynamic programming formula associated with L and the
reward function g is not continuous even if some strong regularity assumptions
are made on g. Consequently, the approach developed in [1, 2, 17] has to be re-
fined since it can only handle conditional expectations of Lipschitz-continuous
functions.

However, by using the special structure of PDMPs, we are able to overcome
both these obstacles. Indeed, associated to the PDMP {X(t)}, there exists a nat-
ural embedded discrete-time Markov chain {�k} with �k = (Zk, Sk) where Sk is
given by the inter-arrival time Tk − Tk−1. The main operator L can be expressed
using the chain {�k} and a continuous-time maximization. We first convert the
continuous-time maximization of operator L into a discrete-time maximization by
using a path-dependent time-discretization scheme. This enables us to approximate
the value function by the solution of a backward dynamic programming equation
in discrete-time involving conditional expectation of the Markov chain {�k}. Then,
a natural approximation of this optimization problem is obtained by replacing {�k}
by its quantized approximation. It must be pointed out that this optimization prob-
lem is related to the calculation of conditional expectations of indicator functions
of the Markov chain {�k}. As said above, it is not straightforward to obtain con-
vergence results as in [1, 2, 17]. We deal successfully with indicator functions
by showing that the event on which the discontinuity actually occurs is of small
enough probability. This enables us to provide a rate of convergence for the ap-
proximation scheme.

In addition, and more importantly, this numerical approximation scheme en-
ables us to propose a computable stopping rule which also is an ε-optimal stopping
time of the original stopping problem. Indeed, for any ε > 0 one can construct a
stopping time, labeled τ , such that

V (x) − ε ≤ Ex[g(X(τ))] ≤ V (x),
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where V (x) is the optimal value function associated to the original stopping prob-
lem. Our computational approach is attractive in the sense that it does not require
any additional calculations. Moreover, we can characterize how far it is from op-
timal in terms of the value function. In [1], Section 2.2.3, Proposition 6, another
criteria for the approximation of the optimal stopping time has been proposed. In
the context of PDMPs, it must be noticed that an optimal stopping time does not
generally exist as shown in [11], Section 2.

An additional result extends Theorem 1 of Gugerli [11] by showing that the iter-
ation of operator L provides a sequence of random variables which corresponds to
a quasi-Snell envelope associated with the reward process {g(X(t))}t∈R+ where
the horizon time is random and given by the jump times (Tn)n∈{0,...,N} of the
process {X(t)}t∈R+ .

The paper is organized as follows. In Section 2 we give a precise definition of
PDMPs and state our notation and assumptions. In Section 3, we state the opti-
mal stopping problem, recall and refine some results from [11]. In Section 4, we
build an approximation of the value function. In Section 5, we compute the error
between the approximate value function and the real one. In Section 6 we pro-
pose a computable ε-optimal stopping time and evaluate its sharpness. Finally in
Section 7 we present a numerical example. Technical results are postponed to the
Appendix.

2. Definitions and assumptions. We first give a precise definition of a piece-
wise deterministic Markov process. Some general assumptions are presented in the
second part of this section. Let us introduce first some standard notation. Let M

be a metric space. B(M) is the set of real-valued, bounded, measurable functions
defined on M . The Borel σ -field of M is denoted by B(M). Let Q be a Markov
kernel on (M, B(M)) and w ∈ B(M), Qw(x) = ∫

M w(y)Q(x, dy) for x ∈ M . For
(a, b) ∈ R2, a ∧ b = min(a, b) and a ∨ b = max(a, b).

2.1. Definition of a PDMP. Let E be an open subset of Rn, ∂E its boundary
and E its closure. A PDMP is determined by its local characteristics (φ,λ,Q)

where:
• The flow φ : Rn × R → Rn is a one-parameter group of homeomorphisms: φ

is continuous, φ(·, t) is an homeomorphism for each t ∈ R satisfying φ(·, t + s) =
φ(φ(·, s), t)).

For all x in E, let us denote

t∗(x)
.= inf{t > 0 :φ(x, t) ∈ ∂E}

with the convention inf ∅ = ∞.
• The jump rate λ :E → R+ is assumed to be a measurable function satisfying

(∀x ∈ E), (∃ε > 0) such that
∫ ε

0
λ(φ(x, s)) ds < ∞.
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• Q is a Markov kernel on (E, B(E)) satisfying the following property:

(∀x ∈ E), Q(x,E − {x}) = 1.

From these characteristics, it can be shown [6], pages 62–66, that there exists a fil-
tered probability space (�, F , {Ft}, {Px}x∈E) such that the motion of the process
{X(t)} starting from a point x ∈ E may be constructed as follows. Take a random
variable T1 such that

Px(T1 > t)
.=

{
e−�(x,t), for t < t∗(x),
0, for t ≥ t∗(x),

where for x ∈ E and t ∈ [0, t∗(x)]
�(x, t)

.=
∫ t

0
λ(φ(x, s)) ds.

If T1 generated according to the above probability is equal to infinity, then for
t ∈ R+, X(t) = φ(x, t). Otherwise select independently an E-valued random
variable (labelled Z1) having distribution Q(φ(x,T1), ·), namely Px(Z1 ∈ A) =
Q(φ(x,T1),A) for any A ∈ B(E). The trajectory of {X(t)} starting at x, for
t ≤ T1, is given by

X(t)
.=

{
φ(x, t), for t < T1,
Z1, for t = T1.

Starting from X(T1) = Z1, we now select the next inter-jump time T2 − T1 and
post-jump location X(T2) = Z2 is a similar way.

This gives a strong Markov process {X(t)} with jump times {Tk}k∈N (where
T0 = 0). Associated with {X(t)}, there exists a discrete time process (�n)n∈N
defined by �n = (Zn,Sn) with Zn = X(Tn) and Sn = Tn − Tn−1 for n ≥ 1 and
S0 = 0. Clearly, the process (�n)n∈N is a Markov chain.

We introduce a standard assumption (see, e.g., equations (24.4) or (24.8) in [6]).

ASSUMPTION 2.1. For all (x, t) ∈ E × R+, Ex[∑k 1{Tk≤t}] < ∞.

In particular, it implies that Tk → ∞ as k → ∞.
For n ∈ N, let Mn be the family of all {Ft }-stopping times which are dominated

by Tn, and for n < p, let Mn,p be the family of all {Ft }-stopping times ν satis-
fying Tn ≤ ν ≤ Tp . Let Bc denote the set of all real-valued, bounded, measurable
functions, w defined on E and continuous along trajectories up to the jump time
horizon: for any x ∈ E, w(φ(x, ·)) is continuous on [0, t∗(x)]. Let Lc be the set
of all real-valued, bounded, measurable functions, w defined on E and Lipschitz
along trajectories:

1. there exists [w]1 ∈ R+ such that for any (x, y) ∈ E2, u ∈ [0, t∗(x)∧ t∗(y)], one
has

|w(φ(x,u)) − w(φ(y,u))| ≤ [w]1|x − y|;
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2. there exists [w]2 ∈ R+ such that for any x ∈ E, and (t, s) ∈ [0, t∗(x)]2, one has

|w(φ(x, t)) − w(φ(x, s))| ≤ [w]2|t − s|;
3. there exists [w]∗ ∈ R+ such that for any (x, y) ∈ E2, one has

|w(φ(x, t∗(x))) − w(φ(y, t∗(y)))| ≤ [w]∗|x − y|.
In the sequel, for any function f in Bc, we denote by Cf its bound

Cf = sup
x∈E

|f (x)|,

and for any Lipschitz-continuous function f in B(E) or B(E), we denote by [f ]
its Lipschitz constant

[f ] = sup
x �=y∈E

|f (x) − f (y)|
|x − y| .

REMARK 2.2. Lc is a subset of Bc and any function in Lc is Lipschitz on E

with [w] ≤ [w]1.

Finally, as a convenient abbreviation, we set for any x ∈ E, λQw(x) =
λ(x)Qw(x).

2.2. Assumptions. The following assumptions will be in force throughtout.

ASSUMPTION 2.3. The jump rate λ is bounded and there exists [λ]1 ∈ R+
such that for any (x, y) ∈ E2, u ∈ [0, t∗(x) ∧ t∗(y)[,

|λ(φ(x,u)) − λ(φ(y,u))| ≤ [λ]1|x − y|.
ASSUMPTION 2.4. The exit time t∗ is bounded and Lipschitz-continuous

on E.

ASSUMPTION 2.5. The Markov kernel Q is Lipschitz in the following sense:
there exists [Q] ∈ R+ such that for any function w ∈ Lc the following two condi-
tions are satisfied:

1. for any (x, y) ∈ E2, u ∈ [0, t∗(x) ∧ t∗(y)], one has

|Qw(φ(x,u)) − Qw(φ(y,u))| ≤ [Q][w]1|x − y|;
2. for any (x, y) ∈ E2, one has

|Qw(φ(x, t∗(x))) − Qw(φ(y, t∗(y)))| ≤ [Q][w]∗|x − y|.
The reward function g associated with the optimal stopping problem satisfies

the following hypothesis.

ASSUMPTION 2.6. g is in Lc.
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3. Optimal stopping problem. From now on, assume that the distribution of
X(0) is given by δx0 for a fixed state x0 ∈ E. Let us consider the following optimal
stopping problem for a fixed integer N :

sup
τ∈MN

Ex0[g(X(τ))].(3.1)

This problem has been studied by Gugerli [11].
Note that Assumption 2.3 yields �(x, t) < ∞ for all x, t . Hence, for all x in E,

the jump time horizon s∗(x) defined in [11] by t∗(x) ∧ inf{t ≥ 0, e−�(x,t) = 0}
is equal to the exit time t∗(x). Therefore, operators H : B(E) → B(E × R+),
I : B(E) → B(E × R+), J : B(E) × B(E) → B(E × R+), K : B(E) → B(E) and
L : B(E) × Bc → Bc introduced by Gugerli ([11], Section 2) reduce to

Hf (x, t) = f
(
φ

(
x, t ∧ t∗(x)

))
e−�(x,t∧t∗(x)),

Iw(x, t) =
∫ t∧t∗(x)

0
λQw(φ(x, s))e−�(x,s) ds,

J (w,f )(x, t) = Iw(x, t) + Hf (x, t),(3.2)

Kw(x) =
∫ t∗(x)

0
λQw(φ(x, s))e−�(x,s) ds

(3.3)
+ Qw(φ(x, t∗(x)))e−�(x,t∗(x)),

L(w,h)(x) = sup
t≥0

J (w,h)(x, t) ∨ Kw(x).

It is easy to derive a probabilistic interpretation of operators H , I , K and L in
terms of the embedded Markov chain (Zn,Sn)n∈N.

LEMMA 3.1. For all x ∈ E, w ∈ B(E), f ∈ B(E), h ∈ Bc and t ≥ 0, one has

Hf (x, t) = f
(
φ

(
x, t ∧ t∗(x)

))
Px

(
S1 ≥ t ∧ t∗(x)

)
,

Iw(x, t) = Ex

[
w(Z1)1{S1<t∧t∗(x)}

]
,

Kw(x) = Ex[w(Z1)],(3.4)

L(w,h)(x) = sup
u≤t∗(x)

{
Ex

[
w(Z1)1{S1<u}

] + h(φ(x,u))Px(S1 ≥ u)
}

(3.5)
∨ Ex[w(Z1)].

For a reward function g ∈ Bc, it has been shown in [11] that the value function
can be recursively constructed by the following procedure:

sup
τ∈MN

Ex0[g(X(τ))] = v0(x0)

with {
vN = g,

vk = L(vk+1, g), for k ≤ N − 1.
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DEFINITION 3.2. Introduce the random variables (Vn)n∈{0,...,N} by

Vn = vn(Zn)

or equivalently

Vn = sup
u≤t∗(Zn)

{
E

[
vn+1(Zn+1)1{Sn+1<u} + g(φ(Zn,u))1{Sn+1≥u}|Zn

]}
(3.6)

∨ E[vn+1(Zn+1)|Zn].

The following result shows that the sequence (Vn)n∈{0,...,N} corresponds to a
quasi-Snell envelope associated with the reward process {g(X(t))}t∈R+ where the
horizon time is random and given by the jump times (Tn)n∈{0,...,N} of the process
{X(t)}t∈R+ :

THEOREM 3.3. Consider an integer n < N . Then

Vn = sup
ν∈Mn,N

Ex0[g(X(ν))|FTn].

PROOF. Let ν ∈ Mn,N . According to Proposition B.4 and Corollary B.6
in Appendix B, there exists ν̂ :E × (R+ × E)n × � → R+ such that for all
(z0, γ ) ∈ E × (R+ × E)n the mapping ν̂(z0, γ ) :� → R+ is an {Ft }t∈R+-
stopping time satisfying ν̂(z0, γ ) ≤ TN−n, and ν = Tn + ν̂(Z0,�n, θTn), where
�n = (S1,Z1, . . . , Sn,Zn) and θ is the shift operator. For (z0, γ ) ∈ E × (R+ ×E)n

define W :E × (R+ × E)n → R by

W(z0, γ ) = Ezn[g(X(̂ν(z0, γ )))] ≤ sup
τ∈MN−n

EZn[g(X(τ))],

where γ = (s1, z1, . . . , sn, zn). Hence, the strong Markov property of the process
{X(t)} yields

Ex0[g(X(ν))|FTn] = Ex0

[
g
(
X

(
Tn + ν̂(Z0,�n, θTn)

))|FTn

] = W(Z0,�n).

Consequently, one has

Ex0[g(X(ν))|FTn] ≤ sup
τ∈MN−n

EZn[g(X(τ))]

and, therefore, one has

sup
ν∈Mn,N

Ex0[g(X(ν))|FTn] ≤ sup
τ∈MN−n

EZn[g(X(τ))].(3.7)

Conversely, consider τ ∈ MN−n. It is easy to show that Tn + τ ◦ θTn ∈ Mn,N .
The strong Markov property of the process {X(t)} again yields

EZn[g(X(τ))] = Ex0

[
g
(
X(Tn + τ ◦ θTn)

)|FTn

] ≤ sup
ν∈Mn,N

Ex0[g(X(ν))|FTn]
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and hence we obtain

sup
τ∈MN−n

EZn[g(X(τ))] ≤ sup
ν∈Mn,N

Ex0[g(X(ν))|FTn].(3.8)

Combining equations (3.7) and (3.8), one has

sup
τ∈MN−n

EZn[g(X(τ))] = sup
ν∈Mn,N

Ex0[g(X(ν))|FTn].

Finally, it is proved in [11], Theorem 1, that vn(x) = supτ∈MN−n
Ex[g(X(τ))],

whence

Vn = sup
τ∈MN−n

EZn[g(X(τ))],

showing the result. �

4. Approximation of the value function. To approximate the sequence of
value functions (Vn), we proceed in two steps. First, the continuous-time maxi-
mization of operator L is converted into a discrete-time maximization by using a
path-dependent time-discretization scheme to give a new operator Ld . In partic-
ular, it is important to remark that these time-discretization grids depend on the
the post-jump locations {Zk} of the PDMP (see Definition 4.1 and Remark 4.2).
Second, the conditional expectations of the Markov chain (�k) in the definition
of Ld are replaced by the conditional expectations of its quantized approximation
(�̂k) to define an operator L̂d .

First, we define the path-adapted discretization grids as follows.

DEFINITION 4.1. For z ∈ E, set �(z) ∈ ]0, t∗(z)[. Define n(z) = int( t∗(z)
�(z)

) −
1, where int(x) denotes the greatest integer smaller than or equal to x. The set of
points (ti)i∈{0,...,n(z)} with ti = i�(z) is denoted by G(z). This is the grid associ-
ated with the time interval [0, t∗(z)].

REMARK 4.2. It is important to note that, for all z ∈ E, not only one has
t∗(z) /∈ G(z), but also maxG(z) = tn(z) ≤ t∗(z) − �(z). This property is crucial
for the sequel.

DEFINITION 4.3. Consider for w ∈ B(E) and z ∈ E,

Ld(w,g)(z) = max
s∈G(z)

{
E

[
w(Z1)1{S1<s} + g(φ(z, s))1{S1≥s}|Z0 = z

]}
∨ E[w(Z1)|Z0 = z].

Now let us turn to the quantization of (�n). The quantization algorithm will pro-
vide us with a finite grid ��

n ⊂ E × R+ at each time 0 ≤ n ≤ N as well as weights
for each point of the grid (see, e.g., [1, 14, 17]). Set p ≥ 1 such that �n has finite
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moments at least up to the order p and let pn be the closest-neighbor projection
from E × R+ onto ��

n (for the distance of norm p; if there are several equally
close neighbors, pick the one with the smallest index). Then the quantization of
�n is defined by

�̂n = (Ẑn, Ŝn) = pn(Zn,Sn).

We will also denote by �Z
n , the projection of ��

n on E, and by �S
n , the projection

of ��
n on R+.

In practice, one will first compute the quantization grids and weights, and then
compute a path-adapted time-grid for each z ∈ �Z

n , for all 0 ≤ n ≤ N − 1. Hence,
there is only a finite number of time grids to compute, and like the quantization
grids, they can be computed and stored off-line.

The definition of the discretized operators now naturally follows the characteri-
zation given in Lemma 3.1.

DEFINITION 4.4. For k ∈ {1, . . . ,N}, w ∈ B(�Z
k ), z ∈ �Z

k−1, and s ∈ R+

Ĵk(w,g)(z, s) = E
[
w(Ẑk)1{Ŝk<s} + g(φ(z, s))1{Ŝk≥s}|Ẑk−1 = z

]
,

K̂k(w)(z) = E[w(Ẑk)|Ẑk−1 = z],
L̂d

k (w,g)(z) = max
s∈G(z)

{Ĵk(w,g)(z, s)} ∨ K̂k(w)(z).

Note that �̂n is a random variable taking finitely many values, hence the expec-
tations above actually are finite sums, the probability of each atom being given by
its weight on the quantization grid. We can now give the complete construction of
the sequence approximating (Vn).

DEFINITION 4.5. Consider v̂N (z) = g(z) where z ∈ �Z
N and for k ∈ {1,

. . . ,N}
v̂k−1(z) = L̂d

k (v̂k, g)(z),(4.1)

where z ∈ �Z
k−1.

DEFINITION 4.6. The approximation of Vk is denoted by

V̂k = v̂k(Ẑk)(4.2)

for k ∈ {0, . . . ,N}.

5. Error estimation for the value function. We are now able to state our
main result, namely the convergence of our approximation scheme with an upper
bound for the rate of convergence.
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THEOREM 5.1. Set n ∈ {0, . . . ,N − 1}, and suppose that �(z), for z ∈ �z
n,

are chosen such that

min
z∈�z

n

{�(z)} > (2Cλ)
−1/2([t∗]‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p)1/2.

Then the discretization error for Vn is no greater than the following:

‖Vn − V̂n‖p ≤ ‖Vn+1 − V̂n+1‖p + α‖�(Ẑn)‖p + βn‖Ẑn − Zn‖p

+ 2[vn+1]‖Ẑn+1 − Zn+1‖p

+ γ ([t∗]‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p)1/2,

where α = [g]2 + 2CgCλ, βn = [vn] + [vn+1]1E2 + CgE4 + ([g]1 + [g]2[t∗]) ∨
([vn+1]∗[Q]), γ = 4Cg(2Cλ)

1/2, and E2 and E4 are defined in Appendix A.

Recall that VN = g(ZN) and V̂N = g(ẐN), hence ‖VN − V̂N‖p ≤ [g]‖ẐN −
ZN‖p . In addition, the quantization error ‖�n − �̂n‖p goes to zero as the number
of points in the grids goes to infinity (see, e.g., [14]). Hence |V0 − V̂0| can be made
arbitrarily small by an adequate choice of the discretizations parameters.

Remark that the square root in the last error term is the price to pay for integrat-
ing noncontinuous functions, see the definition of operator J with the indicator
functions, and the introduction of Section 5.2.

To prove Theorem 5.1, we split the left-hand side difference into four terms

‖Vn − V̂n‖p ≤
4∑

i=1

�i,

where

�1 = ‖vn(Zn) − vn(Ẑn)‖p,

�2 = ‖L(vn+1, g)(Ẑn) − Ld(vn+1, g)(Ẑn)‖p,

�3 = ‖Ld(vn+1, g)(Ẑn) − L̂d
n+1(vn+1, g)(Ẑn)‖p,

�4 = ‖L̂d
n+1(vn+1, g)(Ẑn) − L̂d

n+1(v̂n+1, g)(Ẑn)‖p.

The first term is easy enough to handle thanks to Proposition A.7 in Appendix A.2.

LEMMA 5.2. A upper bound for �1 is

‖vn(Zn) − vn(Ẑn)‖p ≤ [vn]‖Zn − Ẑn‖p.

We are going to study the other terms one by one in the following sections.

5.1. Second term. In this part we study the error induced by the replacement
of the supremum over all nonnegative t smaller than or equal to t∗(z) by the max-
imum over the finite grid G(z) in the definition of operator L.
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LEMMA 5.3. Let w ∈ Lc. Then for all z ∈ E,∣∣∣ sup
t≤t∗(z)

J (w,g)(z, t) − max
s∈G(z)

J (w,g)(z, s)
∣∣∣ ≤ (CwCλ + [g]2 + CgCλ)�(z).

PROOF. Clearly, there exists t ∈ [0, t∗(z)] such that supt≤t∗(z) J (w,g)(z, t) =
J (w,g)(z, t), and there exists 0 ≤ i ≤ n(z) such that t ∈ [ti , ti+1] [with tn(z)+1 =
t∗(z)]. Consequently, Lemma A.2 yields

0 ≤ sup
t≤t∗(z)

J (w,g)(z, t) − max
s∈G(z)

J (w,g)(z, s)

≤ J (w,g)(z, t) − J (w,g)(z, ti)

≤ (CwCλ + [g]2 + CgCλ)|t − ti |
≤ (CwCλ + [g]2 + CgCλ)|ti+1 − ti |,

implying the result. �

Turning back to the second error term, one gets the following bound.

LEMMA 5.4. A upper bound for �2 is

‖L(vn+1, g)(Ẑn) − Ld(vn+1, g)(Ẑn)‖p ≤ ([g]2 + 2CgCλ)‖�(Ẑn)‖p.

PROOF. From the definition of L and Ld we readily obtain

‖L(vn+1, g)(Ẑn) − Ld(vn+1, g)(Ẑn)‖p

≤
∥∥∥ sup
t≤t∗(Ẑn)

J (vn+1, g)(Ẑn, t) − max
s∈G(Ẑn)

J (vn+1, g)(Ẑn, s)
∥∥∥
p
.

Now in view of the previous lemma, one has

‖L(vn+1, g)(Ẑn) − Ld(vn+1, g)(Ẑn)‖p

≤ (Cvn+1Cλ + [g]2 + CgCλ)‖�(Ẑn)‖p.

Finaly, note that Cvn+1 = Cg (see Appendix A.2), completing the proof. �

5.2. Third term. This is the crucial part of our derivation, where we need to
compare conditional expectations relative to the real Markov chain (Zn,Sn) and
its quantized approximation (Ẑn, Ŝn). The main difficulty stems from the fact that
some functions inside the expectations are indicator functions and in particular
they are not Lipschitz-continuous. We manage to overcome this difficulty by prov-
ing that the event on which the discontinuity actually occurs is of small enough
probability; this is the aim of the following two lemmas.
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LEMMA 5.5. For all n ∈ {0, . . . ,N − 1} and 0 < η < minz∈�Z
n
{�(z)},∥∥∥ max

s∈G(Ẑn)
E

[∣∣1{Sn+1<s} − 1{Ŝn+1<s}
∣∣|Ẑn

]∥∥∥
p

≤ 2

η
‖Sn+1 − Ŝn+1‖p + Cλη + 2[t∗]‖Zn − Ẑn‖p

η
.

PROOF. Set 0 < η < minz∈�Z
n
{�(z)}. Remark that the difference of indicator

functions is nonzero if and only if Sn+1 and Ŝn+1 are on either side of s. Hence,
one has ∣∣1{Sn+1<s} − 1{Ŝn+1<s}

∣∣ ≤ 1{|Sn+1−Ŝn+1|>η/2} + 1{|Sn+1−s|≤η/2}.
This yields∥∥∥ max

s∈G(Ẑn)
E

[∣∣1{Sn+1<s} − 1{Ŝn+1<s}
∣∣|Ẑn

]∥∥∥
p

(5.1)
≤ ∥∥1{|Sn+1−Ŝn+1|>η/2}

∥∥
p +

∥∥∥ max
s∈G(Ẑn)

E
[
1{s−η/2≤Sn+1≤s+η/2}|Ẑn

]∥∥∥
p
.

On the one hand, Chebyshev’s inequality yields

∥∥1{|Sn+1−Ŝn+1|>η/2}
∥∥p
p = P

(
|Sn+1 − Ŝn+1| > η

2

)
≤ 2p‖Sn+1 − Ŝn+1‖p

p

ηp
.(5.2)

On the other hand, as s ∈ G(Ẑn) and by definition of η, one has s + η < t∗(Ẑn)

(see Remark 4.2). Thus, one has

E
[
1{s−η/2≤Sn+1≤s+η/2}|Ẑn

]
= E

[
E

[
1{s−η/2≤Sn+1≤s+η/2}|Zn

]|Ẑn

]
(5.3)

≤ E
[∫ s+η/2

s−η/2
λ(φ(Zn,u)) du|Ẑn

]
+ E

[
1{t∗(Zn)≤s+η/2}|Ẑn

]
≤ ηCλ + E

[
1{t∗(Zn)≤t∗(Ẑn)−η/2}|Ẑn

]
.

Combining equations (5.1)–(5.3), the result follows. �

LEMMA 5.6. For all n ∈ {0, . . . ,N} and 0 < η < minz∈�Z
n
{�(z)},

∥∥1t∗(Zn)<t∗(Ẑn)−η

∥∥
p ≤ [t∗]‖Zn − Ẑn‖p

η
.

PROOF. We use Chebyshev’s inequality again. One clearly has

E
[∣∣1t∗(Zn)<t∗(Ẑn)−η

∣∣p] = P
(
t∗(Zn) < t∗(Ẑn) − η

)
≤ P

(|t∗(Zk) − t∗(Ẑk)| > η
)

≤ [t∗]p‖Zk − Ẑk‖p
p

ηp
,
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showing the result. �

Now we turn to the consequences of replacing the Markov chain (Zn,Sn) by its
quantized approximation (Ẑn, Ŝn) in the conditional expectations.

LEMMA 5.7. Let w ∈ Lc, then one has

|E[w(Zn+1)|Zn = Ẑn] − E[w(Ẑn+1)|Ẑn]|
≤ (CwE4 + [w]1E2 + [w]∗[Q])E[|Zn − Ẑn||Ẑn]

+ [w]E[|Zn+1 − Ẑn+1||Ẑn].
PROOF. First, note that

E[w(Zn+1)|Zn = Ẑn] − E[w(Ẑn+1)|Ẑn]
= E[w(Zn+1)|Zn = Ẑn] − E[w(Zn+1)|Ẑn]

+ E[w(Zn+1)|Ẑn] − E[w(Ẑn+1)|Ẑn].
On the one hand, Remark 2.2 yields

|E[w(Zn+1)|Ẑn] − E[w(Ẑn+1)|Ẑn]| ≤ [w]E[|Zn+1 − Ẑn+1||Ẑn].
On the other hand, recall that by construction of the quantized process, one
has (Ẑn, Ŝn) = pn(Zn,Sn). Hence we have the following property: σ {Ẑn} ⊂
σ {Zn,Sn}. By using the special structure of the PDMP {X(t)}, we have σ {Zn,

Sn} ⊂ FTn . Now, by using the Markov property of the process {X(t)}, it follows
that

E[w(Zn+1)|Ẑn] = E[E[w(Zn+1)|FTn]|Ẑn] = E[E[w(Zn+1)|Zn]|Ẑn].
Equation (3.4) thus yields

E[w(Zn+1)|Zn = Ẑn] − E[w(Zn+1)|Ẑn]
= E

[
E[w(Zn+1)|Zn = Ẑn] − E[w(Zn+1)|Zn]|Ẑn

]
= E[Kw(Ẑn) − Kw(Zn)|Ẑn].

Now we use Lemma A.4 to conclude. �

Now we combine the preceding lemmas to derive the third error term.

LEMMA 5.8. For all 0 < η < minz∈�Z
n
{�(z)}, an upper bound for �3 is

‖Ld(vn+1, g)(Ẑn) − L̂d
n+1(vn+1, g)(Ẑn)‖p

≤
{
[vn+1]1E2 + CgE4 + 2Cg

[t∗]
η

+ ([g]1 + [g]2[t∗]) ∨ ([vn+1]∗[Q])
}
‖Ẑn − Zn‖p

+ [vn+1]‖Ẑn+1 − Zn+1‖p + 2Cg

(
2Cλη + ‖Sn+1 − Ŝn+1‖p

η

)
.
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PROOF. To simplify notation, set �(x, y, t) = vn+1(y)1{t<s} + g(φ(x, t)) ×
1{t≥s}. From the definition of Ld and L̂d

n+1, one readily obtains

|Ld(vn+1, g)(Ẑn) − L̂d
n+1(vn+1, g)(Ẑn)|

≤ max
s∈G(Ẑn)

|E[�(Zn,Zn+1, Sn+1)|Zn = Ẑn]
(5.4)

− E[�(Ẑn, Ẑn+1, Ŝn+1)|Ẑn]|
∨ |E[vn+1(Zn+1)|Zn = Ẑn] − E[vn+1(Ẑn+1)|Ẑn]|.

On the one hand, combining Lemma 5.7 and the fact that vn+1 is in Lc (see Propo-
sition A.7), we obtain

|E[vn+1(Zn+1)|Zn = Ẑn] − E[vn+1(Ẑn+1)|Ẑn]|
≤ [vn+1]E[|Zn+1 − Ẑn+1|Ẑn](5.5)

+ (CgE4 + [vn+1]1E2 + [vn+1]∗[Q])E[|Zn − Ẑn||Ẑn].
On the other hand, similar arguments as in the proof of Lemma 5.7 yield

E[�(Zn,Zn+1, Sn+1)|Zn = Ẑn] − E[�(Ẑn, Ẑn+1, Ŝn+1)|Ẑn]
= E

[
E[�(Zn,Zn+1, Sn+1)|Zn = Ẑn]
− E[�(Zn,Zn+1, Sn+1)|Zn = Zn]|Ẑn

]
(5.6)

+ E[�(Zn,Zn+1, Sn+1)|Ẑn] − E[�(Ẑn, Ẑn+1, Ŝn+1)|Ẑn]
= ϒ1 + ϒ2.

The second difference of the right-hand side of (5.6), labeled ϒ2, clearly satisfies

|ϒ2| ≤ [vn+1]E[|Ẑn+1 − Zn+1||Ẑn] + [g]1E[|Ẑn − Zn||Ẑn]
(5.7)

+ 2CgE
[∣∣1{Sn+1<s} − 1{Ŝn+1<s}

∣∣|Ẑn

]
.

Let us turn now to the first difference of the right-hand side of (5.6), labeled ϒ1.
We meet another difficulty here. Indeed, we know by construction that s < t∗(Ẑn),
but we know nothing regarding the relative positions of s and t∗(Zn). In the event
where s ≤ t∗(Zn) as well, we recognize operator J inside the expectations. In the
opposite event s > t∗(Zn), we crudely bound � by Cvn+1 +Cg = 2Cg . Hence, one
obtains

|ϒ1| ≤ E
[|J (vn+1, g)(Ẑn, s) − J (vn+1, g)(Zn, s)|1{s≤t∗(Zn)}|Ẑn

]
+ 2CgE

[
1{t∗(Zn)<s}|Ẑn

]
.

Now Lemma A.3 gives an upper bound for the first term. As for the indicator
function, by definition of G(Ẑn) and our choice of η, we have s < t∗(Ẑn) − η.
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Thus, one has

|ϒ1| ≤ (CgE1 + [vn+1]1E2 + E3)E[|Ẑn − Zn||Ẑn]
(5.8)

+ 2CgE
[
1{t∗(Zn)<t∗(Ẑn)−η}|Ẑn

]
.

Now, combining (5.4), (5.5), (5.7) and (5.8), and the fact that CgE1 + E3 =
CgE4 + [g]1 + [g]2[t∗], one gets

|Ld(vn+1, g)(Ẑn) − L̂d
n+1(vn+1, g)(Ẑn)|

≤ {[vn+1]1E2 + CgE4

+ ([g]1 + [g]2[t∗]) ∨ ([vn+1]∗[Q])}E[|Ẑn − Zn||Ẑn]
+ [vn+1]E[|Ẑn+1 − Zn+1||Ẑn]
+ 2CgE

[
1t∗(Zn)<t∗(Ẑn)−η|Ẑn

]
+ 2Cg max

s∈G(Ẑn)
E

[∣∣1{Sn+1<s} − 1{Ŝn+1<s}
∣∣|Ẑn

]
.

Finally, we conclude by taking the Lp norm on both sides and using Lemmas 5.5
and 5.6. �

5.3. Fourth term. The last error term is a mere comparison of two finite sums.

LEMMA 5.9. An upper bound for �4 is

‖L̂d
n+1(vn+1, g)(Ẑn) − L̂d

n+1(v̂n+1, g)(Ẑn)‖p

≤ [vn+1]‖Ẑn+1 − Zn+1‖p + ‖Vn+1 − V̂n+1‖p.

PROOF. By definition of operator L̂d
n , one has

‖L̂d
n+1(vn+1, g)(Ẑn) − L̂d

n+1(v̂n+1, g)(Ẑn)‖p

=
∥∥∥ max
s∈G(Ẑn)

{
E

[
vn+1(Ẑn+1)1{Ŝn+1<s} + g(φ(Ẑn, s))1{Ŝn+1≥s}|Ẑn

]}
∨ E[vn+1(Ẑn+1)|Ẑn]
− max

s∈G(Ẑn)

{
E

[
v̂n+1(Ẑn+1)1{Ŝn+1<s}

+ g(φ(Ẑn, s))1{Ŝn+1≥s}|Ẑn

]} ∨ E[v̂n+1(Ẑn+1)|Ẑn]
∥∥∥
p

≤ ‖E[vn+1(Ẑn+1) − v̂n+1(Ẑn+1)|Ẑn]‖p

≤ ‖vn+1(Ẑn+1) − vn+1(Zn+1)‖p + ‖vn+1(Zn+1) − v̂n+1(Ẑn+1)‖p.

We conclude using the fact that vn+1 ∈ Lc (see Proposition A.7) and the definitions
of Vn and V̂n. �



OPTIMAL STOPPING FOR PDMP 1623

5.4. Proof of Theorem 5.1. We can finally turn to the proof of Theorem 5.1.
Lemmas 5.2, 5.4, 5.8 and 5.9 from the preceding sections directly yield, for all
0 < η < minz∈�z

n
{�(z)},

‖Vn − V̂n‖p ≤ [vn]‖Ẑn − Zn‖p + ([g]2 + 2CgCλ)‖�(Ẑn)‖p

+
{
[vn+1]1E2 + CgE4 + 2Cg

[t∗]
η

+ ([g]1 + [g]2[t∗]) ∨ ([vn+1]∗[Q])
}
‖Ẑn − Zn‖p

+ [vn+1]‖Ẑn+1 − Zn+1‖p + 2Cg

(
2Cλη + ‖Sn+1 − Ŝn+1‖p

η

)

+ [vn+1]‖Ẑn+1 − Zn+1‖p + ‖Vn+1 − V̂n+1‖p.

The optimal choice for η clearly satisfies

2Cλη = 1

η
([t∗]‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p),

providing it also satisfies the condition 0 < η < minz∈�z
n
{�(z)}. Hence, rearrang-

ing the terms above, one gets the expected result

‖Vn − V̂n‖p ≤ ‖Vn+1 − V̂n+1‖p + ([g]2 + 2CgCλ)‖�(Ẑn)‖p

+ {[vn] + [vn+1]1E2 + CgE4

+ ([g]1 + [g]2[t∗]) ∨ ([vn+1]∗[Q])}‖Ẑn − Zn‖p

+ 2[vn+1]‖Ẑn+1 − Zn+1‖p

+ 4Cg(2Cλ)
1/2([t∗]‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p)1/2.

6. Numerical construction of an ε-optimal stopping time. In [11], The-
orem 1, Gugerli defined an ε-optimal stopping time for the original problem.
Roughly speaking, this stopping time depends on the embedded Markov chain
(�n) and on the optimal value function. Therefore, a natural candidate for an ε-
optimal stopping time should be obtained by replacing the Markov chain (�n)

and the optimal value function by their quantized approximations. However, this
leads to un-tractable comparisons between some quantities involving (�n) and
its quantized approximation. It is then far from obvious to show that this method
would provide a computable ε-optimal stopping rule. Nonetheless, by modifying
the approach of Gugerli [11], we are able to propose a numerical construction of
an ε-optimal stopping time of the original stopping problem.

Here is how we proceed. First, recall that pn be the closest-neighbor projection
from E ×R+ onto ��

n , and for all (z, s) ∈ E ×R+ define (̂zn, ŝn) = pn(z, s). Note
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that ẑn and ŝn depend on both z and s. Now, for n ∈ {1, . . . ,N}, define

s∗
n(z, s) = min

{
t ∈ G(̂zn−1)|Ĵn(v̂n, g)(̂zn−1, t) = max

u∈G(̂zn−1)
Ĵn(v̂n, g)(̂zn−1, u)

}
and

rn,β(z, s) =
⎧⎪⎨
⎪⎩

t∗(z), if K̂nv̂n(̂zn−1) > max
u∈G(̂zn−1)

Ĵn(v̂n, g)(̂zn−1, u),

s∗
n(z, s)1{s∗

n(z,s)<t∗(z)} + (
t∗(z) − β

)
1{s∗(z,s)≥t∗(z)},

otherwise.

Note the use of both the real jump time horizon t∗(z) and the quantized approxi-
mations of K , J and (z, s). Set

τ1 = rN,β(Z0, S0) ∧ T1

and for n ∈ {1, . . . ,N − 1}, set

τn+1 =
{

rN−n,β(Z0, S0), if T1 > rN−n,β(Z0, S0),
T1 + τn ◦ θT1, otherwise.

Our stopping rule is then defined by τN .

REMARK 6.1. This procedure is especially appealing because it requires no
more calculation: we have already computed the values of K̂n and Ĵn on the grids.
One just has to store the point where the maximum of Ĵn is reached.

LEMMA 6.2. τN is an {FT }-stopping time.

PROOF. Set U1 = r1,β(Z0, S0) and for 2 ≤ k ≤ N Uk = rk,β(Zk−1, Sk−1) ×
1{rk−1,β (Zk−2,Sk−2)≥Sk−1}. One then clearly has τN = ∑N

k=1 Uk ∧ Sk which is an
{FT }-stopping time by Proposition B.5. �

Now let us show that this stopping time provides a good approximation of the
value function V0. Namely, for all z ∈ E set

vn(z) = E[g(XτN−n
)|Zn = z]

and in accordance to our previous notation introduce, for n ∈ {1, . . . ,N − 1}
V n = vn(Zn).

The comparison between V0 and V 0 is provided by the next two theorems.

THEOREM 6.3. Set n ∈ {0, . . . ,N − 2} and suppose the discretization para-
meters are chosen such that there exists 0 < a < 1 satisfying

β

a
= (2Cλ)

−1/2
( [t∗]

1 − a
‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p

)1/2

< min
z∈�z

n

{�(z)}.
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Then one has

‖V n − Vn‖p ≤ ‖V n+1 − Vn+1‖p + ‖V̂n+1 − Vn+1‖p + ‖V̂n − Vn‖p

+ 2[vn+1]‖Zn+1 − Ẑn+1‖p + an‖Zn − Ẑn‖p

+ 4Cg(2Cλ)
1/2

( [t∗]
1 − a

‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p

)1/2

with an = (2[vn+1]1E2 +2CgCt∗[λ]1(2+Ct∗Cλ)+ (4CgCλ[t∗]+2[vn+1]∗[Q])∨
(3[g]1)).

PROOF. The definition of τn and the strong Markov property of the process
{X(t)} yield

vn(Zn) = E
[
g
(
Xrn+1,β (Zn,Sn)

)
1{Sn+1>rn+1,β (Zn,Sn)}|Zn

]
+ E

[
vn+1(Zn+1)1{Sn+1≤rn+1,β (Zn,Sn)}|Zn

]
= 1{rn+1,β (Zn,Sn)≥t∗(Zn)}Kvn+1(Zn)

+ 1{rn+1,β (Zn,Sn)<t∗(Zn)}J (vn+1, g)(Zn, rn+1,β(Zn,Sn)).

However, our definition of rn,β with the special use of parameter β implies

{rn+1,β(Zn,Sn) ≥ t∗(Zn)} =
{
K̂n+1v̂n+1(Ẑn) > max

s∈G(Ẑn)
Ĵn+1(v̂n+1, g)(Ẑn, s)

}
.

Consequently, one obtains

vn(Zn) = K̂n+1v̂n+1(Ẑn) ∨ max
s∈G(Ẑn)

Ĵn+1(v̂n+1, g)(Ẑn, s)

+ 1{rn+1,β (Zn,Sn)≥t∗(Zn)}[Kvn+1(Zn) − K̂n+1v̂n+1(Ẑn)]
(6.1)

+ 1{rn+1,β (Zn,Sn)<t∗(Zn)}
[
J (vn+1, g)(Zn, rn+1,β(Zn,Sn))

− max
s∈G(Ẑn)

Ĵn+1(v̂n+1, g)(Ẑn, s)
]
.

Let us study the term with operator K . First, we insert Vn to be able to use our
work from the previous section (we cannot directly apply it to vn because it may
not be Lipschitz-continuous). Clearly, one has

|Kvn+1(Zn) − K̂n+1v̂n+1(Ẑn)|
(6.2)

≤ E[|V n+1 − Vn+1||Zn] + |Kvn+1(Zn) − K̂n+1v̂n+1(Ẑn)|.
Similar calculations to those of Lemmas A.4, 5.7 and 5.9, and equation (5.5) yield

|Kvn+1(Zn) − K̂n+1v̂n+1(Ẑn)|
≤ (CgE4 + [vn+1]1E2 + [vn+1]∗[Q])(|Zn − Ẑn| + E[|Zn − Ẑn||Ẑn])(6.3)

+ 2[vn+1]E[|Zn+1 − Ẑn+1||Ẑn] + E[|Vn+1 − V̂n+1||Ẑn].
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Now we turn to operator J . Set Rn = rn+1,β(Zn,Sn). We first study the case when
Rn = s∗

n+1(Zn,Sn) < t∗(Zn). By definition, one has

Ĵn+1(v̂n+1, g)(Ẑn,Rn) = max
s∈G(Ẑn)

Ĵn+1(v̂n+1, g)(Ẑn, s).

As above, we insert Vn and obtain∣∣∣[J (vn+1, g)(Zn,Rn) − max
s∈G(Ẑn)

Ĵn+1(v̂n+1, g)(Ẑn, s)
]
1{Rn=s∗

n+1(Zn,Sn)}
∣∣∣

≤ E[|V n+1 − Vn+1||Zn]1{Rn=s∗
n+1(Zn,Sn)}(6.4)

+ |J (vn+1, g)(Zn,Rn) − Ĵn+1(v̂n+1, g)(Ẑn,Rn))|1{Rn=s∗
n+1(Zn,Sn)}.

Again, similar arguments as those used for Lemmas A.3, 5.6 and 5.9, and equations
(5.6), (5.7) and (5.8) yield, on {Rn = s∗

n+1(Zn,Sn)}
|J (vn+1, g)(Zn,Rn) − Ĵn+1(v̂n+1, g)(Ẑn,Rn)|

≤ ([vn+1]1E2 + [g]1 + CgCt∗[λ]1(2 + Ct∗Cλ)
)

× (|Zn − Ẑn| + E[|Zn − Ẑn||Ẑn])
(6.5)

+ 2[vn+1]E[|Zn+1 − Ẑn+1||Ẑn] + E[|Vn+1 − V̂n+1||Ẑn]
+ [g]1E[|Zn − Ẑn||Ẑn]
+ 2CgE

[∣∣1{Sn+1<Rn} − 1{Ŝn+1<Rn}
∣∣|Ẑn

]
.

Note that all the constants with a factor [t∗] have vanished because we know here
that both Rn < t∗(Zn) and Rn < t∗(Ẑn) hold on {Rn = s∗

n+1(Zn,Sn)}.
Finally, on {s∗(Zn) ≥ t∗(Zn) = Rn +β}, by construction of the grid G(Ẑn) (see

Remark 4.2), one has for all 0 < η < minz∈�Z
n
{�(z)},

Rn = t∗(Zn) − β < s∗(Zn) < t∗(Ẑn) − η.

Consequently, using the crude bound

|J (vn+1, g)(Zn,Rn)| +
∣∣∣ max
s∈G(Ẑn)

Ĵn+1(v̂n+1, g)(Ẑn, s)
∣∣∣ ≤ 2Cg,

one obtains∣∣∣J (vn+1, g)(Zn, rn+1,β(Zn,Sn)) − max
s∈G(Ẑn)

Ĵn+1(v̂n+1, g)(Ẑn, s)
∣∣∣

× 1{rn+1,β (Zn,Sn)=t∗(Zn)−β}(6.6)

≤ 2Cg

∣∣1{t∗(Zn)−β<t∗(Ẑn)−η}
∣∣.
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Now the combination of equations (6.1)–(6.6) and Lemmas 5.5 and 5.6 yields, for
all β < η < minz∈�Z

n
{�(z)}

‖V n − V̂n‖p ≤ ‖V n+1 − Vn+1‖p + ‖Vn+1 − V̂n+1‖p + 2[vn+1]‖Zn+1 − Ẑn+1‖p

+ ‖Zn − Ẑn‖p

(
2[vn+1]1E2 + 2CgCt∗[λ]1(2 + Ct∗Cλ)

+ (4CgCλ[t∗] + 2[vn+1]∗[Q]) ∨ (3[g]1)
)

+ 2Cg

(
2Cλη + 1

η
‖Sn+1 − Ŝn+1‖p + [t∗]

η − β
‖Zn − Ẑn‖p

)
.

Now suppose there exists 0 < a < 1 such that η = a−1β . Then the optimal choice
for η satisfies

2Cλη = 1

η

( [t∗]
1 − a

‖Ẑn − Zn‖p + ‖Sn+1 − Ŝn+1‖p

)
,

providing it also satisfies the condition 0 < η < minz∈�z
n
{�(z)}, hence the result.

�

Theorem 6.3 gives a recursive error estimation. Here is the initializing step.

THEOREM 6.4. Suppose the discretization parameters are chosen such that
there exists 0 < a < 1 satisfying

β

a
= (2Cλ)

−1/2
( [t∗]

1 − a
‖ẐN−1 − ZN−1‖p + ‖SN − ŜN‖p

)1/2
< min

z∈�z
N−1

{�(z)}.

Then one has

‖V N−1 − VN−1‖p

≤ ‖V̂N−1 − VN−1‖p + 3[g]‖ZN − ẐN‖p + aN−1‖ZN−1 − ẐN−1‖p

+ 4Cg(2Cλ)
1/2

( [t∗]
1 − a

‖ẐN−1 − ZN−1‖p + ‖SN − ŜN‖p

)1/2

with aN−1 = (2[g]1E2 + 2CgCt∗[λ]1(2 + Ct∗Cλ) + (4CgCλ[t∗] + 2[g]∗[Q]) ∨
(3[g]1)).

PROOF. As before, the strong Markov property of the process {X(t)} yields

vN−1(ZN−1) = E
[
g
(
XrN,β(ZN−1,SN−1)

)
1{SN>rN,β(ZN−1,SN−1)}|ZN−1

]
+ E

[
g(ZN)1{SN≤rN,β(ZN−1,SN−1)}|ZN−1

]
= 1{rN,β(ZN−1,SN−1)≥t∗(ZN−1)}Kg(ZN−1)

+ 1{rN,β(ZN−1,SN−1)<t∗(ZN−1)}J (g, g)(ZN−1, rN,β(ZN−1, SN−1)).
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The rest of the proof is similar to that of the previous theorem. �

As in Section 5, it is now clear that an adequate choice of discretization para-
meters yields arbitrarily small errors if one uses the stopping-time τN .

7. Example. Now we apply the procedures described in Sections 4 and 6 on
a simple PDMP and present numerical results.

Set E = [0,1[ and ∂E = {1}. The flow is defined on [0,1] by φ(x, t) = x + vt

for some positive v, the jump rate is defined on [0,1] by λ(x) = βxα , with β > 0
and α ≥ 1, and for all x ∈ [0,1], one sets Q(x, ·) to be the uniform law on [0,1/2].
Thus the process moves with constant speed v toward 1, but the closer it gets to
the boundary 1, the higher the probability to jump backward on [0,1/2]. Figure 1
shows two trajectories of this process for x0 = 0, v = α = 1 and β = 3 and up to
the 10th jump.

The reward function g is defined on [0,1] by g(x) = x. Our assumptions are
clearly satisfied, and we are even in the special case when the flow is Lipschitz-
continuous (see Remark A.8). All the constants involved in Theorems 5.1 and 6.3
can be computed explicitly.

The real value function V0 = v0(x0) is unknown, but, as our stopping rule τN is
a stopping time dominated by TN , one clearly has

V 0 = Ex0[g(X(τN))] ≤ V0 = sup
τ∈MN

Ex0[g(X(τ))]
(7.1)

≤ Ex0

[
sup

0≤t≤TN

g(X(t))
]
.

The first and last terms can be evaluated by Monte Carlo simulations, which pro-
vide another indicator of the sharpness of our numerical procedure. For 106 Monte
Carlo simulations, one obtains Ex0[sup0≤t≤TN

g(X(t))] = 0.9878. Simulation re-
sults (for d = 2, x0 = 0, v = α = 1, β = 3, up to the 10th jump and for 105 Monte

FIG. 1. Two trajectories of the PDMP.
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TABLE 1
Simulation results

P t QE � ̂V0 V 0 B1 B2 B3

10 0.0943 0.151 0.7760 0.8173 0.1705 74.64 897.0
50 0.0418 0.100 0.8298 0.8785 0.1093 43.36 511.5

100 0.0289 0.083 0.8242 0.8850 0.1028 34.15 400.3
500 0.0133 0.056 0.8432 0.8899 0.0989 21.03 243.1
900 0.0102 0.049 0.8514 0.8968 0.0910 17.98 206.9

P t Number of points in each quantization grid
QE Quantization error: QE = max0≤k≤N‖�k − �̂k‖2
� For all z, �(z) = �

B1 Empirical bound Ex0 [sup0≤t≤TN
g(X(t))] − V 0

B2 Theoretical bound given by Theorem 5.1
B3 Theoretical bound given by Theorems 6.3 and 6.4

Carlo simulations) are given in Table 1. Note that, as expected, the theoretical
errors decrease as the quantization error decreases. From (7.1), it follows that

V0 − V 0 ≤ Ex0

[
sup

0≤t≤TN

g(X(t))
]
− V 0.

This provides an empirical upper bound for the error.

APPENDIX A: AUXILIARY RESULTS

A.1. Lipschitz properties of J and K . In this section, we derive useful
Lipschitz-type properties of operators J and K . The first result is straightforward.

LEMMA A.1. Let h ∈ Lc. Then for all (x, y) ∈ E2 and (t, u) ∈ R2+, one has∣∣h(
φ

(
x, t ∧ t∗(x)

))
e−�(x,t∧t∗(x)) − h

(
φ

(
y,u ∧ t∗(y)

))
e−�(y,u∧t∗(y))

∣∣
≤ D1(h)|x − y| + D2(h)|t − u|,

where:

• if t < t∗(x) and u < t∗(y),

D1(h) = [h]1 + ChCt∗[λ]1, D2(h) = [h]2 + ChCλ,

• if t = t∗(x) and u = t∗(y),

D1(h) = [h]∗ + ChCt∗[λ]1 + ChCλ[t∗], D2(h) = 0,

• otherwise,

D1(h) = [h]1 + ChCt∗[λ]1 + [h]2[t∗] + ChCλ[t∗], D2(h) = [h]2 + ChCλ.
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LEMMA A.2. Let w ∈ B(E). Then for all x ∈ E, (t, u) ∈ R2+, one has

|J (w,g)(x, t) − J (w,g)(x,u)| ≤ (CwCλ + [g]2 + CgCλ)|t − u|.
PROOF. By definition of J , we obtain

|J (w,g)(x, t) − J (w,g)(x,u)|

≤
∣∣∣∣
∫ u∧t∗(x)

t∧t∗(x)
λQw(φ(x, s))e−�(x,s) ds

∣∣∣∣
+ ∣∣g(

φ
(
x, t ∧ t∗(x)

))
e−�(x,t∧t∗(x)) − g

(
φ

(
x,u ∧ t∗(x)

))
e−�(x,u∧t∗(x))

∣∣.
Applying Lemma A.1 to h = g, the result follows. �

LEMMA A.3. Let w ∈ Lc. Then for all (x, y) ∈ E2, t ∈ R+,

|J (w,g)(x, t) − J (w,g)(y, t)| ≤ (CwE1 + [w]1E2 + E3)|x − y|,
where

E1 = Cλ[t∗] + Ct∗[λ]1(1 + Ct∗Cλ),

E2 = Ct∗Cλ[Q],
E3 = [g]1 + [g]2[t∗] + Cg{Ct∗[λ]1 + Cλ[t∗]}.

PROOF. Again by definition, we obtain

|J (w,g)(x, t) − J (w,g)(y, t)|

≤
∣∣∣∣
∫ t∧t∗(x)

0
λQw(φ(x, s))e−�(x,s) ds −

∫ t∧t∗(y)

0
λQw(φ(y, s))e−�(y,s) ds

∣∣∣∣
+ ∣∣g(

φ
(
x, t ∧ t∗(x)

))
e−�(x,t∧t∗(x)) − g

(
φ

(
y, t ∧ t∗(y)

))
e−�(y,t∧t∗(y))

∣∣.
Without loss of generality it can be assumed that t∗(x) ≤ t∗(y). From Lemma A.1
for h = g and using the fact that |t ∧ t∗(x) − t ∧ t∗(y)| ≤ |t∗(x) − t∗(y)|, we get

|J (w,g)(x, t) − J (w,g)(y, t)|

≤
∫ t∧t∗(x)

0

∣∣λQw(φ(x, s))e−�(x,s) − λQw(φ(y, s))e−�(y,s)
∣∣ds

+ (CwCλ[t∗] + E3)|x − y|.
By using a similar results as Lemma A.1 for h = λQw, we obtain the result. �

LEMMA A.4. Let w ∈ Lc. Then for all (x, y) ∈ E2,

|Kw(x) − Kw(y)| ≤ (CwE4 + [w]1E2 + [w]∗[Q])|x − y|,
where E4 = 2Cλ[t∗] + Ct∗[λ]1(2 + Ct∗Cλ).

PROOF. The proof is similar to the previous ones and is therefore omitted. �
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A.2. Lipschitz properties of the value functions. Now we turn to the Lip-
schitz continuity of the sequence of value functions (vn). Namely, we prove that
under our assumptions, vn belongs to Lc for all 0 ≤ n ≤ N . We also compute the
Lipschitz constant of vn on E as it is much sharper in this case than [vn]1 (see
Remark 2.2).

We start with proving sharper results on operator J .

LEMMA A.5. Let w ∈ Lc. Then for all x ∈ E and (s, t) ∈ R2+,∣∣∣sup
u≥t

J (w,g)(x,u) − sup
u≥s

J (w,g)(x,u)
∣∣∣ ≤ (CwCλ + [g]2 + CgCλ)|t − s|.

PROOF. Without loss of generality it can be assumed that t ≤ s. Therefore,
one has ∣∣∣sup

u≥t
J (w,g)(x,u) − sup

u≥s
J (w,g)(x,u)

∣∣∣
(A.1)

= sup
u≥t

J (w,g)(x,u) − sup
u≥s

J (w,g)(x,u).

Note that there exists t ∈ [t ∧ t∗(x), t∗(x)] such that supu≥t J (w,g)(x,u) =
J (w,g)(x, t). Consequently, if t ≥ s then one has |supu≥t J (w,g)(x,u) −
supu≥s J (w,g)(x,u)| = 0.

Now if t ∈ [t ∧ t∗(x), s[, then one has

sup
u≥t

J (w,g)(x,u) − sup
u≥s

J (w,g)(x,u) ≤ J (w,g)(x, t) − J (w,g)(x, s).

From Lemma A.2, we obtain the following inequality:

sup
u≥t

J (w,g)(x,u) − sup
u≥s

J (w,g)(x,u) ≤ (CwCλ + [g]2 + CgCλ)|t − s|.(A.2)

Combining (A.1), (A.2) and the fact that |t − s| ≤ |t − s| the result follows. �

Similarly, we obtain the following result.

LEMMA A.6. Let w ∈ Lc. Then for all (x, y) ∈ E2,∣∣∣ sup
t≤t∗(x)

J (w,g)(x, t) − sup
t≤t∗(y)

J (w,g)(y, t)
∣∣∣ ≤ (CwE5 + [w]1E2 + E6)|x − y|,

where E5 = E1 + Cλ[t∗] and E6 = E3 + ([g]2 + CgCλ)[t∗].

Now we turn to (vn). Recall from [11] that for all 0 ≤ n ≤ N , (vn) is bounded
with Cvn = Cg .
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PROPOSITION A.7. For all 0 ≤ n ≤ N , vn ∈ Lc and

[vn]1 ≤ eCλCt∗ (
2[vn+1]1E2 + CgE1 + CgE4 + CgCt∗[λ]1(1 + CλCt∗)

)
(A.3)

+ eCλCt∗ {([g]1 + [g]2[t∗]) ∨ ([vn+1]∗[Q])},
[vn]2 ≤ eCλCt∗ {CgCλ(4 + CλCt∗) + [g]2},(A.4)

[vn]∗ ≤ [vn]1 + [vn]2[t∗],
[vn] ≤ [vn+1]1E2 + CgE5 + {E6 ∨ ([vn+1]∗[Q] + CgCt∗[λ]1)}.

PROOF. Clearly, vN = g is in Lc. Assume that vn+1 is in Lc, then by using the
semi-group property of the drift φ it can be shown that for any x ∈ E, t ∈ [0, t∗(x)],
one has (see [11], equation (8))

vn(φ(x, t)) = e�(x,t)
{(

sup
u≥t

J (vn+1, g)(x,u) ∨ Kvn+1(x)
)

(A.5)
− Ivn+1(x, t)

}
.

Note that for x ∈ E, t ∈ R+, one has

sup
u≥t

J (vn+1, g)(x,u) ∨ Kvn+1(x)

≤ sup
u

J (vn+1, g)(x,u) ∨ Kvn+1(x)(A.6)

= vn(x).

Set (x, y) ∈ E2 and t ∈ [0, t∗(x) ∧ t∗(y)]. It is easy to show that∣∣e�(x,t) − e�(y,t)
∣∣ ≤ eCλCt∗ [λ]1Ct∗ |x − y|,(A.7)

|Ivn+1(x, t) − Ivn+1(y, t)| ≤ (Cvn+1E1 + [vn+1]1E2)|x − y|.(A.8)

Then, (A.5)–(A.8) yield

|vn(φ(x, t)) − vn(φ(y, t))|
≤ {|vn(x)| + |Ivn+1(x, t)|}eCλCt∗ [λ]1Ct∗ |x − y|

+ e�(y,t)
{
sup
u≥t

|J (vn+1, g)(x,u) − J (vn+1, g)(y,u)|(A.9)

∨ |Kvn+1(x) − Kvn+1(y)|
}

+ e�(y,t)(Cvn+1E1 + [vn+1]1E2)|x − y|.
For x ∈ E, t ∈ [0, t∗(x)] and n ∈ N, note that

e�(x,t) ≤ eCλCt∗ ,
(A.10)

|Ivn+1(x, t)| ≤ CλCvn+1Ct∗ and |vn+1(x)| ≤ Cg.
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Therefore, we obtain inequality (A.3) by using (A.9), (A.10) and Lemma A.3, A.5,
and the fact that CgE1 + E3 = CgE4 + [g]1 + [g]2[t∗].

Now, set x ∈ E and t , s ∈ [0, t∗(x)]. Similarly, one has∣∣e�(x,t) − e�(x,s)
∣∣ ≤ eCλCt∗ Cλ|t − s|,(A.11)

|Ivn+1(x, t) − Ivn+1(x, s)| ≤ CλCvn+1 |t − s|.(A.12)

Combining (A.5), (A.6), (A.11) and (A.12), it yields

|vn(φ(x, t)) − vn(φ(x, s))|
≤ {|vn(x)| + |Ivn+1(x, t)|}eCλCt∗ Cλ|t − s|

(A.13)
+ e�(x,t)

{∣∣∣sup
u≥t

J (vn+1, g)(x,u) − sup
u≥s

J (vn+1, g)(x,u)
∣∣∣

+ CλCvn+1 |t − s|
}
.

Finally, inequality (A.4) follows from equations (A.10), (A.13) and Lemma A.4.
One clearly has [vn]∗ ≤ [vn]1 +[vn]2[t∗]. Finally, set (x, y) ∈ E2. By definition,

one has

|vn(x) − vn(y)|
≤

∣∣∣ sup
u≤t∗(x)

J (vn+1, g)(x,u) − sup
u≤t∗(y)

J (vn+1, g)(y,u)
∣∣∣

∨ |Kvn+1(x) − Kvn+1(y)|
and we conclude using Lemmas A.6 and A.4, and the fact that E4 = E5 +Ct∗[λ]1.

�

REMARK A.8. Note that [vn] is much sharper than [vn]1. If in addition to
our assumptions, the drift φ is Lipschitz-continuous in both variables, then with
obvious notation, one has [vn]i ≤ [vn][φ]i for i ∈ {1,2,∗}, which should yield
better constants (see, e.g., Section 7).

APPENDIX B: STRUCTURE OF THE STOPPING TIMES OF PDMPs

Let τ be an {Ft }t∈R+-stopping time. Let us recall the important result from
Davis [6].

THEOREM B.1. There exists a sequence of nonnegative random variables
(Rn)n∈N∗ such that Rn is FTn−1-measurable and τ ∧ Tn+1 = (Tn + Rn+1) ∧ Tn+1
on {τ ≥ Tn}.
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LEMMA B.2. Define R1 = R1, and Rk = Rk1{Sk−1≤Rk−1}. Then one has

τ =
∞∑

n=1

Rn ∧ Sn.

PROOF. Clearly, on {Tk ≤ τ < Tk+1}, one has Rj ≥ Sj and Rk+1 < Sk+1 for
all j ≤ k. Consequently, by definition Rj = Rj for all j ≤ k + 1, whence

∞∑
n=1

Rn ∧ Sn =
k∑

n=1

Rn ∧ Sn + {Rk+1 ∧ Sk+1} +
∞∑

n=k+2

Rn ∧ Sn

= Tk + Rk+1 +
∞∑

n=k+2

Rn ∧ Sn.

Since Rk+1 = Rk+1 < Sk+1 we have Rj = 0 for all j ≥ k + 2. Therefore,∑∞
n=1 Rn ∧ Sn = Tk + Rk+1 = τ , showing the result. �

There exists a sequence of measurable mappings (rk)k∈N∗ defined on E×(R+×
E)k−1 with value in R+ satisfying

R1 = r1(Z0),

Rk = rk(Z0,�k−1),

where �k = (S1,Z1, . . . , Sk,Zk).

DEFINITION B.3. Consider p ∈ N∗. Let (R̂k)k∈N∗ be a sequence of mappings
defined on E × (R+ × E)p × � with value in R+ defined by

R̂1(y, γ,ω) = rp+1(y, γ )

and for k ≥ 2

R̂k(y, γ,ω) = rp+k(y, γ,�k−1(ω))1{Sk−1≤R̂k−1}(y, γ,ω).

PROPOSITION B.4. Assume that Tp ≤ τ ≤ TN . Then, one has

τ = Tp + τ̂ (Z0,�p, θTp),

where τ̂ :E × (R+ × E)p × � → R+ is defined by

τ̂ (y, γ,ω) =
N−p∑
n=1

R̂n(y, γ,ω) ∧ Sn(ω).(B.1)
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PROOF. First, let us prove by induction that for k ∈ N∗, one has

R̂k(Z0,�p, θTp) = Rp+k.(B.2)

Indeed, one has R̂1(Z0,�p, θTp) = Rp+1, and on the set {τ ≥ Tp}, one also has
Rp+1 = Rp+1. Consequently, R̂1(Z0,�p) = Rp+1. Now assume that R̂k(Z0,�p ,
θTp) = Rp+k . Then, one has

R̂k+1(Z0(ω),�p(ω), θTp(ω))

= rp+k+1(Z0(ω),�p(ω),�k(θTp(ω)))1{Sk≤R̂k}(Z0(ω),�p(ω), θTp(ω)).

By definition, one has �k(θTp(ω)) = (Sp+1(ω),Zp+1(ω), . . . , Sp+k(ω),Zp+k(ω))

and the induction hypothesis easily yields 1{Sk≤R̂k}(Z0(ω),�p(ω), θTp(ω)) =
1{Sp+k≤Rp+k}(ω). Therefore, we get R̂k+1(Z0,�p, θTp) = Rp+k+1, showing (B.2).

Combining (B.1) and (B.2) yields

τ̂ (Z0,�p, θTp) =
N−n∑
n=1

Rp+n ∧ Sp+n.(B.3)

However, we have already seen that on the set {T ≥ Tp}, one has Rk = Rk ≥ Sk ,
for k ≤ p. Consequently, using (B.3), we obtain

Tp + τ̂ (Z0,�p, θTp) =
p∑

k=1

Sk +
N∑

k=p+1

Rk ∧ Sk =
N∑

k=1

Rk ∧ Sk.

Since τ ≤ TN , we obtain from Lemma B.2 and its proof that τ = ∑N
n=1 Rn ∧ Sn,

showing the result. �

PROPOSITION B.5. Let (Un)n∈N∗ be a sequence of nonnegative random vari-
ables such that Un is FTn−1-measurable and Un+1 = 0 on {Sn > Un}, for all
n ∈ N∗. Set

U =
∞∑

n=1

Un ∧ Sn.

Then U is an {Ft }t∈R+ -stopping time.

PROOF. Assumption 2.1 yields

{U ≤ t} =
∞⋃

n=0

[({Tn ≤ U < Tn+1} ∩ {U ≤ t} ∩ {t < Tn+1})
(B.4)

∪ ({Tn ≤ U < Tn+1} ∩ {U ≤ t} ∩ {Tn+1 ≤ t})].
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From the definition of Un, one has {U ≥ Tn} = {Un ≥ Sn}; hence one has

{Tn ≤ U < Tn+1} ∩ {U ≤ t} ∩ {t < Tn+1}
= {Sn ≤ Un} ∩ {Tn + Un+1 ≤ t} ∩ {Tn ≤ t} ∩ {t < Tn+1}.

Theorem 2.10(ii) in [8] now yields {Sn ≤ Un} ∩ {Tn + Un+1 ≤ t} ∩ {Tn ≤ t} ∈ Ft ;
thus one has

{Tn ≤ U < Tn+1} ∩ {U ≤ t} ∩ {t < Tn+1} ∈ Ft .(B.5)

On the other hand, one has

{Tn ≤ U < Tn+1} ∩ {U ≤ t} ∩ {Tn+1 ≤ t}
= {Sn ≤ Un} ∩ {Un+1 < Sn+1} ∩ {Tn+1 ≤ t}.

Hence Theorem 2.10(ii) in [8] again yields

{Tn ≤ U < Tn+1} ∩ {U ≤ t} ∩ {Tn+1 ≤ t} ∈ Ft .(B.6)

Combining equations (B.4), (B.5) and (B.6) we obtain the result. �

COROLLARY B.6. For any (y, γ ) ∈ E×(R+×E)p , τ̂ (y, γ, ·) is an {Ft }t∈R+-
stopping time satisfying τ̂ (y, γ, ·) ≤ TN−p .

PROOF. It follows form the definition of R̂k that R̂k(y, γ,ω) < Sk(ω) im-
plies R̂k+1(y, γ,ω) = 0 and the nonnegative random variable R̂k(y, γ, ·) is FTk−1 -
measurable. Therefore, Proposition B.5 yields that τ̂ (y, γ, ·) is an {Ft }t∈R+-
stopping time. Finally, by definition of τ̂ [see (B.1)], one has τ̂ (y, γ, ·) ≤∑N−p

n=1 Sn = TN−p showing the result. �
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As part of optimizing the reliability, Thales Optronics now includes systems that examine the state of its 
equipment. This function is performed by HUMS (Health & Usage Monitoring System). The aim is to 
implement in the HUMS a program based on observations that can determine the state of the system and 
propose a maintenance action before failures. So we decompose our problem into two steps: the first step 
is to detect the degraded state (which announces future failure) using an informative variable and hidden 
Markov chains. This step was developped in Baysse & al (2012). The second is to propose an optimal and 
dynamic maintenance policy, adapted to the state of the system and taking into account both random 
failures and those related to the degradation phenomenon. We want to estimate the best time to perform 
maintenance: a maintenance performed too early may be unnecessarily costly and inconvenient for the 
client but too late may cause the occurrence of a failure that will damage the rest of the equipment and 
may be responsible for the failure of a mission. So it is necessary to find a balance between these two 
extreme maintenance policies. First, we model the state of the system by a piecewise-deterministic 
Markov process: PDMP (introduced by Davis 1993). Often the evolution of the system is modeled by 
stochastic processes such as Markov jump process, semi-Markov process (Cocozza & al (1997)). There 
are also tools for modeling such as Stochastic Petri networks (Marsan & al 1995), dynamic Bayesian 
networks (Donnat & al 2010). However, the flexibility of modeling by PDMP allows to take into account the 
dynamic component degradation. The works of Lair & al (2012) focuses on this topic, they use a finite 
volume scheme to evaluate the quantities of interest associated with PDMP. Even if there are different 
methods that optimize maintenance policy, few use optimal stopping. In this paper, we use this method 
whose principle is to maximize a performance function that takes into account operating time, maintenance 
costs, repairs and downtime. We use the numerical probability tools developed in de Saporta & al (2012) 
in order to compute this conditioned-based time of maintenance. The integration of this method in the 
HUMS, will be soon implemented in specific optronic equipment by Thales. We present results of 
simulation in this case. The methodology can be extended to more complicated cases. 

1. Industrial context 
 
Thanks to the HUMS, each of the appliances has a logbook which provides information at each start-up 
such as: number of uses, cumulative operating time of appliance,  “cool  down  time”  (Tmf)…  This  Tmf  is  the  
transit time for the system from ambient temperature to a very low one. This temperature decrease is 
required to operate appliance and this is done on every boot. According to experts, a Tmf increase results 
from deterioration in the cooling system. According to this hypothesis, a careful observation of Tmf 
evolution allows us to determine the state of the cooling system. We suppose that the cooling system pass 
from stable state to degraded state and from degraded state to reach failure. In Baysse & al (2012), we 
have given a mathematical method based on Hidden Markov Chain in order to detect a transition to a 
degraded state of the cooling system. There are two other kinds of possible failures: electronic failure and 
ball bearing failure. These two failures do not pass by a degraded state. So we study appliance with three 
failures (electronic, ball bearing and cooling system failure) and three states (stable, degraded on account 
of cooling system, failure).  



Our objective is to propose an optimal and dynamic maintenance policy adapted to the random state of the 
system. 

2. Modeling 
In order to develop a maintenance policy that takes into account both random failures and those related to 
a degradation phenomenon, we model the state of the system by a piecewise-deterministic Markov 
process. This modeling makes possible the transition from the stable state to failure directly (random case) 
or through the degraded state (damage to the cooling system (see figure 1). 
The notion of PDMP was introduced by Davis (1993). PDMP are processes with deterministic evolution, 
punctuated by random jumps and changes of regimes that can allow them to pass from one state to 
another. PDMP are hybrid process generally noted 𝜉௧ = (𝑚௧, 𝑠௧)௧∈ℜ₊. The first component 𝑚௧ is a discrete 
variable with values in a finite or countable space M. It describes the state of the system at time t (system 
in stable mode, degraded, failure ...). The second component 𝑠௧ evolves in a continuous way in 𝐸௠ ∈ ℜ௡ 
and describes evolution of the system in the mode  𝑚௧ by its physical variables (for example pressure, age 
of system..). 
 
Our study is about equipment with three states: stable state ( 𝑚௧ = 1), degraded state( 𝑚௧ = 2) and failure 
(𝑚௧ = 3). 
At the beginning equipment is in stable state and then it breakdowns or it goes in degraded state: 

- If it breakdowns directly, it is due to an electronic failure or a failure about ball bearing. Failure 
rates are respectively 𝜆ଵ and  𝜆ଷ(t). 

- If it goes from stable state to a degraded state, it is due to a deterioration of the cooling system.  
The occurrence rate of this deterioration is noted 𝜆଴. In the degraded state, it is possible to have 
electronic, ball bearing or cooling system failures (rate𝜆ଶ). 

Equipment   in   degraded   state   or   in   failure   cannot   return   in   stable   state.   Note   that   the   state   “failure”   is  
absorbant and so the number of jump is less than or equal to 2. Figure 1 illustrates how the system works. 
According to experts, the rate  𝜆ଷ depends on the age t of equipment contrary to other rates. Note that 𝑚௧ 
is not markovian because rate 𝜆ଷ depends on t. Thanks to our method to detect transition from state 1 to 
state 2, (see Baysse & al (2012)), we suppose that the jump of the process is observed. 
 
 
 
 
 
                                                       𝜆ଵ + 𝜆ଷ(𝑡)                                       𝜆଴ 
 
 
 
 
 
 
                                                                             𝜆ଵ + 𝜆ଶ + 𝜆ଷ(𝑡) 
 

Figure 1 : Modeling system    
 
In order to use the powerful framework of Markov process, we must add time t to the process (𝑚௧)௧∈ℜ₊ as 
information such that 𝜉௧ = (𝑚௧, 𝑠௧ = t)௧∈ℜ₊ is markovian. Indeed it is a PDMP. So the PDMP considered 
here describes the state of equipment and its age: 𝜉௧ = (𝑚௧, 𝑠௧ = t)௧. Its motion is described by the three 
characteristics (see Davis (1993)): 

- the flow ϕ (m,t ;s) = (m,t+s), 
- the rate of jump λ (𝑚௧, t) =  (𝜆଴ + 𝜆ଵ + 𝜆ଷ(𝑡))1{௠೟ୀଵ}+  (𝜆ଵ + 𝜆ଶ + 𝜆ଷ(𝑡))1{௠೟ୀଶ}, 
- the measure of transition: 

 Q (𝑚௧ ,t ; {e} ×{t}) = ൝
ቀ ఒబ
ఒబାఒభାఒయ(௧)

ቁ 1{௘ୀଶ} + ቀ ఒభାఒయ(௧)
ఒబାఒభାఒయ(௧)

ቁ 1{௘ୀଷ}    𝑖𝑓  𝑚௧ = 1    

1{௘ୀଷ}                                                                                                                                                  𝑖𝑓  𝑚௧ = 2  
�. 

We denote 𝑍଴ = (1,0), 𝑇଴ = 0. The state of the system just after the first transition is 𝑍ଵ = (𝑚 భ், 𝑇ଵ) and 
𝑍ଶ = ൫𝑚 మ், 𝑇ଶ൯ = (3, 𝑇ଶ) if 𝑇ଶ occurs. We put 𝑆ଵ = 𝑇ଵ and 𝑆ଶ = 𝑇ଶ − 𝑇ଵthe interjumping times. With these 

FAILURE 
m=3 DEGRADE 

STATE 
m=2 

 STABLE 
STATE 

m=1 



notations, the discrete process 𝛩௡ = (𝑍௡, 𝑆௡)=(𝑚 ೙், 𝑇௡, 𝑆௡)  associated with the PDMP (𝜉௧)௧ is a Markov 
chain and it is considered for n={0,1,2}. 
The horizon T of the study is finite. So that the remaining time is t*(𝜉௧) = T − t. 
 
3. Optimal and dynamic maintenance policy 
 
We consider the problem as an optimal stopping problem for PDMP, whose principle is to maximize a 
performance function that takes into account operating time, maintenance costs, repairs and downtime. 
We want to estimate the best time to perform maintenance in order to allow Thales to manage upstream 
park equipment. Recent work has been done on this subject. De Saporta & al (2012) give the theoretical 
foundations of the method that we use in this study. In de Saporta & al (2010), a method of computation of 
best time to perform maintenance on a complex dynamic system is implemented and analyzed. 
 
Principle of optimal stopping time 
Our aim is to find a stopping time 𝜏 which maximizes expectation of a performance function at random 
stopping time 𝜏 that is  𝐸కబୀ(௠బ,଴)[g(𝑚ఛ, 𝜏)] where g is the function of system performance and 𝜏 a stopping 
time adapted to the filtration of the PDMP. This problem is typically an optimal stopping problem which 
consists in solving the following optimization problem:  
 
𝑣଴(𝑚଴, 0) = 𝑠𝑢𝑝ఛஸ௧∗(௠బ,଴)  𝐸కబୀ(௠బ,଴)[g(𝑚ఛ, 𝜏)]                                                                                                  

with ቄ
𝑣ଶ = 𝑔                                                                                                    
  𝑣ଵ = 𝐿(𝑣ଶ, 𝑔)                                                                            

�                                                                                                      (1) 

 
Function 𝑣଴ is called the value function of the problem and represents the maximum performance that can 
be achieved. Operator L is defined by L(w, g)(x) =   𝑠𝑢𝑝ఛஸ௧∗(௫)  ൛𝐸௫ൣw(𝑍ଵ)1{ௌభழఛ}൧ + g൫  ϕ  (𝑥; 𝜏)൯P୶(Sଵ ≥
𝜏)ൟ  ˅  𝐸௫[w(𝑍ଵ)]. It is a complex operator that depends on the characteristics of the PDMP. However, we 
can see that it depends on the PDMP only through the underlying Markov chain 𝛩௡. In our case, we chose 

the performance function g(𝑚௧, t)=൜
𝑡    𝑖𝑓  𝑚௧ = 1  𝑜𝑟  2      
  0    𝑖𝑓    𝑚௧ = 3                            

�.  Here this function favours a long time of use but is 

canceled if the system fails. In practice, the optimal stopping time does not necessarily exist. However, we 
can always find time to stop that approach the optimal performance as near as you want. 
 
Numerical method of optimal stopping 
We apply methodology developed in de Saporta & al (2010). 
To approximate the -optimal stopping time  𝜏 we introduce a sequence of random variables(𝑉௡)௡∈{଴,ଵ,ଶ} 
such as 𝑉௡ = 𝑣௡(𝑍௡). This allows to replace the recurrence (1) which covers functions by a recurrence on 
random variables easier to treat numerically. To approximate the values of this sequence, we proceed in 
two steps. First, we discretize the process on a regular time grid noted G(𝜉) associated with interval 
[0,𝑡∗(𝜉)[, in order to obtain a discrete time Markov chain. Thus the operator L is maximized on a finite 
number of points and not on a continuous time interval. This new discretized operator is noted 𝐿ௗ. The 
second step is the quantization that transforms the continuous random variables 𝛩௡ into a discrete random 
variable  𝛩෡௡. Quantization provides a finite set of points (a grid) adapted to the law of the process and not 
arbitrary regular basis on the state space. Details of this method are given by Pagès & al (2003). It is 
based on simulations of the Markov chain (𝛩௡). So we denote 𝛩෠௡=( 𝑍መ௡, 𝑆෡ ௡) = (𝑚ෝ ෠்೙, 𝑇෠௡, 𝑆መ௡) projection of 𝛩௡ 

on the quantization grid 𝛤௡௓. After these two steps, the operator L is approximated by operators 𝐿௞ௗ෢ for 
𝑘 ∈ {1,2}. 
Now we can build a sequence of variables (𝑉෠௡) which approaches (𝑉௡). To do this, we first consider the 
following process: 

 

⎩
⎪
⎨

⎪
⎧ 𝑣ොଶ(𝑧) = 𝑔(𝑧)  𝑤𝑖𝑡ℎ  𝑧 ∈ 𝛤ଶ௓,                                                                                                                                                                  

𝑣ොଵ(𝑧) = 𝐿ଶௗ෢(𝑣ොଶ, g)(z)  𝑤𝑖𝑡ℎ  𝑧 ∈ 𝛤ଵ௓      ,                                                                                                                                  
                            𝑣ො଴(𝑧) = 𝐿ଵௗ෢(𝑣ොଵ, g)(z)  𝑤𝑖𝑡ℎ  𝑧 ∈ 𝛤଴௓  .                                                                                                                                                                  

  

�                                  (2)                                  

  
with 
𝐿௞ௗ෢(w, g)(𝜉) = (  𝑚𝑎𝑥௧  ௘ீ(క)൛𝐸ൣw൫𝑍መ௞൯1{ௌመೖழ௧}|𝑍መ௞ିଵ = 𝜉൧ + g൫  ϕ  (𝜉; t)൯P൫𝑆መ௞ ≥ t|𝑍መ௞ିଵ = 𝜉൯ൟ)  ˅𝐸ൣw൫𝑍መ௞൯|𝑍መ௞ିଵ = 𝜉൧.                                                                                                                   



          
, 

 

The approximation of 𝑉௞ is performed by 𝑉෠௞ = 𝑣ො௞൫𝑍መ௞൯ for 𝑘 ∈ {0,1,2}. It is shown in de Saporta & al (2010) 
that the error of approximation of the value function |𝑉෠଴ − 𝑉଴| can be made arbitrarily small by a suitable 
choice of discretization parameters). A stopping time arbitrarily close to the optimal is also provided. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Schematic representation of the algorithm  
 
 
 
4. Applications 
 
A general presentation of the algorithm used to perform the maintenance policy is given in Figure 2. From 
the value of T and failure rates  𝜆଴, 𝜆ଵ,  𝜆ଶ, 𝜆ଷ(𝑡)provided by experts, we built a simulator of the trajectories 
of the process. For each of them, we have the following information: the time 𝑆ଵ spent in the stable state, 
the type of jump (𝑚 భ்=2 or 3) and the time spent in the new state if 𝑚 భ் = 2. From this simulation, we have 
created the quantization grid using an algorithm given in Pagès & al (2003). All of these elements will allow 
us to calculate 𝑉෠଴ and 𝑉෠ଵ of each cell and the times  𝜏଴,  𝜏ଵ which maximize them. Note that    𝜏଴ is 
deterministic and   𝜏ଵ depends on the cell. So for each cell of the quantization grid we can associate a time 
nearly optimal. Let us remark that the result of this algorithm only depends on T and the failure rates and it 
is compute once and for all. 
It will suffice to project data of equipment chosen on the new grid to propose stopping time that will be 
associated. 
 
In the practice, maintenance policy is the following:  

- at the beginning, a maintenance date is announced at a fixed date   𝜏଴ for all equipment, 
- if an appliance goes in degraded state to the time 𝑇ଵ before the date fixed   𝜏଴, maintenance time 

is recalculated and replaced by a new time   𝜏ଵ. The time   𝜏ଵ  is given by the optimal stopping time 
associated to the cell of  𝑇෠ଵ (the projection of 𝑇ଵ on the grid).    

 
To illustrate this point, we choose to look at the history of 10 appliances. In parallel we launched the 
algorithm to build the downtime for each device. Examples of results are presented in Table 1. 
 
 
 
 

                                              Optimal stopping algorithm: 
•  Calculation of   and the maximizing time for each cell of the quantization grid, 

•  Calculation  of  and the maximizing time. 

Quantization grid and downtime associated with each cell 

Grid of quantification for ( , , ) and probability of each grid cell. 

Simulated Data: 
Stories of systems: states 

and time in each state 
( , , ) 

 



Table 1: Results of simulations 
Equipment (n°) 1 2 3 4 5 6 7 8 9 10 

𝑇ଵ 6899 3766 6802 2238 7090 3432 4162 3800 4212 2579 

𝑚 భ் 2 2 3 2 3 3 2 2 2 2 

𝑇ଶ if 𝑍ଵ = (2, 𝑇ଵ) 6981 3834 - 2598 - - 4309 3885 4393 2627 
Maintenance date 5160 3827 5160 2508 5160 3432 4192 3860 4242 2627 
 
We have three possible cases: 

- maintenance is at time   𝜏଴ and before the first jump (ex n°1,3,5). We can remark that in cases 3 
and 5, the first jump would have resulted to a failure. 

- maintenance is between the first and second jump, when the system is in a degraded 𝑚 భ் = 2 
(cases n°2,4,7,8,9). Maintenance is also before failure. 

- maintenance is triggered by the failure of the system (cases n°6,10). Indeed, algorithm had 
planned to stop equipment n° 6 at time 5160 and n° 10 at around 2679 but these two appliances 
broke down before this date (that is why the stopping time equals downtime). In this case the 
performance achieved is zero. 

In this case   𝜏଴ = 5160 and if 𝑇ଵ occurs before failure, we clearly see that   𝜏ଵ depends on 𝑇ଵ. 
 
5. Results 
 
Simulation studies allowed us to estimate the proportion of equipment in each state. We simulated 
100,000 stories. In Figure 3, we let the system evolve without performing maintenance. Then we obtain the 
following proportions: 
- 18% of equipment have ball bearing failure, 
- 39% of equipment have electronic failure, 
- 43% of equipment go to degraded state.These equipment have subsequently a failure of the cooling 
system. In this case the performance equals to zero. 
 
 
 
 
 
 
 
 
 

Figure 3: Evolution of the system without maintenance 
 
Now we implement a maintenance policy. The results are given in Figure 4. At time t = 0, we have the first 
date of maintenance given by the previous algorithm. At this date, the situation is as follows : 
- 30% of equipments have electronic failure before this date of maintenance,  
- 8% of equipment have ball bearing failure before this date of maintenance, 
-26% of equipment go to degraded state before this date of maintenance, 
-36% of equipment are sent for maintenance at the time  𝜏଴. At this moment, a new date is given for 
maintenance equipment passed in a degraded state. For those gone in this new state 5% fail before this 
new date of maintenance and 95% are sent for maintenance at this new date. In this case the average 
performance equals to 2249. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Evolution of the system with maintenance 



 
So using this maintenance policy allows us to recall 61% of equipment before failure. But if we do not take 
into account electronic failures, 87% of equipment are sent for maintenance before failure. Indeed, we 
cannot perform maintenance on electronic parts, we can only replace it with a new piece. When electronic 
part of equipment fails, it will not damage the rest of equipment, to repair it is enough to replace as 
maintenance. So we do not make maintenance on electronic components. 

6. Conclusion 
Estimation of the state of the system associated with a decision criterion should allow to adapt 
maintenance policies to the observed state of the system, by the detection of failures predictable and a 
better management of park of equipment available.Thus, Thales will improve its maintenance action, its 
equipment availability at the lowest cost and the satisfaction of its customers. 
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Abstract

We present a numerical method to compute an optimal maintenance date
for the test case of the heated hold-up tank. The system consists of a tank
containing a fluid whose level is controlled by three components: two inlet
pumps and one outlet valve. A thermal power source heats up the fluid. The
failure rates of the components depends on the temperature, the position of
the three components monitors the liquid level in the tank and the liquid
level determines the temperature. Therefore, this system can be modeled
by a hybrid process where the discrete (components) and continuous (level,
temperature) parts interact in a closed loop. We model the system by a
piecewise deterministic Markov process, propose and implement a numerical
method to compute the optimal maintenance date to repair the components
before the total failure of the system.

Keywords: Maintenance Optimization, Numerical Method, Hybrid
process, Piecewise Deterministic Markov Process, Dynamic reliability
2010 MSC: 93E20, 93E25, 60J25, 34K34

1. Introduction

A complex system is inherently sensitive to failures of its components.
One must therefore determine maintenance policies in order to maintain an
acceptable operating condition. Optimizing the maintenance is a very im-
portant problem in the analysis of complex systems. It determines when it
is best that maintenance tasks should be performed on the system in order
to optimize a cost function: either maximize a performance function or con-
versely minimize a loss function. Moreover, this optimization must take into
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account the random nature of failures and random evolution and dynamics
of the system.

The example considered here is the maintenance of the heated hold-up
tank, a well know test case for dynamic reliability, see e.g. [1, 2, 3, 4].
The system consists of a tank containing a fluid whose level is controlled by
three components: two inlet pumps and one outlet valve. A thermal power
source heats up the fluid. The failure rate of the components depends on the
temperature, the position of the three components monitors the liquid level in
the tank, and in turn, the liquid level determines the temperature. The main
characteristic of this system is that it can be modeled by a stochastic hybrid
process, where the discrete and continuous parts interact in a closed loop.
As a consequence, simulating this process and computing related reliability
indices has been a challenge for the dynamic reliability community. To our
best knowledge, optimization of maintenance policies for the heated hold-up
tank has not been addressed yet in the literature.

The only maintenance operation considered here is the complete replace-
ment of all the failed components and the system restarts in its initial equilib-
rium state. Partial repairs are not allowed. Mathematically, this problem of
preventive maintenance corresponds to a stochastic optimal stopping prob-
lem as explained by example in the book of Aven and Jensen [5]. It is a
difficult problem because of the closed loop interactions between the state
of the components and the liquid level and temperature. A classical ap-
proach consists in using condition-based maintenance (CBM) to act on the
system based on its current state and before its failure. One can for example
calculate the remaining useful life (RUL) of the system and the preventive
replacement is carried out when the deterioration level exceeds a certain
threshold or enters in a certain state [6, 7]. Our approach also takes into
account the current state of the process, but our decision rule is not based
on damage accumulation nor does it correspond to hitting some threshold.
Instead, it involves a performance function that reflects that the longer the
system is in a functioning state the better.

The dynamics of the heated hold-up tank can be modeled by a piecewise
deterministic Markov process (PDMP), see [4]. Therefore, our maintenance
problem boils down to an optimal stopping problem for PDMP’s. PDMP’s
are a class of stochastic hybrid processes that has been introduced by Davis
[8] in the 80’s. These processes have two components: a Euclidean compo-
nent that represents the physical system (e.g. temperature, pressure, . . . )
and a discrete component that describes its regime of operation and/or its
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environment. Starting from a state x and mode m at the initial time, the
process follows a deterministic trajectory given by the laws of physics until
a jump time that can be either random (e.g. it corresponds to a componen-
t failure or a change of environment) or deterministic (when a magnitude
reaches a certain physical threshold, for example the pressure reaches a crit-
ical value that triggers a valve). The process restarts from a new state and
a new mode of operation, and so on. This defines a Markov process. Such
processes can naturally take into account the dynamic and uncertain aspects
of the evolution of the system. A subclass of these processes has been intro-
duced by Devooght [1] for an application in the nuclear field. The general
model has been introduced in dynamic reliability by Dutuit and Dufour [9].

The objective and originality of this paper is twofold. First, we propose
an optimization procedure for a well-known benchmark in the dynamic relia-
bility literature. The tank model was first introduced by [12] where only one
continuous variable (liquid level) is taken into account, and then in [13] and
[2] where the second variable (temperature) is introduced. They have tested
various Monte Carlo approaches to simulate the process to compute reliability
and safety indices. In [14], the authors have used the same system to present
continuous cell-to-cell mapping Markovian approach (CCCMT) still to simu-
late the process. The simulation of the holdup tank example has been and is
still widely studied in the literature (not exhaustive) [15, 16, 17, 18, 19, 11].
Here we go one step further and not only propose to simulate the tank process
but also we optimize it.

Second, even though PDMP’s have been recognized as a powerful model-
ing tool for dynamic reliability problems [1, 9], there are very few numerical
tools adapted to these processes. Our aim is to further demonstrate the high
practical power of the theoretical methodology described in [10], by applying
it to the tank benchmark. In [10], the authors have proposed a numerical
algorithm to optimize PDMP’s and have studied its theoretical properties.
This optimization procedure was first applied to an example of maintenance
of a metallic structure subject to corrosion, without closed loop interactions
or deterministic jumps. In addition, the system has only one continuous vari-
able and the cost function is simple and does not depend on time, see [11].
In this paper, we adapt the numerical procedure proposed in [10] to the more
challenging heated hold-up tank problem with two continuous variables, de-
terministic jumps when these variables hit some given boundaries and closed
loop interactions between continuous and discrete variables. Furthermore,
we consider a cost function that depends on both continuous variables as
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well as on the running time.
The remainder of this paper is organized as follows. In section 2, the

dynamics of the heated hold-up tank is presented with more details as well
as the framework of PDMP’s. In section 3 the formulation of the optimal
stopping problem for PDMP’s and its theoretical solution are briefly recalled
and the four main steps of the algorithm are detailed. In section 4 the
numerical results obtained on the example of the tank are presented and
discussed. Finally, in section 5 a conclusion and perspectives are presented.

2. Model

We are interested in the maintenance of a heated hold-up tank. The
dynamics of the tank can be modeled by a piecewise deterministic Markov
process (PDMP). We first describe with more details the dynamics of the
tank, then we recall the definition and some basic properties of PDMP’s. The
tank model is a well known benchmark in dynamic reliability. It was first
introduced by [12] where only one continuous variable (liquid level) is taken
into account, and then in [13] and [2] where the second variable (temperature)
is introduced. We have kept the values of the parameters defined in those
papers.

2.1. The heated hold-up tank

The system is represented on Figure 1. It consists of a tank containing a
fluid whose level is controlled by three components: two inlet pumps (units
1 and 2) and one outlet valve (unit 3). A thermal power source heats up the
fluid. The variables of interest are the liquid level h, the liquid temperature
θ and the state of the three components and the controller. Each component
has four states: ON, OFF, Stuck ON or Stuck OFF. Once a unit is stuck
(either on or off) it cannot change state. The possible transitions between
these four states are given in Figure 2. Thus, by a random transition a
working unit can only become stuck (either on or off). The initial state of
the components is ON for units 1 and 3 and OFF for unit 2. The intensity
of jumps λi for unit i depends on the temperature through the equation
λi = a(θ)li with a(θ) given in Eq. (1), see [13, 2]

a(θ) =
b1 exp

(
bc(θ − 20)

)
+ b2 exp

(
− bd(θ − 20)

)

b1 + b2

. (1)
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Figure 1: The heated hold-up tank
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Figure 2: Transitions for unit i

Function a(θ) is represented on Figure 3 and the various parameters come
from the literature, see [13, 2], and are given in Table 1. The special form of
the failure rate λi as a product of a constant depending on i and a function of
the temperature allows for all three units to have failure rates with the same
dependence on the temperature, but different scaling parameters. Indeed, at
the reference temperature of 20◦C, the mean time to failure of unit 1 is 438h,
for unit 2, it is 350h and for unit 3 it is 640h.

In addition, the shape for function a(θ) was chosen in the original bench-
mark so that there is a very high failure rate when the temperature is high.
More specifically, the parameters are chosen such that a(θ) is lowest (equal
to 1) when the temperature is equal to a reference temperature of 20◦C, it
equals 20 when the temperature is 0◦C and it is highest (equal to 80) when
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Figure 3: a(θ) as a function of θ

the temperature equals the critical temperature of 100◦C. The exponential
functions are chosen in order to enable this very high dependence with the
temperature. Roughly speaking, the units fail 80 times more often when the
temperate is 100◦C than when it is 20◦C.

In addition, control laws are used to modify the state of the components
to keep the liquid within two acceptable limits: 6 meters and 8 meters. If
the liquid level drops under 6 m, the components 1, 2, 3 are put respectively
in state ON, ON and OFF (provided they are not stuck). If the liquid level
rises above 8 m, the components are put respectively in the state OFF, OFF
and ON (provided they are not stuck). Unlike the classical model presented
in [1, 2, 3, 4], we also allow the control unit to fail. At each solicitation, the
control may succeed with probability p = 0.8 independently from previous
successes. Once it has failed, it will never succeed again. Therefore the
control unit has two possible states: working 1 or failed 0.

The evolution of the liquid level h depends on the position of the three
components through the differential equation (2)

∂h

∂t
= (ν1 + ν2 − ν3)G, (2)

where νi = 1 if component i is ON or Stuck ON, νi = 0 otherwise, and G is
the common flow of the three components and is given in Table 1. The initial
level is h0 = 7 m. Eq. (2) simply means that each pump on contributes to
rise the liquid level, whereas if the outlet valve is on, it contributes to the
decrease of the liquid level. The temperature θ depends on the liquid level
through the differential equation (3)

∂θ

∂t
=
(
(ν1 + ν2)G(θin − θ) +K

)
h−1, (3)
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Parameter Value
b1 3.0295
b2 0.7578
bc 0.05756
bd 0.2301
θin 15◦C
l1 2.2831 · 10−3 h−1

l2 2.8571 · 10−3 h−1

l3 1.5625 · 10−3 h−1

G 1.5 mh−1

K 23.88915 m◦Ch−1

Table 1: Parameters for the tank dynamics

where θin is the temperature of the incoming fluid, and K is a constant of
the tank, the values of these parameters are given in Table 1. As the tank is
heated and the incoming liquid has a constant temperature θin, Eq. (3) re-
flects that the temperature converges to an equilibrium state as long as there
is some incoming fluid. The temperature can increase to the threshold 100◦C
if there is no incoming fluid. The initial temperature is θ0 = 30.9261◦C, so
that the system is initially at an equilibrium state, and nothing happens until
the failure of one of the components. The system stops as soon as one of
the top events is reached: dry out (h < 4 m), overflow (h > 10 m) or hot
temperature (θ > 100◦C).

2.2. Piecewise deterministic Markov processes

As in [4], we model the tank by a Piecewise-deterministic Markov pro-
cesses (PDMP). PDMP’s are a general class of hybrid processes. They are
defined as follows. Let M be the finite set of the possible modes of the sys-
tem. In our tank example, the modes correspond to the possible positions
of the inlet pumps, outlet valve and control unit. The components can be
ON, OFF, stuck ON or Stuck OFF, the control unit can be in position 0 or
1. Therefore, there are 128 possible modes for our system (but only 74 can
actually be reached from the equilibrium starting point).

For all modes m in M , let Em be an open subset in Rd. In our case d = 3
as we need to take into account the running time as well as the liquid level and
temperature, and Em is a subset of (4, 10)× [15, 100)× [0,+∞) (depending
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on m). A PDMP is defined from three local characteristics (Φ, λ,Q) where

• the flow Φ : M×Rd×R→ Rd is continuous and for all s, t ≥ 0, one has
Φ(·, ·, t + s) = Φ(Φ(·, ·, s), t). It describes the deterministic trajectory
of the process between jumps. In the tank example, it is given by the
solution of Eq. (2) and (3). For all (m,x) in M × Em, set

t∗(m,x) = inf{t > 0 : Φ(m,x, t) ∈ ∂Em}, (4)

the time to reach the boundary of the domain starting from x in mode
m. For the tank, the boundary is one of the thresholds 4 m, 6 m, 8 m,
10 m, 100◦C or 1000 hours for the running time.

• the jump intensity λ characterizes the frequency of jumps. For all
(m,x) in M × Em, and t ≤ t∗(m,x), set

Λ(m,x, t) =

∫ t

0

λ(Φ(m,x, s)) ds. (5)

For the tank the jump intensity given a mode m is the sum of the
intensities λi for the remaining possible jumps of the three units.

• the Markov kernel Q represents the transition measure of the process
and allows to select the new location and mode after each jump. In our
example, Q acts only on the mode components and leaves the liquid
level h, temperature θ and running time unchanged. It selects one of
the remaining possible failures of the three components, or corresponds
to an attempted control law.

The trajectory Xt = (mt,xt) of the process can then be defined iteratively.
It starts at an initial point X0 = (k0, y0) with k0 ∈M and y0 ∈ Ek0 . For the
tank, k0 = (ON,OFF,ON, 1) and y0 = (7, 30.9261, 0). The first jump time
T1 is determined by Eq. (6)

P(k0,y0)(T1 > t) =

{
e−Λ(k0,y0,t) if t < t∗(k0, y0),
0 if t ≥ t∗(k0, y0).

(6)

It corresponds to the first failure time of one of the components as in our case
t∗(k0, y0) = +∞. On the interval [0, T1), the process follows the deterministic
trajectory mt = k0 and xt = Φ(k0, y0, t). At the random time T1, a jump
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occurs. Note that in general a jump can be either a discontinuity in the Eu-
clidean variable xt or a change of mode. The process restarts at a new mode
and/or position XT1 = (k1, y1), according to distribution Qk0(Φ(k0, y0, T1), ·).
An inter jump time T2 − T1 is then selected in a similar way, and on the in-
terval [T1, T2) the process follows the path mt = k1 and xt = Φ(k1, y1, t−T1).
Thereby, iteratively, a PDMP is constructed, see Figure 4 for an illustration.

Qk1
(�(k1, y1, S2), ·)

Ek0

y0

T1

Ek1

Qk0
(�(k0, y0, T1), ·) S2

y1

Figure 4: An example of path for a PDMP until the second jump. The first jump is
random. The second jump is deterministic because the process has reached the boundary
of the domain.

[T1, T2) the process follows the path mt = k1 and xt = �(k1, y1, t � T1).
Thereby, iteratively, a PDMP is constructed, see Figure 4 for an illustration.

Let Z0 = X0, and for n � 1, Zn = XTN
, location and mode of the process

after each jump. Let S0 = 0, S1 = T1 and for n � 2, Sn = Tn � Tn�1 the
inter-jump times between two consecutive jumps, then (Zn, Sn) is a Markov
chain, which is the only source of randomness of the PDMP and contains all
information on its random part. Indeed, if one knows the jump times and
the positions after each jump, one can reconstruct the deterministic part of
the trajectory between jumps. Namely, if one knows the time and nature of
all the components failures, one can reconstruct the history of the liquid level
and temperature though Eq. (1) and (2). It is a very important property of
PDMP’s that is at the basis of the numerical procedure.

3. Optimization problem

3.1. General framework

The general mathematical problem of optimal stopping corresponding to
this maintenance problem can be found in [12, 10, 11]. It is now briefly
recalled. Let z = (k0, y0) be the starting point of the PDMP (Xt). LetMf

be the set of all stopping times ⌧ for the natural filtration of the PDMP (Xt)
satisfying ⌧  Tf that is to say that the intervention takes place before the
time Tf = 1000 h. It has been shown in previous studies that by 1000 h,
all the units are stuck and the events of interest have been observed, see
e.g. [1, 2, 3, 4]. Let g be the cost function to optimize. Here, g is a reward
function that has to be maximized. The optimization problem to solve is the

8

Figure 4: An example of path for a PDMP until the second jump. The first jump is
random. The second jump is deterministic because the process has reached the boundary
of the domain.

Let Z0 = X0, and for n ≥ 1, Zn = XTN
, location and mode of the process

after each jump. Let S0 = 0, S1 = T1 and for n ≥ 2, Sn = Tn − Tn−1 the
inter-jump times between two consecutive jumps, then (Zn, Sn) is a Markov
chain, which is the only source of randomness of the PDMP and contains all
information on its random part. Indeed, if one knows the jump times and
the positions after each jump, one can reconstruct the deterministic part of
the trajectory between jumps. Namely, if one knows the time and nature of
all the components failures, one can reconstruct the history of the liquid level
and temperature though Eq. (2) and (3). It is a very important property of
PDMP’s that is at the basis of the numerical procedure.

3. Optimization problem

3.1. General framework

The general mathematical problem of optimal stopping corresponding to
this maintenance problem can be found in [20, 10, 11]. It is now briefly
recalled. Let z = (k0, y0) be the starting point of the PDMP (Xt). Let Mf

be the set of all stopping times τ for the natural filtration of the PDMP (Xt)
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satisfying τ ≤ Tf that is to say that the intervention takes place before the
time Tf = 1000 h. It has been shown in previous studies that by 1000 h,
all the units are stuck and the events of interest have been observed, see
e.g. [1, 2, 3, 4]. Let g be the cost function to optimize. Here, g is a reward
function that has to be maximized. The optimization problem to solve is
given in Eq. (7)

v(z) = sup
τ∈Mf

Ez [g(Xτ )] . (7)

The function v is called the value function of the problem and represents the
maximum performance that can be achieved. Solving the optimal stopping
problem is firstly to calculate the value function, and secondly to find a
stopping time τ that achieves this maximum. This stopping time is important
from the application point of view since it corresponds to the optimum time
for maintenance. In general, such an optimal stopping time does not exist.
Define then ε-optimal stopping times as achieving optimal value minus ε, i.e.
v(z)− ε.

Under fairly weak regularity conditions, Gugerli has shown in [20] that
the value function v can be calculated iteratively as follows. First, choose the
computational horizon N such that after N jumps, the running time t has
reached Tf for almost all trajectories. Let vN = g be the reward function, and
iterate an operator L backwards, see Eq. (8). The function v0 thus obtained
is equal to the value function v.

{
vN = g,
vk = L(vk+1, g), 0 ≤ k ≤ N − 1.

(8)

Operator L defined in Eq. (9) is complex and involves a continuous maxi-
mization, conditional expectations and indicator functions, even if the reward
function g is very regular:

L(w, g)(z)

≡ sup
u≤t∗(z)

{
E
[
w(Z1)1{S1<u∧t∗(z)} + g(Φ(z, u))1{S1≥u∧t∗(z)}|Z0 = z

]}

∨E [w(Z1)|Z0 = z] . (9)

However, this operator depends only on the discrete time Markov chain
(Zn, Sn). Gugerli also proposes an iterative construction of ε-optimal stop-
ping times, which is too technical to be described here, see [20] for details.
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In our example, the reward function has two components g(h, θ, t) =
f(h, θ)tα. The first one f depends on the liquid level and temperature, and
reflects that the reward is maximal (set to 1) when h and θ are in the normal
range (6 m ≤ h ≤ 8 m, θ ≤ 50◦C), minimal (set to 0) when reaching the
top events: dry out (h < 4 m), overflow (h > 10 m) or hot temperature
(θ > 100◦C) and continuous in between, see Figure 5 for an illustration.
The second term t involves the time and reflects that the longer the system
is functioning the higher the reward. The parameter α is set to 1.01 for
smoothness.

Figure 5: Reward function f as a function of h and θ

3.2. Numerical procedure

In [10, 11] the authors propose a numerical method to approximate the
value function for the optimal stopping problem of a general PDMP. The
approach is based on a discretization of the operator L defined above. Our
algorithm for calculating the value function is divided into three stages: a dis-
cretization of the Markov chain (Zn, Sn), a path-adapted time discretization
between jumps, and finally a recursive computation of the value function v.
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Then, the calculation of a quasi-optimal stopping time only uses comparisons
of quantities already calculated in the approximation of the value function,
which makes this technique particularly attractive. These stages are briefly
recalled below.

3.2.1. Quantization

The goal of the first step is to approximate the continuous state space
Markov chain (Zn, Sn) by a discrete state space sequence (Ẑn, Ŝn). To this
aim, we use the quantization algorithm described in details in e.g. [21, 22,
23, 24]. Roughly speaking, more points are put in the areas of high density
of the random variable, see Figure 6 for an example of quantization grid
for the standard normal distribution in two dimensions. The quantization
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Figure 6: Example of quantization grid for a normal distribution (200 points)

algorithm is based on Monte Carlo simulations combined with a stochastic
gradient method. It provides N + 1 grids, one for each couple (Zn, Sn)
(0 ≤ n ≤ N), with a fixed number of points in each grid. The algorithm
also provides weights for the grid points and probability transition between
two points of two consecutive grids fully determining the distribution of the
approximating sequence (Ẑn, Ŝn). The quantization theory ensures that the

L2 distance between (Ẑn, Ŝn) and (Zn, Sn) tends to 0 as the number of points
in the quantization grids tends to infinity, see [23].

3.2.2. Time discretization

Now the continuous maximization of the operator L is replaced by a
finite maximization, that is to say that one must discretize the time intervals
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[0, t∗(z)] for a finite number of z, namely each z in the quantization grids.
For this, choose time steps ∆(z) < t∗(z) and take a regular discretization
G(z) of [0, t∗(z)−∆(z)] with step ∆(z). The maximum in such grids is less
than t∗(z)−∆(z), which is a crucial property to derive error bounds for the
algorithm, see [10].

3.2.3. Approximate calculation of the value function

One now has all the tools to provide an approximation of the operator L
given in Eq. (10). For each 1 ≤ n ≤ N , and for all z in the quantization grid
at time n− 1, set

L̂n(w, g)(z)

≡ max
u∈G(z)

{
E
[
w(Ẑn−1)1{Ŝn<u∧t∗(z)} + g(Φ(Ẑn−1, u))1{Ŝn≥u∧t∗(z)}|Ẑn−1 = z

]}

∨E
[
w(Ẑn)|Ẑn−1 = z

]
. (10)

Note that because there are different quantized approximations at each time
step, there also are different discretizations of operator L at each time step. It
should be also noted that the conditional expectations taken with respect to
a process with finite state space are actually finite weighted sums. One then
constructs an approximation of the value function by backward iterations of
the operators L̂n:

{
v̂N = g,

v̂n−1(Ẑn−1) = L̂n(v̂n, g)(Ẑn−1), 1 ≤ n ≤ N.
(11)

Then take v̂0(Ẑ0) = v̂0(z) as an approximation of the value function v at the
starting point z of the PDMP. The difference between v̂0(z) and v goes to
zero as the number of points in the quantization grids goes to infinity, see
[10] for details and a convergence rate.

3.2.4. Calculation of a quasi-optimal stopping time

A method to compute an ε-optimal stopping time has also been imple-
mented. The discretization is much more complicated and subtle than that
of operator L, because one needs both to use the true Markov chain (Zn, Sn)

and its quantized version (Ẑn, Ŝn). The principle is as follows:

• At time 0, with the values Z0 = z and S0 = 0, calculate a first date
R1 which depends on Z0, S0 and on the value that has realized the
maximum in the calculation of L̂1(v̂1, g).
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• Then the process is allowed to run normally until the time min{R1, T1}.
If R1 comes first, it is the date of maintenance, if T1 (the date of the
first failure) comes first, the calculation is reset.

• At time T1, with the values of Z1 and S1, calculate the second date R2

which depends on Z1 and S1 and on the the value that has realized the
maximum in the calculation of L̂2(v̂2, g).

• Then the process is allowed to run normally until the time min{(T1 +
R2), T2}. If T1+R2 comes first, it is the date of maintenance, if T2 comes
first, reset the calculation, and so on until the Nth jump time or a total
running time of 1000 h, whichever comes first, where maintenance will
be performed if it has not occurred before.

The quality of this approximation has been proved by comparing the expec-
tation of the cost function of the process stopped by the above strategy to
the true value function. This result, its proof and the precise construction of
our stopping time procedure can be found in [10].

This stopping strategy is interesting for several reasons. First, this is a
real stopping time for the original PDMP which is a very strong theoreti-
cal result. Second, it requires no additional computation compared to those
made to approximate the value function. This procedure can be easily per-
formed in real time. Moreover, even if the original problem is an optimization
on average, this stopping rule is path-wise and is updated when new data
arrive on the history of the process at each new component failure.

4. Numerical results

The numerical procedure described above is valid for a wide class of PDM-
P’s, see [10] for details. It has nice convergence properties. However, to
implement it in practice, one must carefully choose the various parameters

• the computation horizon N ,

• the possibly state dependent time discretization steps ∆(z),

• the number of points in the quantization grids,

• the parameters required to build quantization grids.
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These parameters may not be easy to choose for a given application. One
important contribution of this paper is to show that these parameters can
be suitably chosen to optimize the tank.

The numerical procedure described above has been implemented on the
example of the heated holdup tank. We used the exact C++ simulator of tra-
jectories developed for [4], suitably modified to take into account the possible
failures of the command and interfaced with a matlab code for the optimiza-
tion procedure. The jump horizon N was empirically set to 26 jumps, thus
allowing all the trajectories to reach one of the top events h < 4 m, h > 10 m,
θ > 100◦C or t > 1000 hours.

4.1. Quantization grids

We encountered a new difficulty when deriving the quantization grids,
due to the high cardinality of the possible modes and possibly low prob-
ability of reaching some of them. Our mathematical model for the dy-
namics of the tank is hybrid: there is a discrete mode variable (the po-
sitions of the components and state of the control unit) and a continuous
variable (liquid level, temperature, running time). Of course, one needs
not discretize the mode variable as it can already take only finitely many
values. Our procedure requires one discretization grid at each jump time
of the process. However, at a given jump time, several modes can ap-
pear. For instance, at time 0, the starting mode is (ON,OFF,ON, 1).
After the first jump time, one of the components has failed, so there are
now 6 possible modes: (Stuck ON,OFF,ON, 1), (stuck OFF,OFF,ON, 1),
(ON, stuck ON,ON, 1), (ON, stuck OFF,ON, 1), (ON,OFF, stuck ON, 1)
or (ON,OFF, stuck OFF, 1). Table 2 gives the theoretical number of possi-
ble modes at each time step as well as the observed one for 3 · 109 simulated
trajectories. After 5 jumps, the theoretical number of modes is constant e-
qual to 18, but all the 18 modes can actually be observed only as long as the
controller unit does not fail. As the probability for the controller to remain in
its operational state decreases with the number of trials of the control laws,
the 18 modes become increasingly rare and by the 25-th jump time are not
observed anymore, which means that the system has reached one of the top
events and stopped.

The comparatively rare events are problematic for the implementation of
the quantization algorithm. Indeed, one first chooses the number k of dis-
cretization points then usually initializes the algorithm by throwing k trajec-
tories of the process at random. Thus, some rare modes may not be reached
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Time Theory Simulations Time Theory Simulation
n=0 1 1 n=20 18 17
n=1 6 6 n=21 18 16
n=2 18 18 n=22 18 14
n=3 30 30 n=23 18 7
n=4 25 25 n=24 18 1
n=5 n=25 18 0

to n=19 18 18 n=26 18 0

Table 2: Theoretical and observed number of modes at each time step for 3 · 109 Monte
Carlo simulations.

by the initial simulations, and the algorithm will not perform well when new
trajectories are thrown reaching these modes. Indeed, the algorithm is based
on a nearest neighbor search, within the nodes having the same mode as the
original point. When no such mode is present, the algorithm provides highly
unsatisfactory results. Therefore, we had to find a way to ensure that the
initializing grids have at least one point in each observed mode for each time
step. To do so, at each time step we allocated the k points to the possible
modes proportionally to their frequency (computed with 3 · 109 Monte Carlo
simulations) and forcing 1 point for the modes with frequency less than 1/k.

4.2. Optimal performance and maintenance date

We ran our optimization procedure for several number of discretization
points in the quantization grids. The results we obtained are given in Ta-
ble 3. The optimal performance is our approximation of the value function
v at the starting equilibrium point whereas the last column gives the mean
performance achieved by our stopping rule (obtained by 105 Monte Carlo
simulations). One can observe the convergence as the number of points in
the quantization grids increases, and one can also see that our stopping rule
is indeed close enough to optimality.

We can also obtain the distributions of the maintenance time by Monte
Carlo simulations (105 simulations). It is given in Figure 7. The distribution
is roughly bimodal, with a very high mode (14.16% of trajectories) at time
1000, which means that the tank remained in an acceptable state until the end
of the experiment. For better readability of the histogram, only the value
of τ ∗ < 1000 are plotted on the right-hand side figure. This distribution
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Number of points Optimal performance Stopping rule
200 334.34 305.55
300 333.04 319.45
400 332.95 322.20
800 330.43 323.63
1000 330.87 324.04

Table 3: Optimal performance
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Figure 7: Histogram of the distribution of the computed maintenance time (with and
without the mode at 1000)

illustrates that an average stopping rule would be far from optimal for the
tank. The distribution of the liquid level and temperature at the maintenance
time are given on Figure 8. The distribution of the liquid level is almost
discrete with three main values at levels 6 m (15.16%), 7 m (12.68%) and
8 m (45.45%). This is natural as the liquid level is often constant, and moves
very fast between these 3 states. The distribution of the temperature is also
almost discrete as it is a function of the liquid level for most modes. It has
a maximum at the equilibrium temperature (15,60%). Note that the top
events are never reached for the liquid level, and only 0.02% of trajectories
ended at θ = 100◦C. This is a strong point in favor of our procedure.

4.3. Validation

There is no analytical solution to our optimization problem, therefore it
is impossible to compare our results with the true value function. However, it
must be stressed out that there is a theoretical proof in [10] that this proce-
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Figure 8: Histogram of the liquid level (left) and temperature (right) at the maintenance
time

dure converges to the true value as the number of points in the quantization
grids goes to infinity.

We can also conduct two simple kinds of experiments to validate our
results. First, we can simulate new trajectories and check one by one if
the intervention took place at a reasonable time. Figure 9 shows such an
interesting example.

• The system starts in the equilibrium state, so that the reward function
grows roughly linearly with time.

• At time 12.94 h, a jump occurs. The first unit is stuck OFF. The liquid
level drops fast and the temperature rises slowly. As the liquid level
and temperature are still within the acceptable bounds, the reward
function is still growing roughly linearly with time.

• At time 13.61 h, the liquid level reaches the boundary 6 m and the
controller switches the 3 units to stuck OFF, ON and OFF. The liquid
level now rises whereas the temperature drops.

• At time 14.94 h, the liquid level reaches the boundary 8 m and the
controller switches the 3 units back to stuck OFF, OFF and ON. The
liquid level drops again and the temperature rises.

• At time 16.27 h, the liquid level reaches again the boundary 6 m and
the controller switches the 3 units back to stuck OFF, ON and OFF.
The liquid level rises and the temperature drops.
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Figure 9: An example of trajectory. The upper chart shows the liquid level, the middle
chart the temperature, and the bottom chart the corresponding reward, as a function of
time. The small circles represent the jumps of regime, and the large circle and red line
the computed maintenance time.

• At time 17.38 h, before the liquid level reaches again 8 m, the second
unit fails and is now stuck ON. The liquid level still rises and the
temperature drops.

• At time 17.60 h, the liquid level reaches the boundary 8 m and the
controller switches the 3 units to stuck OFF, Stuck ON and ON. The
liquid level now remains constant as the temperature drops down to its
equilibrium state.

• At time 150.24 h, the third unit is stuck OFF. The liquid level rises a-
gain rapidly and goes above the acceptable threshold. The temperature
remains constant. The algorithm decides to perform a maintenance at
time 151.58. The final reward is 99.07.

Another example is given in Figure 10.

• The system starts in the equilibrium state, so that the reward function
grows linearly with time.
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Figure 10: An example of trajectory. The upper chart shows the fluid level, the middle
chart the temperature, and the bottom chart the corresponding reward, as a function of
time. The small circles represent the jumps of regime, and the large circle and red line
the computed maintenance time.

• At time 1.71 h, a jump occurs. The third unit is stuck OFF. The liquid
level rises and the temperature remains constant. As the liquid level
and temperature are still within the acceptable bounds, the reward
function is still growing linearly with time.

• At time 2.37 h, the liquid level reaches the threshold 8m and triggers
the command. The solicitation of the command is successful, and the
first unit is turned OFF. The current state is now OFF for units 1 and
2, and stuck OFF for unit 3. The liquid level remains constant at 8 m,
but the temperature rises. At about 9 h, the temperature crosses the
threshold 50◦C so that the reward function is now slowly decreasing.
Note that this does not trigger an immediate maintenance.

• At time 18.22 h, another jump occurs and the second unit is now s-
tuck ON, causing the liquid level to rise again, but the temperature to
decrease. As a result, the reward function is now increasing again.

• The algorithm then selects the maintenance time to be 18.8 h, before

20



without maintenance with maintenance
mean performance 211.80 330.87
null gain 80.33% 0.02%
6 ≤ h ≤ 8 28.25% 90.02%
θ ≤ 50◦C 80.33% 95.09%
h = 4 16.65% 0%
h = 10 54.55% 0%
θ = 100 9.13% 0.02%

Table 4: Comparison of the performances with and without maintenance

the liquid level reaches the level 10 m causing a total failure of the
system.

Note that at this intervention time, the first unit is not stuck, so that other
jumps may happen in the future. In this special example, the intervention
time occurs when the reward is maximal.

Second, one can simply compare the performances of the system when no
maintenance is performed to those with our maintenance rule. The results
are summarized in Table 4. These results are obtained with 105 Monte Carlo
simulations and illustrate the power of our procedure as the mean perfor-
mance is increased by 156% and the top events are almost always avoided.

5. Conclusion

The numerical method described in [10] has been applied to a well known
test case of dynamic reliability to approximate the value function of the
optimal stopping problem and an ε-optimal stopping time for a piecewise-
deterministic Markov process, that is the maintenance date for the tank. The
quantization method proposed can sometimes be costly in computing time,
but has a very interesting property: it can be calculated off-line. Moreover
it depends only on the dynamics of the model, and not on the cost function
chosen, or the actual trajectory of the specific process one wants to monitor.
The calculation of the optimal maintenance time is done in real time, mak-
ing our procedure applicable in practice. The optimal maintenance time is
updated at the changes of mode and has a conditional threshold form, which
allows scheduling maintenance services in advance.
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If one only changes the reward function g without changing the dynam-
ics of the tank, one just has to run the optimization part of the algorithm,
and not the quantization grids. This can be done in real time. If one wants
to change the dynamics of the system, or add some components, one has to
rewrite the simulation code for the system, and with this new code re-run the
quantization grids, which can be quite long. However, the general methodol-
ogy is valid for a wide class of piecewise deterministic Markov processes and
not at all specific to the tank.

The method has been implemented on the heated hold-up tank. The main
characteristic of this system is that it can be modeled by a stochastic hybrid
process, where the discrete and continuous parts interact in a closed loop.
The optimization problem under study has no analytic solution. However,
our method is based on a rigorous mathematical construction with proof of
convergence. In addition, simple comparisons between no motoring and our
policy also prove its practical validity with a significant improvement of the
performance of the system (the mean performance is increased by 156% and
the top events are almost always avoided).

Our next project is to extend this research in two main directions. First,
we could allow only partial repair of the system. The problem will then be
to find simultaneously the optimal times of maintenance and optimal repair
levels. Mathematically, it is an impulse control problem, which complexity
exceeds widely that of the optimal stopping. Second, our method requires
a perfect observation of the state process at the jump times. It would be
interesting to extend our results to a noisy observation of the process, as
often happens in real life.
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Optimal stopping for partially observed
piecewise-deterministic Markov processes∗

Adrien Brandejsky Benôıte de Saporta François Dufour

Abstract

This paper deals with the optimal stopping problem under partial observa-
tion for piecewise-deterministic Markov processes. We first obtain a recursive
formulation of the optimal filter process and derive the dynamic programming
equation of the partially observed optimal stopping problem. Then, we pro-
pose a numerical method, based on the quantization of the discrete-time filter
process and the inter-jump times, to approximate the value function and to
compute an actual ε-optimal stopping time. We prove the convergence of the
algorithms and bound the rates of convergence.

Keywords: optimal stopping, partial observation, filtering, piecewise determinis-
tic Markov processes, quantization, numerical method

60G40, 60J25, 93E20, 93E25, 93E10, 60K10

1 Introduction
The aim of this paper is to investigate an optimal stopping problem under partial
observation for piecewise-deterministic Markov processes (PDMP) both from the
theoretical and numerical points of view. PDMP’s have been introduced by Davis
[8] as a general class of stochastic models. They form a family of Markov processes
involving deterministic motion punctuated by random jumps. The motion depends
on three local characteristics, the flow Φ, the jump rate λ and the transition measure
Q, which selects the post-jump location. Starting from the point x, the motion of
the process (Xt)t≥0 follows the flow Φ(x, t) until the first jump time T1, which occurs
either spontaneously in a Poisson-like fashion with rate λ(Φ(x, t)) or when the flow
hits the boundary of the state space. In either case, the location of the process
at T1 is selected by the transition measure Q(Φ(x, T1), ·) and the motion restarts
from XT1 . We define similarly the time until the next jump and the next post-jump
location and so on. One important property of a PDMP, relevant for the approach
developed in this paper, is that its distribution is completely characterized by the
discrete time Markov chain (Zn, Sn)n∈N where Zn is the n-th post-jump location
and Sn is the n-th inter-jump time. A suitable choice of the state space and local
∗This work was supported by ARPEGE program of the French National Agency of Research

(ANR), project FAUTOCOES, number ANR-09-SEGI-004.
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characteristics provides stochastic models covering a large number of applications
such as operations research [8, section 33], reliability [10], neurosciences [17], internet
traffic [7], finance [4]. This list of examples and references is of course not exhaustive.

In this paper, we consider an optimal stopping problem for a partially observed
PDMP (Xt)t≥0. Roughly speaking, the observation process (Yt)t≥0 is a point process
defined through the embedded discrete time Markov chain (Zn, Sn)n∈N. The inter-
arrival times are given by (Sn)n∈N and the marks by a noisy function of (Zn)n∈N. For
a given reward function g and a computation horizon N ∈ N, we study the following
optimal stopping problem

sup
σ≤TN

E [g(Xσ)] ,

where TN is the N -th jump time of the PDMP (Xt)t≥0, σ is a stopping time with
respect to the natural filtration FY = (FYt )t≥0 generated by the observations (Yt)t≥0.
In some applications, it may be more appropriate to consider a fixed optimization
horizon tf rather than the random horizon TN . This is a difficult problem with few
references in the literature, see for instance [11] where the underlying process is not
piecewise deterministic. Regarding PDMP’s, this problem could be addressed using
the same ideas as in [5]. It involves the time-augmented process (Xt, t). Although
this process is still a PDMP, its local characteristics may not have the same good
properties as those of the original process leading to several new technical difficulties.

A general methodology to solve such a problem is to split it into two sub-
problems. The first one consists in deriving the filter process given by the conditional
expectation of Xt with respect to the observed information FYt . Its main objective is
to transform the initial problem into a completely observed optimal stopping prob-
lem where the new state variable is the filter process. The second step consists in
solving this reformulated problem, the new difficulty being its infinite dimension.
Indeed, the filter process takes values in a set of probability measures.

Our work is inspired by [18] which deals with an optimal stopping problem under
partial observation for a Markov chain with finite state space. The authors study
the optimal filtering and convert their original problem into a standard optimal
stopping problem for a continuous state space Markov chain. Then they propose a
discretization method based on a quantization technique to approximate the value
function. However, their method cannot be directly applied to our problem for the
following main reasons related to the specificities of PDMPs.

Firstly, PDMPs are continuous time processes. Although the dynamics can be
described by the discrete-time Markov chain (Zn, Sn)n∈N, this optimization problem
remains intrinsically a continuous-time optimization problem. Indeed, the perfor-
mance criterion is maximized over the set of stopping times defined with respect
to the continuous-time filtration (FYt )t≥0. Consequently, our problem cannot be
converted into a fully discrete time problem.

Secondly, the distribution of a PDMP combines both absolutely continuous and
singular components. This is due to the existence of forced jumps when the process
hits the boundary of the state space. As a consequence the derivation of the filter
process is not straightforward. In particular, the absolute continuity hypothesis (H)
of [18] does not hold.

Thirdly, in our context the reformulated optimization problem is not standard,
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unlike in [18]. As already explained, this reformulated optimization problem com-
bines continuous-time and discrete-time features. Consequently, this problem does
not correspond to the classical optimal stopping problem of a discrete-time Markov
chain. Moreover, it is different from the optimal stopping problem of a PDMP under
complete observation mainly because the new state variables given by the Markov
chain (Πn, Sn)n≥0 are not the underlying Markov chain of some PDMP. Therefore
the results of the literature [9, 13, 18] cannot be used.

Finally, a natural way to proceed with the numerical approximation is then to
follow the ideas developed in [9, 18] namely to replace the filter Πn and the inter-
jump time Sn by some finite state space approximations in the dynamic programming
equation. However, a noticeable difference from [9] lies in the fact that the dynamic
programming operators therein were Lipschitz continuous whereas our new operators
are only Lipschitz continuous between some points of discontinuity. We overcome
this drawback by splitting the operators into their restrictions onto their continuity
sets. This way, we obtain not only an approximation of the value function of the
optimal stopping problem but also an ε-optimal stopping time with respect to the
filtration (FYt )t≥0 that can be computed in practice.

Our approximation procedure for random variables is based on quantization.
There exists an extensive literature on this method. The interested reader may for
instance consult [12, 16] and the references within. The quantization of a random
variable X consists in finding a finite grid such that the projection X̂ of X on this
grid minimizes some Lp norm of the difference X−X̂. Roughly speaking, such a grid
will have more points in the areas of high density of X. As explained for instance
in [16, section 3], under some Lipschitz-continuity conditions, bounds for the rate of
convergence of functionals of the quantized process towards the original process are
available, which makes this technique especially appealing. Quantization methods
have been developed recently in numerical probability or optimal stochastic control
with applications in finance, see e.g. [16, 2, 3].

The paper is organized as follows. Section 2 introduces the notation, recalls the
definition of a PDMP, presents our assumptions and defines the optimal stopping
problem we are interested in, especially the observation process. The recursive
formulation of the filter process is derived in Section 3. In Section 4, we reduce
our partially observed problem for the PDMP (Xt)t≥0 to a completely observed one
involving the process (Πn, Sn)n∈N for which we provide the dynamic programming
equation and construct a family of ε-optimal stopping times. Then, our numerical
methods to compute the value function and an ε-optimal stopping time are presented
in Section 5 where we also prove the convergence of our algorithms after having
recalled the main features of quantization. Finally, an academic example is discussed
in Section 6 while technical results are postponed to the Appendices.

2 Definition and notation
In this first section, let us define a piecewise-deterministic Markov process (PDMP)
and introduce some general assumptions. For any metric space E, we denote B(E) its
Borel σ-field, B(E) the set of real-valued, bounded and measurable functions defined
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on E and BL(E) the subset of functions of B(E) that are Lipschitz continuous. For
a, b ∈ R, denote a ∧ b = min(a, b) and a ∨ b = max(a, b).

2.1 Definition of a Piecewise-Deterministic Markov Process
Let E be an open subset of Rd. Let ∂E be its boundary and E its closure and for
any subset A of E, Ac denotes its complement. A PDMP is defined by its local
characteristics (Φ, λ,Q).

• The flow Φ : Rd × R+ → Rd is continuous. For all t ∈ R+, Φ(·, t) is an
homeomorphism and t → Φ(·, t) is a semi-group: for all x ∈ Rd, Φ(x, t +
s) = Φ(Φ(x, s), t). For all x ∈ E, define the deterministic exit time from E:
t∗(x) = inf{t > 0 such that Φ(x, t) ∈ ∂E}. We use here and throughout the
convention inf ∅ = +∞.

• The jump rate λ : E → R+ is measurable and satisfies:

∀x ∈ E, ∃ε > 0 such that
∫ ε

0
λ(Φ(x, t))dt < +∞.

• Finally, Q is a Markov kernel on (E,B(E)) which satisfies:

∀x ∈ E, Q(x,E\{x}) = 1.

From these characteristics, it can be shown [8] that there exists a filtered probability
space (Ω,F , (Ft)t∈R+ , (Px)x∈E) on which a process (Xt)t∈R+ is defined. Its motion,
starting from a point x ∈ E, may be constructed as follows. Let T1 be a nonnegative
random variable with survival function:

Px(T1 > t) =
{
e−Λ(x,t) if 0 ≤ t < t∗(x),
0 if t ≥ t∗(x),

where for x ∈ E and t ∈ [0, t∗(x)], Λ(x, t) =
∫ t

0 λ(Φ(x, s))ds. One then chooses an
E-valued random variable Z1 with distribution Q(Φ(x, T1), ·). The trajectory of Xt

for t ≤ T1 is:
Xt =

{
Φ(x, t) if t < T1,
Z1 if t = T1.

Starting from the point XT1 = Z1, one selects in a similar way S2 = T2−T1 the time
between T1 and the next jump time T2, as well as Z2 the next post-jump location
and so on. Davis showed [8] that the process so defined is a strong Markov process
(Xt)t≥0 with jump times (Tn)n∈N (T0 = 0). The process (Zn, Sn)n∈N where Zn = XTn

is the n-th post-jump location and Sn = Tn − Tn−1 (S0 = 0) is the n-th inter-jump
time is clearly a discrete-time Markov chain.

2.2 Notation and assumptions
The following non explosion assumption about the jump-times is standard (see for
example [8, section 24]).
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Assumption 2.1. For all (x, t) ∈ E × R+, Ex

[∑
k 1{Tk<t}

]
< +∞.

It implies that Tk → +∞ a.s. when k → +∞. Moreover, we make the following
assumption about the transition kernel Q.

Assumption 2.2. We assume that there exists a finite set E0 = {x1, . . . , xq} ⊂ E
such that for all x ∈ E, one has Q(x,E0) = 1.

In other words, for all n ∈ N, Zn may only take its values in the finite set E0.
This assumption ensures that the filter process, defined in the next section, has finite
dimension. This is required to derive a tractable numerical method in Section 5.
When this assumption does not hold, one may consider a preliminary discretization
of the transition kernel to introduce it.

Assumption 2.3. We assume that the function t∗ is bounded on E0 i.e. for all
m ∈ {1, . . . , q}, we assume that 0 < t∗(xm) < +∞.

Definition 2.4. For all m ∈ {1, . . . , q}, denote t∗m = t∗(xm) and assume that x1,. . . ,
xq are numbered such that t∗1 ≤ t∗2 ≤ . . .≤ t∗q. Moreover, let t∗0 = 0.

For any function w in B(E), introduce the following notation

Qw(x) =
∫

E
w(y)Q(x, dy) =

q∑

i=1
w(xi)Q(x, xi), Cw = sup

x∈E
|w(x)|.

For any Lipschitz continuous function w in BL(E), denote [w] its Lipschitz constant

[w] = sup
x 6=y∈E

|w(x)− w(y)|
|x− y| .

Assumption 2.5. The jump rate λ is in B(E) i.e. is bounded by Cλ.

Denote M(E0) the set of finite signed measures on E0 and M1(E0) the subset
of probability measures on E0. We equip M(E0) with the norm | · | given by |π| =∑q
i=1 |πi| where πi denotes π({xi}).

2.3 Partially observed optimal stopping problem
We consider from now on a PDMP (Xt)t≥0 of which the initial state X0 = Z0 is a
fixed point x0 ∈ E0. We assume that this PDMP is observed through a noise and we
now turn to the description of our observation procedure. For all n ∈ N, we assume
that Sn is perfectly observed but that Zn is not (except for the initial state Z0). In
some examples, it seems reasonable to consider that the jump times of the process
are observed (for instance, if the jumps correspond to changes of environment) and
that, when a jump occurs, the actual post-jump location is measured with a noise.
The observation process of Zn, denoted by Yn is assumed to be of the following form:
Y0 = x0 (deterministic) and for n ≥ 1,

Yn = ϕ(Zn) +Wn, (1)
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where ϕ : E0 → Rd and where the noise (Wn)n≥1 is a sequence of Rd-valued, i.i.d.
random variables with bounded density function fW that are also independent from
(Zn, Sn)n∈N. In order to define real-valued stopping times adapted to the observation
process, we need to consider a continuous time version of the observation process.
We therefore define the piecewise-constant process (Yt)t≥0 with a slight abuse of
notation1 as

Yt =
+∞∑

j=0
1[Tj ,Tj+1[(t)Yj.

Let FY = (FYt )t≥0 be the filtration generated by (Yt)t≥0 (the observed filtration) and
F = (Ft)t≥0 be the filtration generated by (Xt, Yt)t≥0 (the total filtration). Without
changing the notation, we then complete these filtrations with all the P-null sets.
This leads us to the following definition.

Definition 2.6. Denote ΣY the set of (FYt )t≥0-stopping times that are a.s. finite
and for n ∈ N, define

ΣY
n =

{
σ ∈ ΣY such that σ ≤ Tn a.s.

}
.

For all n ∈ N, we define the filter Πn ∈M1(E0). The quantity Πn({xi}), denoted
by Πi

n, represents the probability of the event {Zn = xi} given the information
available until time Tn i.e.

∀i ∈ {1, . . . , q}, Πi
n = E[1{Zn=xi}

∣∣∣FYTn ]. (2)

Finally, let N ∈ N be the horizon and g ∈ B(E) the reward function, we are
interested in maximizing the following performance criterion

E
[
g(Xσ)

∣∣∣Π0 = π
]

with respect to the stopping times σ ∈ ΣY
N . The value function associated to this

partially observed optimal stopping problem is given by

v(π) = sup
σ∈ΣYN

E
[
g(Xσ)

∣∣∣Π0 = π
]
, (3)

where π is a probability measure in M1(E0). The solution of our problem is then
obtained by setting π = δx0 . For some applications, it would be interesting to
consider a more general form for the reward function such as an integral term also
possibly depending on the observation process, see for instance [14]. However, this
new setup would lead to several technical difficulties. In particular, the dynamic
programming would be more complex. Thus the derivation of the error bounds for
the numerical approximation would be possibly intractable.

We will also need the following assumption about the reward function g associ-
ated with the optimal stopping problem.

1The quantity Yn represents the value of the process (Yt)t≥0 at time t = Tn and must not be
confused with the value of the process at time t = n.
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Assumption 2.7. The function g is in B(E) i.e. bounded by Cg and there exists
[g]2 ∈ R+ such that for all i ∈ {1, . . . , q} and t, u ∈ [0, t∗i ], one has:

|g(Φ(xi, t))− g(Φ(xi, u))| ≤ [g]2|t− u|.

Now, the aims of this paper are first to explicit the filter process (Πn)n∈N (Sec-
tion 3); second to rewrite the partially observed optimal stopping problem (3) as
a totally observed one for a suitable Markov chain on M1(E0) × R+ (Section 4.1);
third to derive a dynamic programming equation and construct a family of ε-optimal
stopping times (Section 4.2); and finally to propose a numerical method to compute
an approximation of the value function and an ε-optimal stopping time (Section 5).
As a starting point, we will derive, in the next section, a recursive construction of
the optimal filter that is the key point of our approach.

3 Optimal filtering
The goal of this section is to obtain a recursive formulation of the filter Πn. As
far as we know, there is no result concerning the filter process for generic PDMPs.
We may however refer to [1] for a recursive formulation of the filter for point pro-
cesses, that can be seen as a sub-class of PDMP’s. For all n ∈ N, we denote
Gn = (Y0, S0, . . . , Yn, Sn). The continuous-time observation process (Yt)t≥0 being a
point process in the sense developed in [6], one has FYTn = σ(Gn) (see [6, page 58,
Theorem T2]). Moreover, FTn = σ(Z0, . . . , Zn)∨FYTn . Concerning the filter Πn, first
notice that, since it is an FYTn-measurable random variable, there exists for all n ∈ N
a measurable function πn : (Rd × R+)n+1 →M1(E0) such that Πn = πn(Gn). As in
the case of the Kalman-Bucy filter, the iteration leading from Πn−1 to Πn can be
split into two steps : prediction and correction. For all n ≥ 1, let µ−n be the condi-
tional distribution of (Zn, Sn) given FYTn−1 . Thus, µ−n is a transition kernel defined
on (Rd × R+)n × B(E0 × R+) for all j ∈ {1, . . . , q} and γn−1 ∈ (Rd × R+)n by

µ−n (γn−1, {xj}, ds) = P(Zn = xj, Sn ∈ ds|Gn−1 = γn−1). (4)

Lemma 3.1. For all γn−1 ∈ (Rd×R+)n, we have the following equality of probability
measures on E0 × Rd × R+, for all j ∈ {1, . . . , q},

P(Zn = xj, Yn ∈ dy, Sn ∈ ds|Gn−1 = γn−1) = µ−n (γn−1, {xj}, ds)fW (y − ϕ(xj))dy.

Proof Set h in B(E0 × Rd × R+), using Eq. (1) that defines Yn, one has

E
[
h(Zn, Yn, Sn)

∣∣∣Gn−1 = γn−1
]

=
q∑

j=1

∫
h(xj, ϕ(xj) + w, s)P(Zn = xj, Sn ∈ ds,Wn ∈ dw|Gn−1 = γn−1).

Moreover, Wn is independent from σ(Zn, Sn) ∨ FYTn−1 = σ(Zn, Sn,Gn−1) and admits
the density function fW . Consequently, one easily obtains the result by using the
change of variable y = ϕ(xj) + w. �
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Integrating w.r.t. to the first variable in the previous lemma (i.e. summing w.r.t.
xj) yields the following result.
Corollary 3.2. For all γn−1 ∈ (Rd × R+)n, we have the following equality of prob-
ability measures on Rd × R+,

P(Yn ∈ dy, Sn ∈ ds|Gn−1 = γn−1) =



q∑

j=1
µ−n (γn−1, {xj}, ds)fW (y − ϕ(xj))


 dy.

Lemma 3.3. For all n ≥ 1, γn−1 ∈ (Rd ×R+)n and j ∈ {1, . . . , q}, the distribution
µ−n , defined by Eq. (4), satisfies

µ−n (γn−1, {xj}, ds)

=
q−1∑

m=0
1{s∈]t∗m;t∗m+1[}




q∑

i=m+1
πin−1(γn−1)λ(Φ(xi, s))e−Λ(xi,s)Q(Φ(xi, s), xj)


 ds

+
q∑

m=1

(
πmn−1(γn−1)e−Λ(xm,t∗m)Q(Φ(xm, t∗m), xj)

)
δt∗m(ds).

Proof Let h be a function of B(E0 × R+). Since σ(Gn−1) = FYTn−1 ⊂ FTn−1 , the
law of iterated conditional expectations yields

E
[
h(Zn, Sn)

∣∣∣Gn−1 = γn−1
]

= E
[
E
[
h(Zn, Sn)

∣∣∣FTn−1

] ∣∣∣Gn−1 = γn−1
]
.

Besides, FTn−1 = σ(Z0, S0,W0, . . . , Zn−1, Sn−1,Wn−1) so that

E
[
h(Zn, Sn)

∣∣∣FTn−1

]
= E

[
h(Zn, Sn)

∣∣∣Z0, S0, . . . , Zn−1, Sn−1
]
,

by independence of the sequences (Wn)n∈N and (Zn, Sn)n∈N. Now, we apply the
Markov property of (Zn, Sn)n∈N and a well-known special feature of the transition
kernel of the underlying Markov chain of a PDMP to obtain

E
[
h(Zn, Sn)

∣∣∣FTn−1

]
= E

[
h(Zn, Sn)

∣∣∣Zn−1, Sn−1
]

= E
[
h(Zn, Sn)

∣∣∣Zn−1
]
.

Moreover, the transition kernel can be explicitly expressed in terms of the local
characteristics of the PDMP, and this yields the next equations

E[h(Zn, Sn)|Gn−1 = γn−1]

= E
[ q∑

i=1
1{Zn−1=xi}E[h(Zn, Sn)|Zn−1 = xi]

∣∣∣Gn−1 = γn−1

]

= E
[ q∑

i=1
1{Zn−1=xi}

q∑

j=1

[ ∫

R+
h(xj, s)λ(Φ(xi, s))e−Λ(xi,s)1{s<t∗i }Q(Φ(xi, s), xj)ds

+h(xj, t∗i )e−Λ(xi,t∗i )Q(Φ(xi, t∗i ), xj)
]∣∣∣Gn−1 = γn−1

]

=
q∑

j=1

( ∫

R+
h(xj, s)

q∑

i=1
πin−1(γn−1)λ(Φ(xi, s))e−Λ(xi,s)1{s<t∗i }Q(Φ(xi, s), xj)ds

+
q∑

i=1
h(xj, t∗i )πin−1(γn−1)e−Λ(xi,t∗i )Q(Φ(xi, t∗i ), xj)

)
.
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This can be written equivalently as

E
[
h(Zn, Sn)

∣∣∣Gn−1 = γn−1
]

=
q∑

j=1

( q−1∑

m=0

(∫ t∗m+1

t∗m
h(xj, s)

q∑

i=m+1
πin−1(γn−1)λ(Φ(xi, s))e−Λ(xi,s)Q(Φ(xi, s), xj)

)
ds

+
q∑

i=1
h(xj, t∗i )πin−1(γn−1)e−Λ(xi,t∗i )Q(Φ(xi, t∗i ), xj)

)
.

Hence the result. �

We now state the main result of this section, namely the recursive formulation
of the filter sequence (Πn)n∈N.

Proposition 3.4. Let Ψ = (Ψ1, . . . ,Ψq) :M1(E0)×Rd×R+ →M1(E0) be defined
as follows: for all j ∈ {1, . . . , q},

Ψj(π, y, s) =
q−1∑

m=0
1{s∈]t∗m;t∗m+1[}

Ψj
m(π, y, s)

Ψm(π, y, s)
+

q∑

m=1
1{s=t∗m}

Ψ∗jm(y)
Ψ∗m(y)

,

where

Ψj
m(π, y, s) =

q∑

i=m+1
πiλ(Φ(xi, s))e−Λ(xi,s)Q(Φ(xi, s), xj)fW (y − ϕ(xj)),

Ψm(π, y, s) =
q∑

k=1
Ψk
m(π, y, s),

Ψ∗jm(y) = Q(Φ(xm, t∗m), xj)fW (y − ϕ(xj)),

Ψ∗m(y) =
q∑

k=1
Ψ∗km (y).

Then, the filter, defined in Eq. (2), satisfies Πj
0 = P(Z0 = xj) and the following

recursion: for all n ≥ 1,

P-a.s.,Pin = Ψ(Πn−1, Yn, S n).

Proof Fix γn−1 in (Rd × R+)n. Bayes formula yields for all j ∈ {1, . . . , q},

P(Zn = xj, Yn ∈ dy, Sn ∈ ds
∣∣∣Gn−1 = γn−1) =

P
(
Zn = xj

∣∣∣Gn = (γn−1, y, s)
)
×P(Yn ∈ dy, Sn ∈ ds

∣∣∣Gn−1 = γn−1).

Lemma 3.1 and Corollary 3.2 yield

µ−n (γn−1, {xj}, ds)fW (y − ϕ(xj))dy

= P
(
Zn = xj

∣∣∣Gn = (γn−1, y, s)
) [ q∑

k=1
µ−n (γn−1, {xk}, ds)fW (y − ϕ(xk))

]
dy.
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With respect to y, one recognizes the equality of two absolutely continuous measures
which implies the equality a.e. of the density functions. Thus, one has for almost
all y ∈ Rd w.r.t. the Lebesgue measure,

µ−n (γn−1, {xj}, ds)fW (y − ϕ(xj)) (5)

= P
(
Zn = xj

∣∣∣Gn = (γn−1, y, s)
) [ q∑

k=1
µ−n (γn−1, {xk}, ds)fW (y − ϕ(xk))

]
.

Eq. (5) states the equality of two measures of the variable s ∈ R+ that contain
both an absolutely continuous part and some weighted Dirac measures. Denote
g1(y, s)ν1(ds) (respectively g2(y, s)ν2(ds)) the left-hand (resp. right-hand) side term
of the previous equality. Eq. (5) means that for all function F ∈ B(R+) and for
almost all y ∈ Rd w.r.t. the Lebesgue measure, one has

∫
F (s)g1(y, s)ν1(ds) =

∫
F (s)g2(y, s)ν2(ds), (6)

Recall that, from Lemma 3.3, the distribution µ−n (γn−1, {xj}, ds) has a density on
the interval ]t∗m; t∗m+1[ denoted by fm(γn−1, xj, s) and given by

fm(γn−1, xj, s) =
q∑

i=m+1
πin−1(γn−1)λ(Φ(xi, s))e−Λ(xi,s)Q(Φ(xi, s), xj).

First, take F (s) = H(s)1{s∈]t∗m;t∗m+1[} in equation (6) with H ∈ B(R+). One has from
equation (5)
∫ t∗m+1

t∗m
H(s)fm(γn−1, xj, s)fW (y − ϕ(xj))ds

=
∫ t∗m+1

t∗m
H(s)P

(
Zn = xj

∣∣∣Gn = (γn−1, y, s)
) q∑

k=1
fm(γn−1, xk, s)fW (y − ϕ(xk))ds,

and thus on ]t∗m; t∗m+1[, almost surely w.r.t. the Lebesgue measure, one has

P
(
Zn = xj

∣∣∣Gn = (γn−1, y, s)
)

= fm(γn−1, xj, s)fW (y − ϕ(xj))∑q
k=1 fm(γn−1, xk, s)fW (y − ϕ(xk))

.

Finally, for m ∈ {1, . . . , q}, choosing F (s) = 1{s=t∗m} in Eq. (6) yields the equality
of the weights at the point t∗m thus, using Lemma 3.3,

P
(
Zn = xj

∣∣∣Gn = (γn−1, y, t
∗
m)
)

= πmn−1(γn−1)e−Λ(xm,t∗m)Q(Φ(xm, t∗m), xj)fW (y − ϕ(xj))∑q
k=1 π

m
n−1(γn−1)e−Λ(xm,t∗m)Q(Φ(xm, t∗m), xk)fW (y − ϕ(xk))

= Q(Φ(xm, t∗m), xj)fW (y − ϕ(xj))∑q
k=1Q(Φ(xm, t∗m), xk)fW (y − ϕ(xk))

.

Thus there exists two measurable sets Ny ⊂ Rd and Ns ⊂ R+\{t∗1, . . . , t∗q}, negligible
w.r.t. the Lebesgue measures on Rd and R respectively, such that for all γn−1 ∈
(Rd × R+)n, y ∈ Rd\Ny, s ∈ R+\Ns, one has

πn(γn−1, y, s) = Ψ(πn−1(γn−1), y, s). (7)
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On the one hand, one has P(Yn ∈ Ny) ≤
∑q
j=1 P(ϕ(xj) + Wn ∈ Ny) = 0 by ab-

solute continuity of the distribution of Wn. On the other hand, P(Sn ∈ Ns) = 0
because the distribution of Sn is absolutely continuous on R+\{t∗1, . . . , t∗q} and one
has Ns ∩{t∗1, . . . , t∗q} = ∅. We therefore conclude from Eq. (7) that P-a.s., one has
πn(Gn−1, Yn, Sn) = Ψ(πn−1(Gn−1), Yn, Sn). The result follows since P-a.s., one has
πn(Gn−1, Yn, Sn) = Πn and πn−1(Gn−1) = Πn−1. �

This proposition will play a crucial part in the sequel. On the one hand, this
result will enable us to prove the Markov property of the sequence (Πn, Sn)n≥0 w.r.t.
the observed filtration. On the other hand, the recursive formulation allows for sim-
ulation of the process (Πn)n≥0 which is crucial to obtain numerical approximations.
Finally, notice that the specific structure of the PDMP appears in the recursive for-
mulation of the filter which contains both an absolutely continuous part and some
weighted points.

4 Dynamic programming
The main objective of this section is to derive the dynamic programming equation
for the value function of the partially observed optimal stopping problem (3). The
proof of this result can be roughly speaking decomposed into two steps. The first
point consists in converting the partially observed optimal stopping problem into
an optimal stopping problem under complete observation where the state variables
are described by the discrete-time Markov chain (Πn, Sn)n≥0 (see Section 4.1). It is
important to remark that under this new formulation, the optimization problem re-
mains intrinsically a continuous-time optimization problem because the performance
criterion is maximized over the set of stopping times with respect to the continuous-
time filtration (FYt )t≥0. We show in the second step (see Section 4.2) that the value
function associated to the optimal stopping problem (3) can be calculated by iterat-
ing a functional operator, labelled L (see Definition 4.3). As a by-product, we also
provide a family of ε-optimal stopping times.

We would like to emphasize that the results obtained in this section are not
straightforward to obtain due to the specific structure of this optimization problem.
Indeed, as already explained, it combines continuous-time and discrete-time features.
Consequently, this problem does not correspond to the classical optimal stopping
problem of a discrete-time Markov chain. Moreover, it is different from the optimal
stopping problem of a PDMP under complete observation mainly because the new
state variables given by the Markov chain (Πn, Sn)n≥0 are not the underlying Markov
chain of some PDMP. Therefore the results of the literature [9, 13] cannot be used.

These derivations require some technical results about the structure of the stop-
ping times in ΣY

N . For the sake of clarity in exposition, they are presented in the
Appendix A. We start with a technical preliminary result required in the sequel,
investigating the Markov property of the filter process.

Proposition 4.1. The sequences (Πn, Yn, Sn)n∈N, (Πn, Sn)n∈N and (Πn)n∈N are (FYTn)n∈N-
Markov chains.
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Proof Let h ∈ B(M1(E0)×Rd×R+). The law of iterated conditional expectations
yields

E[h(Πn, Yn, Sn)|FYTn−1 ] = E
[
E[h(Πn, Yn, Sn)|FTn−1 ]

∣∣∣FYTn−1

]
.

From Proposition 3.4 and Eq. (1) which defines Yn one obtains

E[h(Πn, Yn, Sn)|FTn−1 ]
= E

[
h
(
Ψ(Πn−1, ϕ(Zn) +Wn, Sn), ϕ(Zn) +Wn, Sn

)∣∣∣FTn−1

]

=
q∑

j=1

∫
h
(
Ψ(Πn−1, ϕ(xj) + w, s), ϕ(xj) + w, s

)

×P(Zn = xj,Wn ∈ dw, Sn ∈ ds|FTn−1).

Yet, Wn is independent from σ(Zn, Sn)∨FTn−1 and admits the density function fW .
As in the proof of Lemma 3.1 one thus obtains

E[h(Πn, Yn, Sn)|FTn−1 ]

=
q∑

j=1

∫
h
(
Ψ(Πn−1, y, s), y, s

)
P(Zn = xj, Sn ∈ ds|FTn−1)fW (y − ϕ(xj))dy.

Besides, we have P(Zn = xj, Sn ∈ ds|FTn−1) = P(Zn = xj, Sn ∈ ds|Zn−1) as in the
proof of Lemma 3.3, so that one has

E[h(Πn, Yn, Sn)|FTn−1 ]

=
q∑

i=1
1{Zn−1=xi}

q∑

j=1

∫ ( ∫ t∗i

0
h
(
Ψ(Πn−1, y, s), y, s

)
λ
(
Φ(xi, s)

)
e−Λ(xi,s)Q

(
Φ(xi, s), xj

)
ds

+h
(
Ψ(Πn−1, y, t

∗
i ), y, t∗i

)
e−Λ(xi,t∗i )Q

(
Φ(xi, t∗i ), xj

))
fW (y − ϕ(xj))dy.

Take now the conditional expectation w.r.t. FYTn−1 , to obtain

E[h(Πn, Yn, Sn)|FTn−1 ]

=
q∑

i=1
Πi
n−1

q∑

j=1

∫ ( ∫ t∗i

0
h
(
Ψ(Πn−1, y, s), y, s

)
λ
(
Φ(xi, s)

)
e−Λ(xi,s)Q

(
Φ(xi, s), xj

)
ds

+h
(
Ψ(Πn−1, y, t

∗
i ), y, t∗i

)
e−Λ(xi,t∗i )Q

(
Φ(xi, t∗i ), xj

))
fW (y − ϕ(xj))dy.

Hence E[h(Πn, Yn, Sn)|FYTn−1 ] is merely a function of Πn−1 yielding the result for the
three processes. �

4.1 Optimal stopping problem under complete observation
In this section, we show how our optimal stopping problem under partial observation
for the process (Xt)t≥0 can be converted into an optimal stopping problem under
complete observation involving the Markov chain (Πn, Sn)0≤n≤N . More precisely, for
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a fixed stopping time σ ∈ ΣY
N , we show in Proposition 4.2 that the performance cri-

terion E[g(Xσ)|Π0 = π] can be expressed in terms of the discrete-time Markov chain
(Πn, Sn)0≤n≤N . We would like to emphasize the following important fact. Although
the performance criterion can be written in terms of discrete-time process, the op-
timization problem remains intrinsically a continuous-time optimization problem.
Indeed, the performance criterion is maximized over the set of stopping times with
respect to the continuous-time filtration (FYt )t≥0.

Proposition 4.2. Let σ ∈ ΣY and n ≥ 1. For all π ∈M1(E0) one has

E[g(Xσ∧Tn)|Π0 = π]

=
n−1∑

k=0

q∑

i=1
E[1{Tk≤σ}1{Rk<t∗i }g ◦ Φ(xi, Rk)e−Λ(xi,Rk)Πi

k|Π0 = π]

+
q∑

i=1
E[1{Tn≤σ}g(xi)Πi

n|Π0 = π],

where (Rk)k∈N is the sequence of non negative random variables associated to σ as
introduced in Theorem A.5.

Proof We split E[g(Xσ∧Tn)|Π0 = π] into several terms depending on the position
of σ w.r.t. the jump times Tk

E[g(Xσ∧Tn)
∣∣∣Π0 = π] =

n−1∑

k=0

q∑

i=1
E[1{Tk≤σ<Tk+1}1{Zk=xi}g ◦ Φ(xi, Rk)|Π0 = π]

+
q∑

i=1
E[1{Tn≤σ}1{Zn=xi}g(xi)|Π0 = π].

For notational convenience, consider
{
Ak,i = 1{Tk≤σ<Tk+1}1{Zk=xi}g ◦ Φ(xi, Rk),
Bi = 1{Tn≤σ}1{Zn=xi}g(xi).

On the one hand, one has E[Bi|FYTn ] = g(xi)1{Tn≤σ}Πi
n since {Tn ≤ σ} ∈ FYTn (see

for instance [6, p. 298, Theorem T7]). On the other hand, to compute E[Ak,i|FYTk ],
we use Lemma A.6 to obtain

E[Ak,i|FYTk ] = 1{Tk≤σ}g ◦ Φ(xi, Rk)E[1{Sk+1>Rk}1{Zk=xi}|FYTk ]
= 1{Tk≤σ}g ◦ Φ(xi, Rk)E

[
1{Zk=xi}E[1{Sk+1>Rk}|FTk ]

∣∣∣FYTk
]

= 1{Tk≤σ}g ◦ Φ(xi, Rk)E[1{Zk=xi}1{Rk<t∗(Zk)}e
−Λ(Zk,Rk)|FYTk ]

= 1{Tk≤σ}g ◦ Φ(xi, Rk)1{Rk<t∗i }e
−Λ(xi,Rk)Πi

k.

Details to obtain the third line in the above computations are provided by Lemma B.1.
The result follows. �
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4.2 Dynamic programming equation
Based on the new formulation, the main objective of this section is to derive the
backward dynamic programming equation. It involves some operators introduced in
Definition 4.3. By iterating the operator, labelled L, we define a sequence of real
valued functions (vn)0≤n≤N in Definition 4.4. Theorem 4.5 establishes that vn is the
value function of our partially observed optimal stopping problem with horizon TN−n
and in particular that v0 is the value function of problem defined in equation (3).

Another important result of this section is given by Theorem 4.9 which constructs
a sequence of ε-optimal stopping times.

Definition 4.3. The operators G : B(M1(E0))→ B(M1(E0)× R+), H : B(E)→
B(M1(E0)×R+), J : B(M1(E0))×B(E)→ B(M1(E0)×R+), and L : B(M1(E0))×
B(E) → B(M1(E0)) are defined for all (v, h) ∈ B(M1(E0)) × B(E) and (π, u) ∈
M1(E0)× R+ by

Gv(π, u) = E[v(Π1)1{S1≤u}|Π0 = π],

Hh(π, u) = E
[ q∑

i=1
h ◦ Φ(xi, u)Πi

01{u<t∗i }1{S1>u}|Π0 = π
]
,

J(v, h)(π, u) = Hh(π, u) +Gv(π, u),
L(v, h)(π) = sup

u≥0
J(v, h)(π, u).

Definition 4.4. The sequence (vn)0≤n≤N of real-valued functions is defined onM1(E0)
by {

vN(π) = ∑q
i=1 g(xi)πi,

vn−1(π) = L(vn, g)(π), 1 ≤ n ≤ N.

The following Theorem is the main result of this section showing that the oper-
ator L is the dynamic programming operator associated to the initial optimization
problem.

Theorem 4.5. For all 1 ≤ n ≤ N and π ∈M1(E0), one has

sup
σ∈ΣYn

E[g(Xσ)|Π0 = π] = vN−n(π).

Proof The proof of this result is based on Proposition 4.6 and Theorem 4.9. Propo-
sition 4.6 proves that vN−n is an upper bound for the value function of the problem
with horizon Tn. The reverse inequality is derived in Theorem 4.9 by constructing
a sequence of ε-optimal stopping times. �

Proposition 4.6. For all 1 ≤ n ≤ N and π ∈M1(E0), one has

sup
σ∈ΣYn

E[g(Xσ)|Π0 = π] ≤ vN−n(π).
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Proof Let σ ∈ ΣY . Consider (Rk)k∈N the sequence associated to σ as introduced in
Theorem A.5. We prove the theorem by induction on n. For n = 1, Proposition 4.2
yields

E[g(Xσ∧T1)|Π0 = π] =
q∑

i=1
E[1{R0<t∗i }g ◦ Φ(xi, R0)e−Λ(xi,R0)Πi

0|Π0 = π]

+
q∑

i=1
E[1{T1≤σ}g(xi)Πi

1|Π0 = π]. (8)

Since R0 is deterministic and by using Lemma C.1, we recognize that the first term
of the right hand side of equation (8) is Hg(π,R0). We now turn to the second term
of the right hand side of equation (8) which is given by

E[1{S1≤R0}
q∑

i=1
g(xi)Πi

1|Π0 = π] = E[vN(Π1)1{S1≤R0}|Π0 = π]

= GvN(π,R0),

from Lemma A.6 and the definition of G. Recall that from Definition 4.3 one has
J(vN , g) = Hg +GvN thus, one obtains

E[g(Xσ∧T1)|Π0 = π] = J(vN , g)(π,R0) ≤ sup
u≥0

J(vN , g)(π, u)

= L(vN , g)(π) = vN−1(π).

Set now 2 ≤ n ≤ N and assume that E[g(Xτ )|Π0 = π] ≤ vN−(n−1)(π), for all
τ ∈ ΣY

n−1. Proposition 4.2 yields

E[g(Xσ∧Tn)|Π0 = π]

=
n−1∑

k=0

q∑

i=1
E[1{Tk≤σ}1{Rk<t∗i }g ◦ Φ(xi, Rk)e−Λ(xi,Rk)Πi

k|Π0 = π]

+
q∑

i=1
E[1{Tn≤σ}g(xi)Πi

n|Π0 = π].

As in the case n = 1, the term for k = 0 equals Hg(π,R0). Notice that for k ≥
1, 1{Tk≤σ} = 1{Tk≤σ}1{T1≤σ} and that 1{T1≤σ} = 1{S1≤R0} is FYT1-measurable. By
taking the conditional expectation w.r.t. FYT1 it follows that E[Ξ1{S1≤R0}|Π0 = π] =
E[Ξ|Π0 = π] where Ξ is defined by

Ξ = E
[ n−1∑

k=1

q∑

i=1
1{Tk≤σ}1{Rk<t∗i }g ◦ Φ(xi, Rk)e−Λ(xi,Rk)Πi

k

+
q∑

i=1
1{Tn≤σ}g(xi)Πi

n

∣∣∣FYT1

]
.

Therefore, we obtain

E[g(Xσ∧Tn)|Π0 = π] = Hg(π,R0) + E[Ξ1{S1≤R0}|Π0 = π]. (9)
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We now use the Markov property of the chain (Πk)k≥0. Indeed, for k ≥ 1, one
has Πk = Πk−1 ◦ θ, where θ is the translation operator of the (FYTn)n∈N-Markov
chain (Πn, Yn, Sn)n∈N. Moreover, when T1 ≤ σ, one has, from Proposition A.10,
Rk = R̃1

k−1 ◦ θ (indeed, we pointed out in Remark A.8 that Rk can be replaced
by Rk defined in Lemma A.7) and σ = T1 + σ̃ ◦ θ where R̃1

k−1 and σ̃ are defined
in Definition A.9 and Proposition A.10 (with l = 1 in the present case). Since for
k ≥ 1, Tk = T1 + Tk−1 ◦ θ, one has 1{Tk≤σ} = 1{Tk−1≤σ̃} ◦ θ. Finally, combining the
Markov property of the chain (Πk)k≥0 and Proposition 4.2 we have Ξ = w(Π1) with
w(π) = E[g(Xσ̃∧Tn−1)|Π0 = π]. Moreover, one has w(π) ≤ vN−(n−1)(π) from the
induction assumption since σ̃ ∧ Tn−1 ∈ ΣY

n−1 (indeed, both σ̃ and Tn−1 are (FYt )t≥0-
stopping times from Corollary A.12 and Lemma A.1 respectively). One has then

Ξ ≤ vN−(n−1)(Π1). (10)

Finally, combining Eq. (9) and (10), one has

E[g(Xσ∧Tn)|Π0 = π] ≤ Hg(π,R0) + E[vN−(n−1)(Π1)1{S1≤R0}|Π0 = π].

In the second term, we recognize the operator G and one has

E[g(Xσ∧Tn)|Π0 = π] ≤ Hg(π,R0) +GvN−(n−1)(π,R0)
= J(vN−(n−1), g)(π,R0)
≤ sup

u≥0
J(vN−(n−1), g)(π, u)

= L(vN−(n−1), g)(π) = vN−n(π),

that proves the induction. �

We now prove the reverse inequality by constructing a sequence of ε-optimal
stopping times.
Definition 4.7. For ε > 0, 1 ≤ n ≤ N and for π ∈M1(E0), we define

rεn(π) = inf {u > 0 : J(vN−n, g)(π, u) > vN−n−1(π)− ε} .
Consider Rε

1,0 = rε0(Π0) and for 2 ≤ n ≤ N ,




Rε
n,0 = r

ε/2
n−1(Π0),

Rε
n,k = r

ε/(2k+1)
n−1−k (Πk)1{Rε

n,k−1≥Sk} for 1 ≤ k ≤ n− 2,
Rε
n,n−1 = r

ε/(2n−1)
0 (Πn−1)1{Rεn,n−2≥Sn−1},

and finally set
U ε
n =

n∑

k=1
Rε
n,k−1 ∧ Sk.

The following lemma describes the effect of the translation operator θ on the
sequence (Rε

n,k)1≤n≤N,0≤k≤n−1.
Lemma 4.8. For n ≥ 2 and 1 ≤ k ≤ n− 1, on the set {T1 ≤ U2ε

n }, one has

Rε
n−1,k−1 ◦ θ = R2ε

n,k.
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Proof For n = 2, one just has to prove that on the event {T1 ≤ U2ε
2 }, one has

Rε
1,0 ◦ θ = R2ε

2,1. Yet, from the definition of the sequence (Rε
n,k)1≤n≤N,0≤k≤n−1, one

has Rε
1,0 ◦ θ = rε0(Π1) and R2ε

2,1 = r
2ε
2

0 (Π1)1{R2ε
2,0≥S1}. The result follows since we are

on the event {T1 ≤ U2ε
2 } = {R2ε

2,0 ≥ S1}. For a fixed n ≥ 3, we prove the lemma
by induction on 1 ≤ k ≤ n − 1. Set k = 1. One has from the definition on the
sequence (Rε

n,k)1≤n≤N,0≤k≤n−1, Rε
n−1,0 ◦ θ = r

ε
2
n−2(Π1) and R2ε

n,1 = r
2ε
4
n−2(Π1)1{R2ε

n,0≥S1}.
We obtain Rε

n−1,0 ◦ θ = R2ε
n,1 because we have assumed that we are on the event

{T1 ≤ U2ε
n } = {R2ε

n,0 ≥ S1}. The propagation of the induction is similar to the case
k = 1. �

Equipped with this preliminary result, we may now prove that (U ε
n)1≤n≤N is a

sequence of ε-optimal stopping times with respect to the filtration. generated by the
observations.

Theorem 4.9. For all 1 ≤ n ≤ N and ε > 0, one has U ε
n ∈ ΣY

n and

E[g(XUεn)|Π0 = π] ≥ vN−n(π)− ε.

Proof Let n ∈ {1, . . . , N}. First notice that, as a direct consequence of Propo-
sition A.11, U ε

n is an (FYt )t≥0-stopping time since, by construction, the Rε
n,k are

FYTk-measurable and satisfy the condition Rε
n,k = 0 on the event {Sk > Rε

n,k−1}. It is
also clear that U ε

n ≤
∑n
k=1 Sk = Tn. Thus, one has U ε

n ∈ ΣY
n . Let us now prove the

second assessment by induction. Set n = 1. Let π ∈M1(E0), we denote rε0 = rε0(π).
Since Rε

1,0 = rε0 is deterministic, one has clearly Rε
1,0 ∈ ΣY . Consequently, by using

the same arguments as in the proof of Proposition 4.6, we obtain

E[g(XRε1,0∧S1)|Π0 = π] =Hg(π, rε0) +GvN(π, rε0) = J(vN , g)(π, rε0).

Finally, the definition of rε0 yields J(vN , g)(π, rε0) ≥ vN−1(π)− ε thus one has

E[g(XRε1,0∧S1)|Π0 = π] ≥ vN−1(π)− ε.

Now set 2 ≤ n ≤ N and assume that E[g(XUεn−1
)|Π0 = π] ≥ vN−(n−1)(π)− ε, for all

ε > 0. Proposition 4.2 yields

E[g(XU2ε
n

)|Π0 = π]

=
n−1∑

k=0

q∑

i=1
E
[
1{Tk≤U2ε

n }1{R2ε
n,k

<t∗i }g ◦ Φ(xi, R2ε
n,k)e−Λ(xi,R2ε

n,k)Πi
k

∣∣∣Π0 = π
]

+
q∑

i=1
E[1{Tn≤U2ε

n }g(xi)Πi
n|Π0 = π].

Denote rεn−1 = rεn−1(π). As in the case n = 1, the term for k = 0 equals Hg(π, rεn−1)
since R2ε

n,0 = rεn−1(Π0). Take the conditional expectation w.r.t. FYT1 in the other
terms. One has then,

E[g(XU2ε
n

)|Π0 = π] = Hg(π, rεn−1) + E[Ξ′1{T1≤U2ε
n }|Π0 = π], (11)
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with

Ξ′ = E
[ n−1∑

k=1

q∑

i=1
1{Tk≤U2ε

n }1{R2ε
n,k

<t∗i }g ◦ Φ(xi, R2ε
n,k)e−Λ(xi,R2ε

n,k)Πi
k

+
q∑

i=1
1{Tn≤U2ε

n }g(xi)Πi
n

∣∣∣FYT1

]
.

Our objective is to apply the Markov property of (Πk)k∈N in the term Ξ′. Recall
that, from Lemma 4.8, one has Rε

n−1,k−1 ◦ θ = R2ε
n,k for n ≥ 2 and 1 ≤ k ≤ n − 1

on the event {T1 ≤ U2ε
n } = {S1 ≤ R2ε

n,0} (the equality of these events stems from
Lemma A.6). Thus, on this set one has

U2ε
n = S1 +

n∑

k=2
R2ε
n,k−1 ∧ Sk = T1 +

n∑

k=2
(Rε

n−1,k−2 ◦ θ) ∧ (Sk−1 ◦ θ)

= T1 + U ε
n−1 ◦ θ.

Besides, recall that Tk = T1+Tk−1◦θ, for k ≥ 1. Consequently, on the set {T1 ≤ U2ε
n },

one has 1{Tk≤U2ε
n } = 1{Tk−1≤Uεn−1} ◦ θ and thus, combining the Markov property of

the chain (Πk)k≥0 and Proposition 4.2, we have

Ξ′(Π1) = w′(Π1),

with w′(π) = E
[
g(XUεn−1

)
∣∣∣Π0 = π

]
. Moreover, thanks to the induction assumption,

one has w′(π) ≥ vN−(n−1)(π)− ε so that one obtains

Ξ′ ≥ vN−(n−1)(Π1)− ε. (12)

Finally, combining equation (11) and (12) and noticing that, according to Lemma A.6,
{T1 ≤ U2ε

n } = {S1 ≤ rεn−1}, one obtains

E[g(XU2ε
n

)|Π0 = π] ≥ Hg(π, rεn−1) + E[vN−(n−1)(Π1)1{S1≤rεn−1}|Π0 = π]− ε
= J(vN−(n−1), g)(π, rεn−1)− ε
≥ vN−n(π)− 2ε,

from the definition of rεn−1, showing the result. �

5 Numerical approximation by quantization
In this section, we are interested in the computational issue for our optimal stop-
ping problem under partial observation. Indeed, we want to compute a numerical
approximation of the value function (3) and propose a computable ε-optimal stop-
ping time.

As we have seen in the previous section, the value function v can be obtained by
iterating the dynamic programming operator L. However, the operator L involves
conditional expectations that are in essence difficult to compute and iterate numer-
ically. We manage to overcome this difficulty by combining two special properties
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of our problem. On the one hand, the underlying process (Πn, Sn) in the expression
of the operator L is a Markov chain. Therefore, it can be discretized using a quan-
tization technique which is a powerful method suitable for numerical computation
and iteration of conditional expectations. On the other hand, the recursion on the
functions (vn)0≤n≤N involving the operator L can be transformed into a recursion
on suitably defined random variables. Thus they are easier to iterate numerically as
we do not need to compute an approximation of each vn on the whole state space.

This section is organized as follows. We first explain how the recursion on the
functions (vn)0≤n≤N can be transformed into a recurrence on random variables in-
volving only the Markov chain (Πn, Sn). Then, we present a quantization technique
to discretize this Markov chain. Afterwards, we construct a discretized version of
the main operators in Definition 5.6 that is used to build an approximation of the
value function in Definition 5.7, and a computable ε-optimal stopping time. The
main results of this section are Theorems 5.8 and 5.17 that prove the convergence
of our approximation scheme and provide a rate of convergence.

We first explain how the dynamic programming equations on the functions
(vn)0≤n≤N yield a recursion on the random variables

(
vn(Πn)

)
0≤n≤N

. Introduce
now the sequence (Vn)0≤n≤N of random variables defined by

Vn = vn(Πn).

In other words, one has

VN =
q∑

i=1
g(xi)Πi

N , (13)

Vn = sup
u≥0

E
[ q∑

i=1
g ◦ Φ(xi, u)Πi

n1{u<t∗i }1{Sn+1>u} + Vn+11{Sn+1≤u}|Πn

]
,

for 0 ≤ n ≤ N − 1. Notice that VN is known and the expression of Vn involves only
Vn+1 and the Markov chain (Πn, Sn). Thus, the sequence (Vn)0≤n≤N is completely
characterized by the system (13). In addition, V0 = v0(Π0) = v(Π0). Thus to
approximate the value function v at the initial point of our process, it is sufficient
to provide an approximation of the sequence of random variables (VN)0≤n≤N .

5.1 The quantization approach
There exists an extensive literature on quantization methods for random variables
and processes. We do not pretend to present here an exhaustive panorama of these
methods. However, the interested reader may for instance, consult the following
works [2, 12, 16] and references therein. Consider X an Rr-valued random variable
such that ‖X‖p < ∞ where ‖X‖p denotes the Lp-nom of X: ‖X‖p = (E[|X|p])1/p.
Let ν be a fixed integer, the optimal Lp-quantization of the random variable X
consists in finding the best possible Lp-approximation of X by a random vector X̂
taking at most ν values: X̂ ∈ {x1, . . . , xν}. This procedure consists in the following
two steps:

1. Find a finite weighted grid Γ ⊂ Rr with Γ = {x1, . . . , xν}.
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2. Set X̂ = X̂Γ where X̂Γ = projΓ(X) with projΓ denotes the closest neighbour
projection on Γ.

The asymptotic properties of the Lp-quantization are given by the following result,
see e.g. [16].

Theorem 5.1. If E[|X|p+η] < +∞ for some η > 0 then one has

lim
ν→∞ ν

p/r min
|Γ|≤ν
‖X − X̂Γ‖pp = Jp,r

(∫
|h|r/(r+p)(u)du

)1+p/r
,

where the distribution of X is PX(du) = h(u)λr(du) +µ with µ ⊥ λr, Jp,r a constant
and λr the Lebesgue measure in Rr.

There exists a similar procedure for the optimal quantization of a Markov chain.
Our approximation method is based on the quantization of the Markov chain (Πk, Sk)k≤N .
Thus, from now on, we will denote, for 0 ≤ k ≤ N , Θk = (Πk, Sk). The CLVQ
(Competitive Learning Vector Quantization) algorithm [2, Section 3] provides for
each time step 0 ≤ k ≤ N a finite grid Γk ofM1(E0)×R+ as well as the transition
matrices (Q̂k)0≤k≤N−1 from Γk to Γk+1. Let p ≥ 1 such that for all k ≤ N , Πk and Sk
have finite moments at least up to order p and let projΓk be the nearest-neighbor pro-
jection from M1(E0)× R+ onto Γk. The quantized process (Θ̂k)k≤N = (Π̂k, Ŝk)k≤N
with value for each k in the finite grid Γk of M1(E0)× R+ is then defined by

(Π̂k, Ŝk) = projΓk(Πk, Sk).

We will also denote by ΓΠ
k , the projection of Γk onM1(E0), and by ΓSk , the projection

of Γk on R+.
Some important remarks must be made concerning the quantization. On the one

hand, the optimal quantization has nice convergence properties stated by Theorem
5.1. Indeed, the Lp-quantization error ‖Θk − Θ̂k‖p goes to zero when the number
of points in the grids goes to infinity. However, on the other hand, the Markov
property is not maintained by the algorithm and the quantized process is generally
not Markovian. Although the quantized process can be easily transformed into a
Markov chain, this chain will not be homogeneous. It must be pointed out that the
quantized process (Θ̂k)k∈N depends on the starting point Θ0 of the process.

In practice, we begin with the computation of the quantization grids, which
merely requires to be able to simulate the process. Notice that in our case, what
is actually simulated is the sequence of observation (Yk, Sk)0≤k≤N . We are then
able to compute the filter (Πk)0≤k≤N thanks to the recursive equation provided by
Proposition 3.4. The grids are only computed once and for all and may be stored off-
line. Our schemes are then based on the following simple idea: we replace the process
by its quantized approximation within the different recursions. The computation is
thus carried out in a very simple way since the quantized process has finite state
space.

5.2 Approximation of the value function
Our approximation scheme of the sequence (Vn)0≤n≤N follows the same lines as in
[9], but once more, the results therein cannot be applied directly as the Markov
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chain (Θk)k∈N is not the underlying Markov chain of some PDMP. Our approach
decomposes in two steps. The first one will be to discretize the time-continuous
maximization of the operator L to obtain a maximization over a finite set. The
second step consists in replacing the Markov chain (Θn)n∈N = (Πn, Sn)n∈N by its
quantized approximation (Θ̂n)n∈N = (Π̂n, Ŝn)n∈N within the dynamic programming
equation. Thus, the conditional expectations will become easily tractable finite
sums.

Let us first build a finite time grid to discretize the continuous-time maximization
in the expression of the operator L. The maximum is originally taken over the set
[0,∞[. However, it can be seen from Definition 4.3 that J(v, h)(π, u) = J(v, h)(π, t∗q)
for all u ≥ t∗q. Indeed, the random variable S1 is bounded by the greatest determinis-
tic exit time t∗q that is finite thanks to Assumption 2.3. Therefore, the maximization
set can be reduced to the compact set [0, t∗q]. Instead of directly discretizing the
set [0, t∗q], we will actually discretize the subsets ]t∗m, t∗m+1[. The reason why we
want to exclude the points t∗m from our grid is technical and will be explained with
Lemma 5.12. Now, it seems natural to distinguish wether t∗m = t∗m+1 or t∗m < t∗m+1.

Definition 5.2. Let M ⊂ {0, . . . , q−1} be the set of indices m such that t∗m < t∗m+1.

Notice that M is not empty because it contains at least the index 0 since we
assumed that t∗1 > 0 = t∗0. We can now build our approximation grid.

Definition 5.3. Let ∆ > 0 be such that

∆ <
1
2 min

{
|t∗i − t∗j | with 0 ≤ i, j,≤ q such that t∗i 6= t∗j

}
. (14)

For all m ∈M , let Grm(∆) be the finite grid on ]t∗m; t∗m+1[ defined as follows

Grm(∆) = {t∗m + i∆, 1 ≤ i ≤ im}∪{t∗m+1 −∆},

where im = max{i ∈ N such that t∗m + i∆ ≤ t∗m+1 − ∆}. We also denote Gr(∆) =
∪m∈M Grm(∆).

Remark 5.4. Let m ∈ M . Notice that, thanks to Eq. (14), Grm(∆) is not empty.
Moreover, it satisfies two properties that will be crucial in the sequel:

a. for all t ∈ [t∗m; t∗m+1], there exists u ∈ Grm(∆) such that |u− t| ≤ ∆,

b. for all u ∈ Grm(∆) and 0 < η < ∆, one has [u− η;u+ η] ⊂]t∗m; t∗m+1[.

A discretized maximization operator Ld is then defined as follows.

Definition 5.5. Let Ld: B(M1(E0)) × B(E) → B(M1(E0)) be defined for all
π ∈M1(E0) by

Ld(v, h)(π) = max
m∈M

{
max

u∈Grm(∆)
{J(v, h)(π, u)}

}
∨Kv(π),

with Kv(π) = J(v, h)(π, t∗q) = Gv(π, t∗q) = E[v(Π1)|Π0 = π].
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We now proceed to our second step: replacing the Markov chain (Θn)n∈N =
(Πn, Sn)n∈N by its quantized approximation (Θ̂n)n∈N = (Π̂n, Ŝn)n∈N within the oper-
ators involved in the construction of the value function.

Definition 5.6. We define the quantized operators Ĝn, Ĥn, Ĵn, K̂n and L̂dn for
n ∈ {1, . . . , N}, v ∈ B(Γn), h ∈ B(E), π ∈ ΓΠ

n−1 and u ≥ 0 as follows

Ĝnv(π, u) = E[v(Π̂n)1{Ŝn≤u}|Π̂n−1 = π],

Ĥnh(π, u) =
q∑

i=1
πi1{u<t∗i }h ◦ Φ(xi, u)E[1{Ŝn>u}|Π̂n−1 = π],

Ĵn(v, h)(π, u) = Ĥnh(π, u) + Ĝnv(π, u),
K̂nv(π) = Ĵn(v, h)(π, t∗q) = E[v(Π̂n)|Π̂n−1 = π],

L̂dn(v, h)(π) = max
m∈M

{
max

u∈Grm(∆)
{Ĵn(v, h)(π, u)}

}
∨ K̂nv(π).

The quantized approximation of the value functions naturally follows.

Definition 5.7. For 0 ≤ n ≤ N , define the functions v̂n on ΓΠ
n as follows

{
v̂N(π) = ∑q

i=1 g(xi)πi for all π ∈ ΓΠ
N ,

v̂n−1(π) = L̂dn(v̂n, g)(π) for all π ∈ ΓΠ
n−1 and 1 ≤ n ≤ N .

For 0 ≤ n ≤ N , let V̂n = v̂n(Π̂n).

We may now state our main result for the numerical approximation.

Theorem 5.8. Suppose that for all 0 ≤ n ≤ N − 1,

∆ > (2Cλ)−1/2‖Sn+1 − Ŝn+1‖1/2
p , (15)

then, one has the following bound for the approximation error

‖Vn − V̂n‖p ≤ ‖Vn+1 − V̂n+1‖p + a∆ + b‖Sn+1 − Ŝn+1‖
1
2
p

+cn‖Πn − Π̂n‖p + 2[vn+1]‖Πn+1 − Π̂n+1‖p,

where a = [g]2 + 2CgCλ, b = 2Cg(2Cλ)
1
2 and cn = [vn] + 4Cg + 2[vn+1] with [vn],

[vn+1] defined in Proposition C.10 and [g]2 defined in Assumption 2.7.

Theorem 5.8 establishes the convergence of our approximation scheme and pro-
vides a bound for the rate of convergence. More precisely, it gives a rate for the Lp
convergence of V̂0 towards V0. Indeed, one has ‖VN − V̂N‖p = ‖∑q

i=1 g(xi)
(
Πi
N −

Π̂i
N

)
‖p ≤ Cg‖ΠN − Π̂N‖p, so by virtue of Theorem 5.8

∣∣∣V0 − V̂0
∣∣∣ can be made arbi-

trarily small when the quantization errors (‖Θn − Θ̂n‖p)0≤n≤N go to zero i.e. when
the number of points in the quantization grids goes to infinity.
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In order to prove Theorem 5.8, we proceed similarly to [9] and split the approx-
imation error into four terms ‖Vn − V̂n‖p ≤ Ξ1 + Ξ2 + Ξ3 + Ξ4, with

Ξ1 = ‖vn(Πn)− vn(Π̂n)‖p,
Ξ2 = ‖L(vn+1, g)(Π̂n)− Ld(vn+1, g)(Π̂n)‖p,
Ξ3 = ‖Ld(vn+1, g)(Π̂n)− L̂dn+1(vn+1, g)(Π̂n)‖p,
Ξ4 = ‖L̂dn+1(vn+1, g)(Π̂n)− L̂dn+1(v̂n+1, g)(Π̂n)‖p.

To obtain bounds for each of these terms, one needs to study the regularity of the
operators and the value functions vn. The results are detailed in Appendix C. In
particular, we establish in Proposition C.10 that the value functions vn are Lipschitz
continuous, yielding a bound for the first term.

Lemma 5.9. The first term Ξ1 is bounded as follows

‖vn(Πn)− vn(Π̂n)‖p ≤ [vn]‖Πn − Π̂n‖p.
The other error terms are studied separately in the following sections.

5.2.1 Second term of the error

For the second error term, we investigate the consequences of replacing the contin-
uous maximization in operator L by a discrete one on Gr(∆).

Lemma 5.10. For all m ∈M , v ∈ B(M1(E0)) and π ∈M1(E0) one has
∣∣∣ sup
u∈[t∗m;t∗m+1[

J(v, g)(π, u)− max
u∈Grm(∆)

J(v, g)(π, u)
∣∣∣ ≤ ([g]2 + CgCλ + CvCλ) ∆.

Proof We use Definition C.2 to split operator J into a sum of continuous operators
Jm. Thus, one has

sup
u∈[t∗m;t∗m+1[

J(v, g)(π, u) = sup
u∈[t∗m;t∗m+1]

Jm(v, g)(π, u).

The function u → Jm(v, h)(π, u) being continuous, there exists t ∈ [t∗m; t∗m+1] such
that supu∈[t∗m;t∗m+1] J

m(v, h)(π, u) = Jm(v, h)(π, t). Moreover, from Remark 5.4.a,
one may chose u ∈ Grm(∆) so that |u − t| ≤ ∆. Propositions C.4 and C.7 stating
the Lipschitz continuity of Jm then yield

0 ≤ sup
u∈[t∗m;t∗m+1]

Jm(v, h)(π, u)− max
u∈Grm(∆)

Jm(v, h)(π, u)

≤ Jm(v, h)(π, t)− Jm(v, h)(π, u)
≤ ([g]2 + CgCλ + CvCλ) |t− u| ≤ ([g]2 + CgCλ + CvCλ) ∆,

showing the result. �

Lemma 5.11. The second term Ξ2 is bounded as follows

‖L(vn+1, g)(Π̂n)− Ld(vn+1, g)(Π̂n)‖p ≤ ([g]2 + 2CgCλ) ∆.
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Proof This is a straightforward consequence of the previous lemma once it has
been noticed that for all a, b, c, d ∈ R, one has |a ∨ b − c ∨ d| ≤ |a − c| ∨ |b − d|.
Notice also that Proposition C.10 provides Cvn+1 ≤ Cg. �

5.2.2 Third term of the error

To investigate the third error term, we use the properties of quantization to bound
the error made by replacing an operator by its quantized approximation. As in [9],
we must first deal with non-continuous indicator functions. The fact that the t∗m and
a small neighborhood around them do not belong to the discretization grid Gr(∆)
is crucial to obtain the following lemma.
Lemma 5.12. For all 0 ≤ n ≤ N − 1, m ∈M and 0 < η < ∆, one has

∥∥∥ max
u∈Grm(∆)

E[|1{Sn+1≤u} − 1{Ŝn+1≤u}|Π̂n]
∥∥∥
p
≤ η−1‖Sn+1 − Ŝn+1‖p + 2ηCλ.

Proof Let 0 < η < ∆. The difference of the indicator functions equals 1 if and
only if Sn+1 and Ŝn+1 are on different sides of u. Therefore, if the difference of
the indicator functions equals 1, either |Sn+1 − u| ≤ η, or |Sn+1 − u| > η and in
the latter case |Sn+1 − Ŝn+1| > η too since |Sn+1 − Ŝn+1| > |Sn+1 − u|. One has
|1{Sn+1≤u} − 1{Ŝn+1≤u}| ≤ 1{|Sn+1−Ŝn+1|>η} + 1{|Sn+1−u|≤η}, leading to
∥∥∥ max
u∈Grm(∆)

E
[
|1{Sn+1≤u} − 1{Ŝn+1≤u}|

∣∣∣Π̂n

]∥∥∥
p

≤ ‖1{|Sn+1−Ŝn+1|>η}‖p +
∥∥∥ max
u∈Grm(∆)

E[1{|Sn+1−u|≤η}|Π̂n]
∥∥∥
p
.

On the one hand, Markov inequality yields

‖1{|Sn+1−Ŝn+1|>η}‖p = P(|Sn+1 − Ŝn+1| > η)
1
p ≤ ‖Sn+1 − Ŝn+1‖pη−1.

On the other hand, since u ∈ Grm(∆), one has [u−η;u+η] ⊂]t∗m; t∗m+1[ from Remark
5.4.b, thus Sn+1 has an absolutely continuous distribution on the interval [u−η;u+η]
since it does not contain any of the t∗i . Besides, recall that Θ̂n = projΓn(Θn),
hence, the following inclusions of σ-fields σ(Π̂n) ⊂ σ(Θ̂n) ⊂ σ(Θn). We also have
σ(Θn) ⊂ FYTn ⊂ FTn , the law of iterated conditional expectations provides

E[1{|Sn+1−u|≤η}|Π̂n] = E
[
E
[
E[1{|Sn+1−u|≤η}|FTn ]

∣∣∣FYTn
]∣∣∣Π̂n

]

≤ E
[
E[
∫ u+η

u−η
λ
(
Φ(Zn, s)

)
ds
∣∣∣∣F
Y
Tn ]
∣∣∣∣Π̂n

]

= E
[ q∑

i=1
Πi
n

∫ u+η

u−η
λ
(
Φ(xi, s)

)
ds
∣∣∣Π̂n

]
.

Finally, one obtains E[1{|Sn+1−u|≤η}|Π̂n] ≤ 2ηCλ, showing the result. �

Lemma 5.13. For all 0 ≤ n ≤ N − 1, one has

|Kvn+1(Π̂n)− K̂n+1vn+1(Π̂n)|
≤ [vn+1]E

[
|Πn+1 − Π̂n+1|

∣∣∣Π̂n

]
+ (2Cg + 2[vn+1])E

[
|Πn − Π̂n|

∣∣∣Π̂n

]
.
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Proof By the definitions of operators K and K̂n+1, one has

|Kvn+1(Π̂n)− K̂n+1vn+1(Π̂n)|
= |E[vn+1(Πn+1)|Πn = Π̂n]− E[vn+1(Π̂n+1)|Π̂n]|
≤ |E[vn+1(Πn+1)|Πn = Π̂n]− E[vn+1(Πn+1)|Π̂n]|

+|E[vn+1(Πn+1)− vn+1(Π̂n+1)|Π̂n]|. (16)

The second term in the right-hand side of Eq. (16) is readily bounded by using
Proposition C.10 stating that vn+1 is Lipschitz continuous

|E[vn+1(Πn+1)− vn+1(Π̂n+1)|Π̂n]| ≤ [vn+1]E
[
|Πn+1 − Π̂n+1|

∣∣∣Π̂n

]
.

To deal with the first term in the right-hand side of Eq. (16), we need to use the
special properties of quantization. Indeed, one has (Π̂n, Ŝn) = projΓn(Πn, Sn) so that
we have the inclusion of σ-fields σ(Π̂n) ⊂ σ(Πn, Sn). The law of iterated conditional
expectations gives

E[vn+1(Πn+1)
∣∣∣Π̂n] = E

[
E[vn+1(Πn+1)|(Πn, Sn)]

∣∣∣Π̂n

]
.

Moreover, Proposition 4.1 yields E[vn+1(Πn+1)|(Πn, Sn)] = E[vn+1(Πn+1)|Πn], as the
conditional distribution of Πn+1 w.r.t. (Πn, Sn) merely depends on Πn. In addition,
|E[vn+1(Πn+1)|Πn = Π̂n] is σ(Π̂n)-measurable. One has then

|E[vn+1(Πn+1)|Πn = Π̂n]− E[vn+1(Πn+1)|Π̂n]|
=

∣∣∣E
[
E[vn+1(Πn+1)|Πn = Π̂n]− E[vn+1(Πn+1)|Πn]

∣∣∣Π̂n

]∣∣∣

= |E[Kvn+1(Π̂n)−Kvn+1(Πn)|Π̂n]|,

by definition of K. Finally, one has

|E[vn+1(Πn+1)|Πn = Π̂n]− E[vn+1(Πn+1)|Π̂n]|
≤ 2(Cg + [vn+1])E

[
|Πn − Π̂n|

∣∣∣Π̂n

]
,

thanks to Propositions C.8 and C.10 stating the Lipschitz continuity of operator K
and function vn+1. �

Lemma 5.14. If ∆ satisfies Condition (15), a upper bound for the third term Ξ3 is

‖Ld(vn+1, g)(Π̂n)− L̂dn+1(vn+1, g)(Π̂n)‖p
≤ [vn+1]‖Πn+1 − Π̂n+1‖p + (4Cg + 2[vn+1])‖Πn − Π̂n‖p

+2Cg(2Cλ)1/2‖Sn+1 − Ŝn+1‖p
1/2
.

Proof One has

|Ld(vn+1, g)(Π̂n)− L̂dn+1(vn+1, g)(Π̂n)|
≤ max

m∈M

{
max

u∈Grm(∆)
|J(vn+1, g)(Π̂n, u)− Ĵn+1(vn+1, g)(Π̂n, u)|

}

∨|Kvn+1(Π̂n)− K̂n+1vn+1(Π̂n)|.
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The term involving operator K was studied in the previous lemma. Let us now study
the term involving operator J . Set m in M , u in Grm(∆) and define α(π, π′, s′) =
∑q
i=1 π

ig
(
Φ(xi, u)

)
1{s′>u} + vn+1(π′)1{s′≤u}. One has then

|J(vn+1, g)(Π̂n, u)− Ĵn+1(vn+1, g)(Π̂n, u)|
= |Jm(vn+1, g)(Π̂n, u)− Ĵn+1(vn+1, g)(Π̂n, u)|
=

∣∣∣E[α(Πn,Πn+1, Sn+1)|Πn = Π̂n]− E[α(Π̂n, Π̂n+1, Ŝn+1)|Π̂n]
∣∣∣ ≤ A+B,

where

A =
∣∣∣E[α(Πn,Πn+1, Sn+1)|Πn = Π̂n]− E[α(Πn,Πn+1, Sn+1)|Π̂n]

∣∣∣ ,

B =|E[α(Πn,Πn+1, Sn+1)− α(Π̂n, Π̂n+1, Ŝn+1)
∣∣∣Π̂n]|.

Using the boundedness of g and vn+1 as well as the Lipschitz continuity of vn+1 given
in Proposition C.10, we get a upper bound for the second term

B ≤ CgE
[
|Πn − Π̂n|

∣∣∣Π̂n

]
+ [vn+1]E

[
|Πn+1 − Π̂n+1|

∣∣∣Π̂n

]

+2CgE
[
|1{Sn+1≤u} − 1{Ŝn+1≤u}|

∣∣∣Π̂n

]
. (17)

For the first term, we use the properties of quantization as in the previous proof to
obtain

A =
∣∣∣E
[
E[α(Πn,Πn+1, Sn+1)|Πn = Π̂n]− E[α(Πn,Πn+1, Sn+1)|Πn]

∣∣∣Π̂n

]∣∣∣ .

We now recognize operator Jm, and from Propositions C.4 and C.7, one has

A = E[Jm(vn+1, g)(Π̂n, u)− Jm(vn+1, g)(Πn, u)|Π̂n]
≤ (3Cg + 2[vn+1])E

[
|Π̂n − Πn

∣∣∣Π̂n

]
. (18)

We gather the bounds provided by Eq. (17) and (18) to obtain

|J(vn+1, g)(Π̂n, u)− Ĵn+1(vn+1, g)(Π̂n, u)|
≤ (4Cg + 2[vn+1])E

[
|Πn − Π̂n|

∣∣∣Π̂n

]
+ [vn+1]E

[
|Πn+1 − Π̂n+1|

∣∣∣Π̂n

]

+2CgE
[
|1{Sn+1≤u} − 1{Ŝn+1≤u}|

∣∣∣Π̂n

]
. (19)

Finally, combining the result for operators J and Lemma 5.13, we obtain

|Ld(vn+1, g)(Π̂n)− L̂dn+1(vn+1, g)(Π̂n)|
≤ [vn+1]E

[
|Πn+1 − Π̂n+1|

∣∣∣Π̂n

]
+ (4Cg + 2[vn+1])E

[
|Πn − Π̂n|

∣∣∣Π̂n

]

+2Cg max
u∈Gr(∆)

E
[
|1{Sn+1≤u} − 1{Ŝn+1≤u}|

∣∣∣Π̂n

]
.

We conclude by taking the Lp norm in the equation above and using Lemma 5.12
to bound the last term

‖Ld(vn+1, g)(Π̂n)− L̂dn+1(vn+1, g)(Π̂n)‖p
≤ [vn+1]‖Πn+1 − Π̂n+1‖p + (4Cg + 2[vn+1])‖Πn − Π̂n‖p

+2Cg(η−1‖Sn+1 − Ŝn+1‖p + 2ηCλ),
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for some 0 < η < ∆. The best choice for η minimizing the error is when η satisfies

η−1‖Sn+1 − Ŝn+1‖p = 2ηCλ,

which yields η = (2Cλ)−1/2(‖Sn+1 − Ŝn+1‖p
1/2. If ∆ satisfies Condition (15), one has

η < ∆ as required for this optimal choice. �

5.2.3 Fourth term of the error

Finally, the fourth error term is bounded using Lipschitz properties.

Lemma 5.15. The fourth term Ξ4 is bounded as follows

‖L̂dn+1(vn+1, g)(Π̂n)− L̂dn+1(v̂n+1, g)(Π̂n)‖p
≤ [vn+1]‖Πn+1 − Π̂n+1‖p + ‖Vn+1 − V̂n+1‖p.

Proof One has

‖L̂dn+1(vn+1, g)(Π̂n)− L̂dn+1(v̂n+1, g)(Π̂n)‖p
=

∥∥∥max
m∈M

max
u∈Grm(∆)

{
Ĥn+1g(Π̂n, u) + Ĝn+1vn+1(Π̂n, u)

}
∨ K̂n+1vn+1(Π̂n)

−max
m∈M

max
u∈Grm(∆)

{
Ĥn+1g(Π̂n, u) + Ĝn+1v̂n+1(Π̂n, u)

}
∨ K̂n+1v̂n+1(Π̂n)

∥∥∥
p
,

≤
∥∥∥max
m∈M

max
u∈Grm(∆)

E
[(
vn+1(Π̂n+1)− v̂n+1(Π̂n+1)

)
1{Ŝn+1≤u}

∣∣∣Π̂n

]

∨E[vn+1(Π̂n+1)− v̂n+1(Π̂n+1)|Π̂n]
∥∥∥
p

≤ ‖vn+1(Π̂n+1)− v̂n+1(Π̂n+1)‖p. (20)

We now introduce vn+1(Πn+1) to split this term into two differences. The Lipschitz
continuity of vn+1 stated by Proposition C.10 allows us to bound the first term while
we recognize Vn+1 and V̂n+1 in the second one.

‖L̂dn+1(vn+1, g)(Π̂n)− L̂dn+1(v̂n+1, g)(Π̂n)‖p
≤ ‖vn+1(Π̂n+1)− vn+1(Πn+1)‖p + ‖vn+1(Πn+1)− v̂n+1(Π̂n+1)‖p
≤ [vn+1]

∥∥∥Πn+1 − Π̂n+1
∥∥∥
p

+ ‖Vn+1 − V̂n+1‖p.

Hence, the result. �

5.3 Numerical construction of an ε-optimal stopping time
As in the previous section, we follow the idea of [9] and we use both the Markov
chain (Θn)0≤n≤N and its quantized approximation (Θ̂n)0≤n≤N to approximate the
expression of the ε-optimal stopping time introduced in Definition 4.7. We check that
we thus obtain actual stopping times for the observed filtration (FYt )t≥0 and that the
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expected reward when stopping then is a good approximation of the value function
V0. For all (π, s) ∈M1(E0)×R+ and 0 ≤ n ≤ N , we denote (π̂n, ŝn) = projΓn(π, s).
Let

ŝ∗N−n(π, s) = min{t ∈ Gr(∆) : Ĵn(v̂n, g)(π̂n−1, t) = max
u∈Gr(∆)

Ĵn(v̂n, g)(π̂n−1, u)}.

For 1 ≤ n ≤ N and π ∈M1(E0), we define

r̂N−n(π, s) =
{
t∗q if K̂nv̂n(π̂n−1) > maxu∈Gr(∆) Ĵn(v̂n, g)(π̂n−1, u),
ŝ∗N−n(π, s) otherwise.

Let now for n ≥ 1,



R̂n,0 = r̂n−1(Π0, S0),
R̂n,k = r̂n−1−k(Πk, Sk)1{R̂n,k−1≥Sk} for 1 ≤ k ≤ n− 2,

and set Ûn = ∑n
k=1 R̂n,k−1∧Sk. The following result is a direct consequence of Propo-

sition A.11. It is a very strong result as it states that the numerically computable
random variables Ûn are actual (FYt )t≥0-stopping times.

Theorem 5.16. For 0 ≤ n ≤ N , Ûn is an (FYt )t≥0-stopping time.

We now intend to prove that stopping at time ÛN provides a good approximation
of the value function V0. For all π ∈M1(E0) and 0 ≤ n ≤ N we therefore introduce
the performance when abiding by the stopping rule (Ûn)0≤n≤N and the corresponding
random variables

vn(π) = E[g(X
ÛN−n

)|Π0 = π], V n = vn(Πn).

Theorem 5.17. Suppose that for all 0 ≤ n ≤ N − 1,

∆ > (2Cλ)−1/2‖Sn+1 − Ŝn+1‖p
1/2
,

one has then the following bound for the error between the expected reward when
stopping at time Ûn and the value function

‖Vn − V n‖p ≤
∥∥∥Vn+1 − V n+1

∥∥∥
p

+
∥∥∥Vn − V̂n

∥∥∥
p

+
∥∥∥Vn+1 − V̂n+1

∥∥∥
p

+dn‖Πn − Π̂n‖p + 2[vn+1]‖Πn+1 − Π̂n+1‖p
+b‖Sn+1 − Ŝn+1‖1/2

p ,

where b = 2Cg
(
2Cλ

)1/2
, dn = 7Cg + 4[vn+1], [vn+1] defined in Proposition C.10.

It is important to notice that vN(π) = ∑q
i=1 g(xi)πi = vN(π) and thus V N =

VN . Therefore, the previous theorem proves that |V0 − V 0| goes to zero when the
quantization errors (‖Θn − Θ̂n‖p)0≤n≤N go to zero. In other words, the expected
reward V 0 when stopping at the random time ÛN can be made arbitrarily close to
the value function V0 of the partially observed optimal stopping problem (3) and
hence ÛN is an ε-optimal stopping time.
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Proof The first step consists in finding a recursion satisfied by the sequence
(V n)0≤n≤N in order to compare it with the dynamic programming equation giving
(V̂n)0≤n≤N . Let 0 ≤ n ≤ N − 1. First of all, Proposition 4.2 gives

E[g(X
ÛN−n

)|Π0]

=
N−n−1∑

k=0

q∑

i=1
E[1{Tk≤ÛN−n}1{R̂N−n,k<t∗i }g ◦ Φ(xi, R̂N−n,k)e−Λ(xi,R̂N−n,k)Πi

k|Π0]

+
q∑

i=1
E[1{TN−n≤ÛN−n}g(xi)Πi

n|Π0].

The term corresponding to k = 0 in the above sum equals Hg(Π0, R̂N−n,0). Taking
the conditional expectation w.r.t. FYT1 in the other terms and noticing that one has
{T1 ≤ ÛN−n} = {S1 ≤ R̂N−n,0} yield

E[g(X
ÛN−n

)|Π0] = Hg(Π0, R̂N−n,0) + E[Ξ′′1{S1≤R̂N−n,0}|Π0],

with

Ξ′′ = E
[N−n−1∑

k=1

q∑

i=1
1{Tk≤ÛN−n}1{R̂N−n,k<t∗i }

g ◦ Φ(xi, R̂N−n,k)e−Λ(xi,R̂N−n,k)Πi
k

+
q∑

i=1
1{TN−n≤ÛN−n}g(xi)Πi

n

∣∣∣FYT1

]
.

We now make use of the Markov property of the sequence (Πn)n∈N in the term Ξ′′.
Similarly to Lemma 4.8, for n ≥ 1, on the set {T1 ≤ ÛN−n}, one has R̂N−n−1,k−1◦θ =
R̂N−n,k for all 1 ≤ k ≤ n − 1. Thus, on the set {T1 ≤ ÛN−n}, one has ÛN−n =
T1 + ÛN−n−1 ◦ θ. Recall that 1{Tk≤ÛN−n} = 1{Tk−1≤ÛN−n−1} ◦ θ. We may therefore
apply the Markov property. Using Proposition 4.2, we now obtain Ξ′′ = vn+1(Π1).
Finally, we have

vn(Π0) = Hg(Π0, R̂N−n,0) +Gvn+1(Π0, R̂N−n,0) = J(vn+1, g)(Π0, R̂N−n,0).

Recall that R̂N−n,0 = r̂N−n−1(Π0, S0) and apply the translation operator θn to obtain
the following recursion

V n = J(vn+1, g)(Πn, r̂N−n−1(Πn, Sn)).

We are now able to study the error between V n and V̂n. Let us recall that, from
its definition, r̂N−n−1(Πn, Sn) equals either ŝ∗N−n−1(Πn, Sn) or t∗q. In the latter case,
notice that J(vn+1, g)(Πn, t

∗
q) = Kvn+1(Πn). Eventually, one has

|V n − V̂n| ≤ 1{r̂N−n−1(Πn,Sn)=t∗q}A+ 1{r̂N−n−1(Πn,Sn)=ŝ∗N−n−1(Πn,Sn)}B (21)

with
{
A = |Kvn+1(Πn)− K̂n+1v̂n+1(Π̂n)|,
B = |J(vn+1, g)(Πn, ŝ

∗
N−n−1(Πn))−maxu∈Gr(∆) Ĵn+1(v̂n+1, g)(Π̂n, u)|.
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To bound the first term A, we introduce the function vn+1. One has

A ≤ |Kvn+1(Πn)−Kvn+1(Πn)|+ |Kvn+1(Πn)−Kvn+1(Π̂n)|
+|Kvn+1(Π̂n)− K̂n+1vn+1(Π̂n)|+ |K̂n+1vn+1(Π̂n)− K̂n+1v̂n+1(Π̂n)|

≤ (a) + (b) + (c) + (d).

Let us study these four terms one by one. By definition of K, the first term (a)
is bounded by E

[
|V n+1 − Vn+1|

∣∣∣Πn

]
. For the second term (b), we use Proposition

C.8 stating the Lipschitz continuity of the operator K. The term third term (c) is
bounded by Lemma 5.13 and a upper bound of the fourth term (d) is given by Eq.
(20). Thus, one obtains

A ≤
∥∥∥Vn+1 − V n+1

∥∥∥
p

+
∥∥∥Vn+1 − V̂n+1

∥∥∥
p

+ 4(Cg + [vn+1])‖Πn − Π̂n‖p
+2[vn+1]‖Πn+1 − Π̂n+1‖p.

We now turn to the second term B. In the following computations, denote ŝ∗ =
ŝ∗N−n−1(Πn, Sn). Its definition yields B = |J(vn+1, g)(Πn, ŝ

∗)−Ĵn+1(v̂n+1, g)(Π̂n, ŝ
∗)|.

We split this expression into four differences again. On the set {r̂N−n−1(Πn, Sn) =
ŝ∗}, one has the equality J(vn+1, g)(Πn, ŝ

∗) = Vn+1. Hence, one this set, one obtains
from Eq. (21)

|J(vn+1, g)(Πn, ŝ
∗)− J(vn+1, g)(Πn, ŝ

∗)| ≤ |V n+1 − Vn+1|.

For the other terms, we use Propositions C.4 and C.7 for the Lipschitz continuity of
J and Eq. (19) and (20) to obtain

B ≤
∥∥∥Vn+1 − V n+1

∥∥∥
p

+
∥∥∥Vn+1 − V̂n+1

∥∥∥
p

+(7Cg + 4[vn+1])‖Πn − Π̂n‖p + 2[vn+1]‖Πn+1 − Π̂n+1‖p
+2Cg(2Cλ)1/2‖Sn+1 − Ŝn+1‖1/2

p ,

after optimizing η. The result is obtained by taking the maximum between A and
B. �

6 Numerical example
We apply our procedure to a simple PDMP similar to the one studied in [9]. Let
E = [0; 1[. For x ∈ E and t ≥ 0, the flow is defined by Φ(x, t) = x + vt so that
t∗(x) = (1 − x)/v. We set the jump rate to λ(x) = ax for some a > 0 and the
transition kernel Q(x, ·) to the uniform distribution on a finite set E0 ⊂ E. Thus,
the process evolves toward 1 and the closer it gets to 1, the more likely it will jump
back to some point of E0. A trajectory is represented in Figure 1. The observation
process is Yn = ϕ(Zn) + Wn where ϕ(x) = x and Wn ∼ N (0, σ2) for some σ2 > 0.
Finally, we choose the reward function g(x) = x. Our assumptions thus clearly
hold. Simulations are run with a = 3, v = 1, E0 = {0, 1/4, 1/2}, σ2 = 0.25 and
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Figure 1: A trajectory of the process drawn until the 9th jump time with a = 3,
v = 1 and E0 = {0; 1

4 ; 1
2}. The dotted lines represent the possible post-jump values.

N = 9. The numerical approximation is implemented as follows. First, we make an
exact simulator for the sequence (Zn, Sn). From the values of (Zn), one builds the
observation sequence (Yn) that allows for a recursive computation of the filter process
thanks to Proposition 3.4. Thus, we can simulate trajectories of the Markov chain
(Πn, Sn) that we feed into the CLVQ algorithm to obtain quantization grids. By
Monte Carlo simulations, we can also estimate the quantization errors. To run our
numerical procedure, one then needs to choose the parameter ∆ satisfying conditions
(14) and (15). In this special case, they boil down to

6−1/2 max
0≤n≤N−1

‖Sn+1 − Ŝn+1‖1/2
p < ∆ <

1
8 .

We have chosen ∆ just above the Monte Carlo approximation of the lower bound.
The values are given in the second column of Table 1 for different grids sizes.

Then, we recursively compute the approximated value functions v̂n on the quan-
tization grids. The conditional expectations are now merely weighted sums. The
approximation we obtain for the value function of the partially observed optimal
stopping problem are given in the fourth column of Table 1.

Finally, we implemented the construction of our ε-optimal stopping time and
ran 106 Monte Carlo simulations to compute its mean performance. The results are
given in the third column of Table 1.

The exact value of V0 is unknown but one has as in [9],

V 0 = E[g(X
ÛN

)] ≤ V0 = sup
σ∈ΣYN

E[g(Xσ)] ≤ E
[

sup
0≤t≤TN

g(Xt)
]
. (22)

Both the first and the last term may be estimated by Monte Carlo simulations.
One has thus, with 106 trajectories, E[sup0≤t≤TN g(Xt)] = 0.9944. The theoretical
bound Bth of the error |V0 − V̂0| provided by Theorem 5.8 is computed using the
approximated quantization errors. This bound decreases as the number of points in
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Quantization grids ∆ V 0 V̂0 Bem Bth

50 points 0.1179 0.7900 0.8135 0.181 683
100 points 0.0970 0.8031 0.8250 0.169 467
300 points 0.0731 0.8182 0.8407 0.154 271
500 points 0.0634 0.8250 0.8477 0.147 211
1000 points 0.0535 0.8313 0.8545 0.140 152
2000 points 0.0453 0.8361 0.8599 0.135 110
4000 points 0.0381 0.8408 0.8643 0.130 80
6000 points 0.0345 0.8430 0.8666 0.128 67
8000 points 0.0321 0.8479 0.8725 0.122 58
10000 points 0.0303 0.8497 0.8742 0.120 53
12000 points 0.0290 0.8521 0.8771 0.117 49

Table 1: Simulation results. The terms Bem and Bth respectively denote an empirical
bound and the theoretical bound provided by Theorem 5.8 for the error |V0 − V̂0|.

the quantization grids increases, as expected. Moreover, we computed the empirical
bound given by Eq. (22) Bem = max

{
|V 0 − V̂0|, |E[sup0≤t≤TN g(Xt)]− V̂0|

}
.

A Properties of the (FYt )t≥0-stopping times
In this section, we study the special structure of (FYt )t≥0-stopping times.
Lemma A.1. For all n ∈ N, Tn is an (FYt )t≥0-stopping time.

Proof Notice that for all n ∈ N, P(Yn = Yn+1) = 0. This stems from the absolute
continuity of the distribution of the random variables (Wn)n∈N since

{Yn = Yn+1} ⊂ ∪
1≤i,j≤q

{Wn −Wn+1 = ϕ(xi)− ϕ(xj)} .

Hence, for all n ∈ N and t ∈ R+, one has P a.s. {Tn ≤ t} = {Nt ≥ n} where we de-
note Nt = ∑

0≤s≤t 1{Ys 6=Ys−}. The process (Nt)t≥0 is FY -adapted thus {Nt ≥ n} ∈ FYt
and since the filtration FY contains the P-null sets, one has {Tn ≤ t} ∈ FYt . For all
n ∈ N, Tn is therefore an (FYt )t≥0-stopping time. �

We now recall Theorem A2 T33 from [6] concerning the structure of the stopping
times for point processes and apply it in our case.
Definition A.2. Define the filtration (Fpt )t≥0 as follows

Fpt = σ
(
1{Yn∈A}1{Tn≤s};n ≥ 1, 0 ≤ s ≤ t, A ∈ B(Rd)

)
.

Theorem A.3. Let σ be an (Fpt )t≥0-stopping time. For all n ∈ N, there exists a
FpTn-measurable non negative random variable Rn, such that one has

σ ∧ Tn+1 =
(
Tn +Rn

)
∧ Tn+1 on {σ ≥ Tn}.

32



Our observation process (Yt)t≥0 being a point process that fits the framework
developed in [6], we apply this Theorem to (FYt )t≥0-stopping times.

Proposition A.4. For all t ≥ 0, one has FYt = Fpt .

Proof First prove that FYt ⊂ Fpt . Let A ∈ B(Rd) and 0 ≤ s ≤ t, one has

{Ys ∈ A} = ∪
n∈N

(
{Tn ≤ s < Tn+1}∩ {Yn ∈ A}

)
∈ Fps ⊂ Fpt .

Indeed, in the above equation, we used that T0 and Y0 are assumed to be deter-
ministic. For the reverse inclusion, let A ∈ B(Rd), n ≥ 1 and 0 ≤ s ≤ t. Recall
that Yn = YTn . One has {YTn ∈ A} ∈ FYTn since (Yt)t≥0 is FY -adapted and Tn is an
(FYt )t≥0-stopping time from Lemma A.1. Therefore, one has {Yn ∈ A}∩ {Tn ≤ s} ∈
FYs ⊂ FYt , showing the result. �

We may therefore apply Theorem A.3 to (FYt )t≥0-stopping times.

Theorem A.5. Let σ be an (FYt )t≥0-stopping time. For all n ∈ N, there exists a
non negative random variable Rn, FYTn-measurable such that one has

σ ∧ Tn+1 =
(
Tn +Rn

)
∧ Tn+1 on {σ ≥ Tn}.

We outline the following result, which is a direct consequence of the above the-
orem, because it will be used several times in our derivation.

Lemma A.6. Let σ be an (FYt )t≥0-stopping time and (Rn)n∈N be the sequence of
random variables associated to σ as introduced in Theorem A.5. For all n ∈ N,
{Tn ≤ σ < Tn+1} = {Tn ≤ σ}∩{Sn+1 > Rn}.

Proof Theorem A.5 states that on the event {Tn ≤ σ}, on has σ ∧ Tn+1 = Tn +
(Rn∧Sn+1) so that, still on the event {Tn ≤ σ}, one has (σ < Tn+1)⇔ (Rn < Sn+1).
We deduce the result from this observation. �

We now investigate the effect of the translation operator of the Markov chain
(Πn, Yn, Sn)n∈N on the (FYt )t≥0-stopping times. Proposition 4.1 states that (Πn, Yn, Sn)n∈N
is a (FYTn)n∈N-Markov chain. Let us consider its canonical space Ω = (M1(E0) ×
Rd × R+)N. Thus, for ω = (ω0, ω1, . . .) ∈ Ω, one has (Πn, Yn, Sn)(ω) = ωn. Besides,
we define the translation operator

θ :
{

Ω → Ω
(ω0, ω1, . . .) → (ω1, ω2, . . .)

We then define θ0 = IdΩ and recursively for l ≥ 2, θl = θ ◦ θl−1. Thus, for all
n, l ∈ N, one has (Πn, Yn, Sn) ◦ θl = (Πn+l, Yn+l, Sn+l). As T0 = 0, one has

Tn ◦ θl =
n∑

k=1
Sk ◦ θl =

n∑

k=1
Sk+l = Tn+l − Tl.
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The next results of this section are given without proof because their proofs follow
the very same lines as in [9] from which they are adapted. However, notice that
the results from [9] cannot be applied directly to our case because the sequence
(Πn, Yn, Sn)n∈N, although it is a Markov chain, is not the underlying Markov chain
of some PDMP. Set now σ ∈ ΣY . From Theorem A.5, for all n ∈ N, there exists a
non negative FYTn-measurable random variable Rn, such that, on the event {σ ≥ Tn},
one has σ ∧ Tn+1 =

(
Tn +Rn

)
∧ Tn+1.

Lemma A.7. Let σ be an (FYt )t≥0-stopping time and (Rn)n∈N be the sequence of
random variables associated to σ as introduced in Theorem A.5. Let R0 = R0 and
for k ≥ 1, Rk = Rk1{Sk≤Rk−1}. One has then

σ =
∞∑

n=1
Rn−1 ∧ Sn.

Remark A.8. This lemma proves that in Theorem A.5, the sequence (Rn)n∈N can
be replaced by (Rn)n∈N. Therefore, we can assume, without loss of generality that
the sequence (Rn)n∈N satisfies the following condition: for all n ∈ N, Rn+1 = 0 on
the event {Sn+1 > Rn}.

Since FYTk = σ(Yj, Sj, j ≤ k) and Rk is FYTk-measurable, there exists a sequence
of real-valued measurable functions (rk)k∈N defined on (Rd×R+)k+1 such that Rk =
rk(Gk), where Gk = (Y0, S0, . . . , , Yk, Sk).
Definition A.9. Let σ be an (FYt )t≥0-stopping time and (rn)n∈N be the sequence of
functions associated to σ as introduced in Remark A.8. Let l ≥ 1 and (R̃l

k)k∈N be a
sequence of functions defined on (Rd×R+)l+1×Ω by R̃l

0(γ, ω) = rl(γ) and for k ≥ 1,
R̃l
k(γ, ω) = rl+k(γ,Gk−1(ω))1{Sk≤R̃lk−1}

(γ, ω).

Proposition A.10. Let σ be an (FYt )t≥0-stopping time and (Rk)k∈N (respectively,
(R̃l

k)k∈N) be the sequence of functions associated to σ as introduced in Lemma A.7
(respectively, in Definition A.9). Assume that Tl ≤ σ ≤ TN . For all k ∈ N, one has
then R̃l

k(Gl, θl) = Rl+k and σ = Tl + σ̃(Gl, θl), with σ̃ :
(
Rd × R+

)l+1 × Ω → R+

defined as σ̃(γ, ω) = ∑N−l
n=1 R̃

l
n−1(γ, ω) ∧ Sn(ω).

Proposition A.11. Let (Un)n∈N be a sequence of non negative random variables
such that for all n, Un is FYTn-measurable and Un+1 = 0 on {Sn+1 > Un}. We define
U = ∑∞

n=1 Un−1 ∧ Sn. Then U is an (FYt )t≥0-stopping time.
Corollary A.12. Let σ be an (FYt )t≥0-stopping time and σ̃ be the mapping associated
to σ introduced in Proposition A.10. For all γ ∈ (Rd ×R+)p+1, σ̃(γ, ·) is a (FYt )t≥0-
stopping time.

B Computation of a conditional expectation
The objective of this section is to prove the technical Lemma B.1 used in the proof
of Proposition 4.2.
Lemma B.1. For all k ∈ N, one has E[1{Sk+1>Rk}|FTk ] = 1{Rk<t∗(Zk)}e−Λ(Zk,Rk).
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Proof First recall some results concerning the random variables (Sk)k∈N, details
may be found in [8]. After a jump of the process to the point z ∈ E, the survival
function of the time until the next jump is

φ(t, z) =





1 if t ≤ 0,
e−Λ(z,t) if 0 ≤ t < t∗(z),
0 if t ≥ t∗(z).

Define its generalized inverse ψ(u, z) = inf{t ≥ 0 such that φ(t, z) ≤ u}. Then, for
all k ∈ N, one has Sk+1 = ψ(Υk, Zk), where Υk are i.i.d. random variables with uni-
form distribution on [0; 1] independent from FTk . Thus, one has E[1{Sk+1>Rk}|FTk ] =
E[f(Υk, Zk, Rk)|FTk ] where f(u, z, r) = 1{ψ(u,z)>r}. As (Zk, Rk) is FTk-measurable,
Υk is independent from FTk and E[1{ψ(Υk,z)>r}] = 1{r<t∗(z)}e−Λ(z,r), [15, Proposition
11.2] yields the result. �

C Lipschitz properties
In this section, we derive the Lipschitz properties of our operators in order to obtain
them for the value functions (vn)0≤n≤N . Similarly to the proof of Proposition 4.1,
we first derive the integral form of operators G and H.

Lemma C.1. For all h ∈ B(E), v ∈ B(M1(E0)) and (π, u) ∈ M1(E0) × R+, one
has

Gv(π, u) = Iv(π, u) +
q∑

i=1
πi1{t∗i≤u}e

−Λ(xi,t∗i )

×
∫

Rd
v
(
Ψ(π, y′, t∗i )

) q∑

j=1
Q
(
Φ(xi, t∗i ), xj

)
fW (y′ − ϕ(xj))dy′,

Hh(π, u) =
q∑

i=1
πi1{u<t∗i }e

−Λ(xi,u)h ◦ Φ(xi, u),

where

Iv(π, u) =
q∑

i=1
πi
∫ u∧t∗i

0

(
λ ◦ Φ(xi, s′)e−Λ(xi,s′)

×
∫

Rd
v
(
Ψ(π, y′, s′)

) q∑

j=1
Q
(
Φ(xi, s′), xj

)
fW
(
y′ − ϕ(xj)

)
dy′
)
ds′.

Now, notice that the functions Hh(π, ·) and Gv(π, ·) are not continuous. How-
ever, they are càdlàg with a finite number of jumps. Therefore, they can be rewritten
as sums of continuous functions as follows.

Definition C.2. For all m ∈ {0, . . . , q−1}, we define the operators Gm: B(M1(E0))→
B(M1(E0)× R+) and Hm: B(E)→ B(M1(E0)× R+) as follows

• if u < t∗m, Gmv(π, u) = Gv(π, t∗m) and Hmh(π, u) = Hh(π, t∗m),

35



• if u ≥ t∗m,

Gmv(π, u) = Iv(π, u ∧ t∗m+1) +
m∑

i=1
πie−Λ(xi,t∗i )

×
∫

Rd
v
(
Ψ(π, y′, t∗i )

) q∑

j=1
Q
(
Φ(xi, t∗i ), xj

)
fW
(
y′ − ϕ(xj)

)
dy′,

Hmh(π, u) =
q∑

i=m+1
πie−Λ(xi,u∧t∗m+1)h ◦ Φ(xi, u ∧ t∗m+1).

We also define Jm(v, h)(π, u) = Hmh(π, u) +Gmv(π, u).

Remark C.3. For all m ∈ {0, . . . , q − 1} and for all h ∈ B(E), v ∈ B(M1(E0))
and (π, u) ∈ M1(E0) × R+, the functions u → Gmv(π, u), u → Hmh(π, u) and
u → Jm(v, h)(π, u) are continuous. Moreover, they are constant on [0; t∗m] and on
[t∗m+1; +∞[ and one has

Gv(π, u) =
q−1∑

m=0
1[t∗m,t∗m+1[(u)Gmv(π, u),

Hh(π, u) =
q−1∑

m=0
1[t∗m,t∗m+1[(u)Hmh(π, u),

J(v, h)(π, u) =
q−1∑

m=0
1[t∗m,t∗m+1[(u)Jm(v, h)(π, u).

We now investigate the Lipschitz properties of our operators.

Proposition C.4. For m ∈M , ((π, u), (π̃, ũ)) ∈ (M1(E0)× R+)2, one has

|Hmg(π, u)−Hmg(π̃, ũ)| ≤ Cg|π − π̃|+ ([g]2 + CgCλ)|u− ũ|.

Proof Since the function u → Hmh(π, u) is constant on the intervals [0; t∗m] and
[t∗m+1; +∞[, we may assume that u, ũ ∈ [t∗m; t∗m+1] so that one has Hmg(π, u) =∑q
i=m+1 π

ie−Λ(xi,u)g ◦ Φ(xi, u), and similarly for Hmg(π̃, ũ). Then, on the one hand,
one has

|Hmg(π, u)−Hmg(π̃, u)| =
∣∣∣

q∑

i=m+1

(
πi − π̃i

)
e−Λ(xi,u)g ◦ Φ(xi, u)

∣∣∣

≤ Cg

q∑

i=m+1
|πi − π̃i|.

On the other hand, Lemma A.1 in [9] yields

|e−Λ(xi,u)g ◦ Φ(xi, u)− e−Λ(xi,ũ)g ◦ Φ(xi, ũ)| ≤ ([g]2 + CgCλ)|u− ũ|,
showing the result. �

The following technical lemma will be useful to derive the Lipschitz properties
of the operator I. The first part of its proof is adapted from [18].
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Lemma C.5. For all π, π̃ ∈M1(E0) and m ∈M , one has

q−1∑

m=0

∫ t∗m+1

t∗m

∫

Rd
|Ψ(π, y′, s′)−Ψ(π̃, y′, s′)|Ψm(π, y′, s′)dy′ds′ ≤ 2|π − π̃|.

Proof Let s′ ∈]t∗m; t∗m+1[ and y′ ∈ Rd. In the following computation, we denote
τ = (π, y′, s′) and τ̃ = (π̃, y′, s′), one has

|Ψ(τ)−Ψ(τ̃)|Ψm(τ) =
q∑

j=1

∣∣∣∣∣
Ψj
m(τ)

Ψm(τ)
− Ψj

m(τ̃)
Ψm(τ̃)

∣∣∣∣∣Ψm(τ)

=
q∑

j=1

∣∣∣∣∣
Ψj
m(τ)Ψm(τ̃)−Ψj

m(τ̃)Ψm(τ)
Ψm(τ̃)

∣∣∣∣∣

≤
q∑

j=1

∣∣∣Ψj
m(τ)−Ψj

m(τ̃)
∣∣∣+

q∑

j=1

Ψj
m(τ̃)

Ψm(τ̃)
∣∣∣Ψm(τ)−Ψm(τ̃)

∣∣∣ .

Notice that ∑q
j=1 Ψj

m(τ̃) = Ψm(τ̃) so that the second sum above reduces to |Ψm(τ)−
Ψm(τ̃)| = ∑q

j=1 |Ψj
m(τ)−Ψj

m(τ̃)|. Finally, one has

|Ψ(τ)−Ψ(τ̃)|Ψm(τ) ≤ 2
q∑

j=1
|Ψj

m(τ)−Ψj
m(τ̃)|.

As
∫
Rd fW

(
y′ − ϕ(xj)

)
dy′ = 1 and ∑q

j=1Q
(
Φ(xi, s′), xj

)
= 1, one obtains

q−1∑

m=0

∫ t∗m+1

t∗m

∫

Rd

∣∣∣Ψ(π, y′, s′)−Ψ(π̃, y′, s′)
∣∣∣Ψm(π, y′, s′)dy′ds′

≤ 2
q−1∑

m=0

∫ t∗m+1

t∗m

q∑

j=1

∫

Rd

∣∣∣Ψj
m(π, y′, s′)−Ψj

m(π̃, y′, s′)
∣∣∣ dy′ds′

≤ 2
q−1∑

m=0

q∑

i=m+1

∫ t∗m+1

t∗m

q∑

j=1

∫

Rd
|πi − π̃i|λ(Φ(xi, s′))e−Λ(xi,s′)

×Q(Φ(xi, s′), xj)fW (y′ − ϕ(xj))dy′ds′

≤ 2
q−1∑

m=0

q∑

i=m+1
|πi − π̃i|

∫ t∗m+1

t∗m
λ(Φ(xi, s′))e−Λ(xi,s′)ds′

≤ 2
q∑

i=1
|πi − π̃i|

∫ t∗i

0
λ(Φ(xi, s′))e−Λ(xi,s′)ds′.

We obtain the result as
∫ t∗i

0 λ(Φ(xi, s′))e−Λ(xi,s′)ds′ = 1− e−Λ(xi,t∗i ) ≤ 1. �

Proposition C.6. For v ∈ BL(M1(E0)) and ((π, u), (π̃, ũ)) ∈ (M1(E0) × R+)2,
one has

|Iv(π, u)− Iv(π̃, ũ)| ≤ (Cv + 2[v])|π − π̃|+ CvCλ|u− ũ|.
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Proof On the one hand, one clearly has

|Iv(π, u)− Iv(π, ũ)| ≤
q∑

i=1
πi
∣∣∣u ∧ t∗i − ũ ∧ t∗i

∣∣∣CvCλ ≤ CvCλ|u− ũ|.

On the other hand, one has

|Iv(π, u)− Iv(π̃, u)|

≤ Cv|π − π̃|+
q∑

i=1
πi
∫ t∗i

0

∫

Rd

∣∣∣v
(
Ψ(π, y′, s′)

)
− v

(
Ψ(π̃, y′, s′)

)∣∣∣

×
q∑

j=1
Q
(
Φ(xi, s′), xj

)
fW (y′ − ϕ(xj))λ ◦ Φ(xi, s′)e−Λ(xi,s′)dy′ds′.

Besides, we have assumed that v is Lipschitz continuous so that one has
∣∣∣v
(
Ψ(π, y′, s′)

)
− v

(
Ψ(π̃, y′, s′)

)∣∣∣ ≤ [v]
∣∣∣Ψ(π, y′, s′)−Ψ(π̃, y′, s′)

∣∣∣.

Thus, one has

|Iv(π, y, s, u)− Iv(π̃, y, s, u)|

≤ Cv|π − π̃|+ [v]
q∑

i=1
πi
∫ t∗i

0

∫

Rd

∣∣∣∣Ψ(π, y′, s′)−Ψ(π̃, y′, s′)
∣∣∣∣

q∑

j=1
Q
(
Φ(xi, s′), xj

)
fW (y′ − ϕ(xj))λ ◦ Φ(xi, s′)e−Λ(xi,s′)dy′ds′

≤ Cv|π − π̃|+ [v]
q−1∑

m=0

q∑

i=m+1
πi
∫ t∗m+1

t∗m

∫

Rd

∣∣∣∣Ψ(π, y′, s′)−Ψ(π̃, y′, s′)
∣∣∣∣

×
q∑

j=1
Q
(
Φ(xi, s′), xj

)
fW (y′ − ϕ(xj))λ ◦ Φ(xi, s′)e−Λ(xi,s′)dy′ds′

≤ Cv|π − π̃|+ [v]
q−1∑

m=0

∫ t∗m+1

t∗m

∫

Rd

∣∣∣∣Ψ(π, y′, s′)−Ψ(π̃, y′, s′)
∣∣∣∣Ψm(π, y′, s′)dy′ds′.

The previous lemma provides the result. �

Proposition C.7. For m ∈M , v ∈ BL(M1(E0)) and ((π, u), (π̃, ũ)) ∈ (M1(E0)×
R+)2, one has

|Gmv(π, u)−Gmv(π̃, ũ)| ≤ (2Cv + 2[v])|π − π̃|+ CvCλ|u− ũ|.

Proof As in the proof of Proposition C.4, we may assume without loss of generality
that u, ũ ∈ [t∗m; t∗m+1] so that one has

Gmv(π, u) = Iv(π, u) +
m∑

i=1
πie−Λ(xi,t∗i )

×
q∑

j=1

∫

Rd
v
(
Ψ(π, y′, t∗i )

)
Q
(
Φ(xi, t∗i ), xj

)
fW (y′ − ϕ(xj))dy′,
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and similarly for Gmv(π̃, ũ). The second term does not depend on u thus

|Gmv(π, u)−Gmv(π, ũ)| = |Iv(π, u)− Iv(π, ũ)|
≤ |Iv(π, u)− Iv(π̃, u)|+ Cv|π − π̃|,

as Ψ(π, y′, t∗i ) = Ψ(π̃, y′, t∗i ) by Proposition 3.4. This yields the result. �

Proposition C.8. For all v ∈ BL(M1(E0)) and (π, π̃) ∈M1(E0)2, one has

|Kv(π)−Kv(π̃)| ≤ (2Cv + 2[v])|π − π̃|.

Proof As Kv(π) = Gv(π, t∗q), this is a consequence of Proposition C.7. �

Proposition C.9. For v ∈ BL(M1(E0)) and (π, π̃) ∈M1(E0)2, one has

|L(v, g)(π)− L(v, g)(π̃)| ≤ (Cg + 2Cv + 2[v]) |π − π̃|.

Proof One has

|L(v, g)(π)− L(v, g)(π̃)|
≤ max

m∈M

{
sup

u∈[t∗m;t∗m+1[
|Jm(v, g)(π, u)− Jm(v, g)(π̃, u)|

}
∨ |Kv(π)−Kv(π̃)|

≤ (Cg + 2Cv + 2[v]) |π − π̃|,

using Propositions C.4, C.7 and C.8 since Jm(v, g) = Hmg +Gmv. �

Proposition C.10. For all n ∈ {0, . . . , N}, one has vn ∈ BL(M1(E0)) with Cvn ≤
Cg and [vn] ≤ (2N−n+2 − 3)Cg.

Proof We proved that vn is the value function of the optimal stopping problem
with horizon TN−n thus one has vn(π) = supσ∈ΣYN−n

E[g(Xσ)
∣∣∣Π0 = π] ≤ Cg. There-

fore vn is bounded and Cvn ≤ Cg. The second assessment is proved by backward
induction. Let π, π̃ ∈M1(E0). One has

|vN(π)− vN(π̃)| ≤
N∑

j=1
g(xj)|πj − π̃j| ≤ Cg|π − π̃|.

Therefore, we have the result for n = N with [vN ] ≤ Cg. Moreover, since vn =
L(vn+1, g) for 0 ≤ n ≤ N − 1, Proposition C.9 yields [vn] ≤ 3Cg + 2[vn+1] which
proves the propagation of the induction. �

39



References
[1] E. Arjas, P. Haara, and I. Norros. Filtering the histories of a partially observed

marked point process. Stochastic Process. Appl., 40(2):225–250, 1992.

[2] V. Bally and G. Pagès. A quantization algorithm for solving multi-dimensional
discrete-time optimal stopping problems. Bernoulli, 9(6):1003–1049, 2003.

[3] V. Bally, G. Pagès, and J. Printems. A quantization tree method for pricing
and hedging multidimensional American options. Math. Finance, 15(1):119–
168, 2005.
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40



[16] G. Pagès, H. Pham, and J. Printems. Optimal quantization methods and ap-
plications to numerical problems in finance. In Handbook of computational and
numerical methods in finance, pages 253–297. Birkhäuser Boston, Boston, MA,
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1. Introduction

We present here a numerical method to compute the value
function of an impulse control problem for a piecewise determinis-
ticMarkov process. Our approach is based on the quantization of an
underlying discrete-time Markov chain related to the continuous-
time process and path-adapted time discretization grids.

Piecewise-deterministic Markov processes (PDMPs) have been
introduced in the literature by Davis (1993) as a general class
of stochastic hybrid models. PDMPs are a family of Markov
processes involving deterministic motion punctuated by random
jumps. The motion of the PDMP includes both continuous
and discrete variables {(X(t), Υ (t))}. The hybrid state space
(continuous/discrete) is defined as Rd

×M whereM is a countable
set. The process depends on three local characteristics, namely
the flow φ, the jump rate λ and the transition measure Q , which
specifies the post-jump location. Starting from (x, ν) ∈ Rd

×

M the motion of the process follows the trajectory (φν(x, t), ν)

✩ This workwas supported by ARPEGE programme of the French National Agency
of Research (ANR), project ‘‘FAUTOCOES’’, number ANR-09-SEGI-004. The material
in this paper was presented at the 18th IFAC world congress, August 28–September
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by Associate Editor George Yin under the direction of Editor Ian R. Petersen.

E-mail addresses: saporta@math.u-bordeaux1.fr (B. de Saporta),
dufour@math.u-bordeaux1.fr (F. Dufour).

until the first jump time T1 which occurs either spontaneously
in a Poisson-like fashion with rate λν(φν(x, t)) or when the flow
φν(x, t) hits the boundary of the state-space. In either case the
location of the process at the jump time T1:


X(T1), Υ (T1)


=

Z1, y1


is selected by the transition measure Qν(φν(x, T1), ·).
Starting from


Z1, y1


, we now select the next inter-jump time

T2 − T1 and post jump location

X(T2), Υ (T2)


=

Z2, y2


. This

gives a piecewise deterministic trajectory for {(X(t), Υ (t))} with
jump times {Tk} and post jump locations {(Zk, yk)} which follows
the flow φ between two jumps. A suitable choice of the state space
and the local characteristicsφ, λ, andQ provides stochasticmodels
covering a great number of problems of operations research; see
Davis (1993). To simplify notation, there is no loss of generality in
considering that the state space of the PDMP is taken simply as a
subset ofRd rather than a product spaceRd

×M as described above;
see Remark 24.9 in Davis (1993) for details.

An impulse control strategy consists of a sequence of single
interventions introducing a jumpof the process at some controller-
specified stopping time and moving the process at that time to
some new point in the state space. Our impulse control problem
consists in choosing a strategy (if it exists) that minimizes the
expected sum of discounted running and intervention costs up
to infinity, and computing the optimal cost thus achieved. Many
applied problems fall into this class, such as inventory problems
in which a sequence of restocking decisions is made, or optimal
maintenance of complex systems with components subject to
failure and repair.

0005-1098/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2012.02.031
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Impulse control problems of PDMPs in the context of an
expected discounted cost have been considered in Costa and
Davis (1989), Dempster and Ye (1995), Ga̧tarek (1991, 1992),
Lenhart (1989). Roughly speaking, in Costa and Davis (1989)
the authors study this impulse control problem by using the
value improvement approach while in Dempster and Ye (1995),
Ga̧tarek (1991, 1992), Lenhart (1989) the authors choose to analyse
it by using the variational inequality approach. In Costa and
Davis (1989), the authors also consider a numerical procedure.
By showing that iteration of the single-jump-or-intervention
operator generates a sequence of functions converging to the value
function of the problem, they derive an algorithm to compute
an approximation of that value function. Their approach is also
based on a uniform discretization of the state space similar to
the one proposed by Kushner (1977). In particular, they derive
a convergence result for the approximation scheme but no
estimation of the rate of convergence is given. To the best of
our knowledge, it is the only paper presenting a computational
method for solving the impulse control problem for a PDMP in the
context of discounted cost. Remark that a similar procedure has
been applied by Costa (1993) to derive a numerical scheme for the
impulse control problem with a long run average cost.

Our approach is also based on the iteration of the single-jump-
or-intervention operator, but we want to derive a convergence
rate for our approximation. Our method does not rely on a blind
discretization of the state space, but on a discretization that
depends on time and takes into account the random nature of
the process. Our approach involves a quantization procedure.
Roughly speaking, quantization is a technique that approximates
a continuous state space random variable X by a random variableX taking only finitely many values and such that the difference
between X andX isminimal for the Lp norm. Quantizationmethods
have been developed recently in numerical probability, nonlinear
filtering or optimal stochastic control with applications in finance,
see e.g. Bally and Pagès (2003), Bally, Pagès, and Printems (2005),
Pagès (1998), Pagès and Pham (2005), Pagès, Pham, and Printems
(2004a,b) and references therein. It has also been successfully used
by the authors to compute an approximation of the value function
and optimal strategy for the optimal stopping problem for PDMPs
in de Saporta, Dufour, and Gonzalez (2010).

Although the value function of the impulse control problem can
be computed by iterating implicit optimal stopping problems, see
Costa and Davis (1989) Proposition 2 or Davis (1993) Proposition
54.18, from a numerical point of view the impulse control is
much more difficult to handle than the optimal stopping problem.
Indeed, for the optimal stopping problem, the value function
is computed as the limit of a sequence (vn) constructed by
iterating an operator L. This iteration procedure yields an iterative
construction of a sequence of random variables vn(Zn) (where (Zn)
is an embedded discrete-time process). This was the keystone
of our approximation procedure. As regards impulse control, the
iterative construction for the corresponding randomvariables does
not hold anymore, see Section 4 for details. This is mostly due to
the fact that not only does the controller choose times to stop the
process, but they also choose a new starting point for the process to
restart from after each intervention. This makes the single-jump-
or-intervention operator significantly more complicated to iterate
that the single-jump-or-stop operator used for optimal stopping.
We manage to overcome this extra difficulty by using two series
of quantization grids instead of just the one we used for optimal
stopping.

The paper is organized as follows. In Section 2 we give a precise
definition of a PDMP and state our notation and assumptions. In
Section 4, we present the impulse control problem and recall the
iterative construction of the value function presented in Costa
and Davis (1989). In Section 5, we explain our approximation
procedure and prove its convergence with error bounds. Finally in
Section 6 we present a numerical example. Some technical results
are postponed to the Appendix.

2. Definitions and assumptions

We first give a precise definition of a piecewise deterministic
Markov process (PDMP). Some general assumptions are presented
in the end of this section. Let us introduce first some standard
notation. Let M be a metric space. B(M) is the set of real-valued,
bounded, measurable functions defined onM . The Borel σ -field of
M is denoted byB(M). LetQ be aMarkov kernel on (M, B(M)) and
w ∈ B(M), Qw(x) =


M w(y)Q (x, dy) for x ∈ M . For (a, b) ∈ R2,

a ∧ b = min(a, b) and a ∨ b = max(a, b). Let E be an open subset
of Rd, ∂E its boundary and E its closure. A PDMP is determined by
its local characteristics (φ, λ,Q ) where:
• the flow φ:Rd

× R → Rd is a one-parameter group of homeo-
morphisms: φ is continuous, φ(·, t) is an homeomorphism for
each t ∈ R satisfying φ(·, t + s) = φ(φ(·, s), t). For all x in E,
let us denote

t∗(x) .
= inf{t > 0:φ(x, t) ∈ ∂E},

with the convention inf∅ = ∞.
• the jump rate λ: E → R+ is assumed to be a measurable

function.
• Q is a Markov kernel on (E, B(E)) satisfying the following

property:

(∀x ∈ E), Q (x, E − {x}) = 1.

From these characteristics, it can be shown, see Davis (1993,
pp. 62–66), that there exists a filtered probability space (Ω, F ,
{Ft}, {Px}x∈E) such that the motion of the process {X(t)} starting
from a point x ∈ E may be constructed as follows. Take a random
variable T1 such that

Px(T1 > t) .
=


e−Λ(x,t) for t < t∗(x),
0 for t ≥ t∗(x),

where for x ∈ E and t ∈ [0, t∗(x)]

Λ(x, t) .
=

 t

0
λ(φ(x, s))ds.

If T1 generated according to the above probability is equal to
infinity, then for t ∈ R+, X(t) = φ(x, t). Otherwise select
independently an E-valued random variable (labelled Z1) having
distribution Q (φ(x, T1), ·), namely Px(Z1 ∈ A) = Q (φ(x, T1), A)
for any A ∈ B(E). The trajectory of {X(t)} starting at x, for t ≤ T1,
is given by

X(t) .
=


φ(x, t) for t < T1,
Z1 for t = T1.

Starting from X(T1) = Z1, we now select the next inter-jump time
T2 − T1 and post-jump location X(T2) = Z2 is a similar way.

This gives a strong Markov process {X(t)} with jump times
Tk

k∈N (where T0 = 0). Associated to {X(t)}, there exists a discrete

time process

Θn

n∈N defined by Θn = (Zn, Sn) with Zn = X(Tn)

and Sn = Tn − Tn−1 for n ≥ 1 and S0 = 0. Clearly, the process
(Θn)n∈N is a Markov chain, and it is the only source of randomness
of the process.

Wedefine the following space of functions continuous along the
flow with limit towards the boundary:

C =


w ∈ B(E):w(φ(x, ·)): [0, t∗(x)) → R is continuous for

each x ∈ E and whenever t∗(x) < ∞ the limit

lim
t→t∗(x)

w(φ(x, t)) exists

.

For w ∈ C, we define w(φ(x, t∗(x))) by the limit limt→t∗(x)
w(φ(x, t)) (note that the limit exists by assumption). Let us
introduce L as the set of functions w ∈ C satisfying the following
properties:
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1. there exists

w

1 ∈ R+ such that for any (x, y) ∈ E2, u ∈

[0, t∗(x) ∧ t∗(y)], one hasw(φ(x, u)) − w(φ(y, u))
 ≤


w

1|x − y|,

2. there exists

w

2 ∈ R+ such that for any x ∈ E, and (t, s) ∈

[0, t∗(x)]2, one hasw(φ(x, t)) − w(φ(x, s))
 ≤


w

2|t − s|,

3. there exists

w

∗

∈ R+ such that for any (x, y) ∈ E2, one hasw(φ(x, t∗(x))) − w(φ(y, t∗(y)))
 ≤


w

∗
|x − y| .

In the sequel, for any function w in C, we denote by Cw its bound:
Cw = sup

x∈E
|w(x)|.

The following assumptions will be in force throughout.

Assumption 2.1. The jump rate λ is bounded and there exists
λ

1 ∈ R+ such that for any (x, y) ∈ E2, u ∈ [0, t∗(x) ∧ t∗(y)[,λ(φ(x, u)) − λ(φ(y, u))

 ≤

λ1

|x − y| .

Assumption 2.2. The exit time t∗ is bounded and Lipschitz-conti-
nuous on E.

Assumption 2.3. TheMarkov kernelQ is Lipschitz in the following
sense: there exists


Q


∈ R+ such that for any function w ∈ L the
following two conditions are satisfied:
1. for any (x, y) ∈ E2, u ∈ [0, t∗(x) ∧ t∗(y)], one hasQw(φ(x, u)) − Qw(φ(y, u))

 ≤

Q


w

1 |x − y| ,

2. for any (x, y) ∈ E2, one hasQw(φ(x, t∗(x))) − Qw(φ(y, t∗(y)))
 ≤


Q


w

∗
|x − y| .

3. Quantization

The aim of this section is to describe the quantization procedure
for a random variable and to recall some important properties that
will be used in the sequel. There exists an extensive literature
on quantization methods for random variables and processes. We
do not pretend to present here an exhaustive panorama of these
methods. However, the interested readermay for instance, consult
the following works Gray and Neuhoff (1998); Pagès (1998); Pagès
et al. (2004b) and references therein. Consider X an Rq-valued
random variable such that

Xp < ∞ where
Xp denotes the

Lp-nom of X:
Xp =


E[|X |

p
]

1/p
.

Let K be a fixed integer, the optimal Lp-quantization of the random
variable X consists in finding the best possible Lp-approximation of
X by a random vectorX taking at most K values:X ∈ {x1, . . . , xK }.
This procedure consists in the following two steps:
1. Find a finite weighted grid Γ ⊂ Rq with Γ = {x1, . . . , xK }.
2. SetX = XΓ whereXΓ

= pΓ (X) with pΓ denotes the closest
neighbour projection on Γ .

The asymptotic properties of the Lp-quantization are given by the
following result, see e.g. Pagès (1998).

Theorem 3.1. If E[|X |
p+η

] < +∞ for some η > 0 then one has

lim
K→∞

K p/q min
|Γ |≤K

∥X −XΓ
∥
p
p = Jp,q


|h|q/(q+p)(u)du,

where the law of X is PX (du) = h(u)λq(du) + ν with ν ⊥ λd, Jp,d a
constant and λq the Lebesgue measure in Rq.
Remark that X needs to have finite moments up to the order p+ η
to ensure the above convergence. There exists a similar procedure
for the optimal quantization of a Markov chain {Xk}k∈N. There

are two approaches to provide the quantized approximation of a
Markov chain. The first one, based on the quantization at each time
k of the random variable Xk is called the marginal quantization.
The second one that enhances the preservation of the Markov
property is called Markovian quantization. Remark that for the
latter, the quantized Markov process is not homogeneous. These
twomethods are described in details in Pagès et al. (2004b, Section
3). In this work, we used the marginal quantization approach for
simplicity reasons.

4. Impulse control problem

The formal probabilistic apparatus necessary to precisely define
the impulse control problem is rather cumbersome, and will not
be used in the sequel, therefore, for the sake of simplicity, we only
present a rough description of the problem. The interested reader
is referred to Costa and Davis (1989) for a rigorous definition.

A strategy S = (τn, Rn)n≥1 is a sequence of non-anticipative
intervention times (τn)n≥1 and non-anticipative E-valued random
variables (Rn)n≥1 on a measurable space (Ω, F ). Between the
intervention times τi and τi+1, the motion of the system is
determined by the PDMP {X(t)} starting from Ri. If an intervention
takes place at x ∈ E, then the set of admissible points where the
decision-maker can send the system to is denoted by U ⊂ E. We
suppose that the control set U is finite and does not depend on x.
The cardinal of the set U is denoted by u:

U =

yi: 1 ≤ i ≤ u


.

The strategy S induces a family of probability measures PS
x , x ∈ E,

on (Ω, F ). We define the class S of admissible strategies as the
strategies S which satisfy τ∞ = ∞ PS

x -a.s. for all x ∈ E.
Associated to the strategyS, we define the following discounted

cost for a process starting at x ∈ E

JS(x) = ES
x


∞

0
e−αsf (Ys)ds +

∞
i=1

e−ατic(Yτi , Yτ+

i
)


,

where ES
x is the expectation with respect to PS

x and {Yt} is the
process with interventions. The function f then corresponds to the
running cost and c(x, y) corresponds to the intervention cost of
moving the process from x to y, α is a positive discount factor. We
make the following assumption on the cost functions.

Assumption 4.1. f is a positive function in L.

Assumption 4.2. The function c is continuous on E × U and there
exist


c

1 ∈ R+,


c

2 ∈ R+ and


c

∗

∈ R+ such that

1. for any (x, y) ∈ E2, u ∈ [0, t∗(x) ∧ t∗(y)],

max
z∈U

c(φ(x, u), z) − c(φ(y, u), z)
 ≤


c

1|x − y|,

2. for any x ∈ E, and (t, s) ∈ [0, t∗(x)]2,

max
z∈U

c(φ(x, t), z) − c(φ(x, s), z)
 ≤


c

2|t − s|,

3. for any (x, y) ∈ E2,

max
z∈U

c(φ(x, t∗(x)), z) − c(φ(y, t∗(y)), z)
 ≤


c

∗
|x − y| ,

4. for any (x, y) ∈ E × U, 0 < c0 ≤ c(x, y) ≤ Cc ,
5. for any (x, y, z) ∈ E × U × U,

c(x, y) + c(y, z) ≥ c(x, z).

The last assumption implies that the cost of taking two or more
interventions instantaneously will not be lower than taking a
single intervention. Finally, the value function for the discounted
infinite horizon impulse control problem is defined for all x in E by
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V(x) = inf
S∈S

JS(x).

Associated to this impulse control problem, we define the follow-
ing operators. For x ∈ E, t ≥ 0, (v, w) ∈ C2, set

F(x, t) =

 t∧t∗(x)

0
e−αs−Λ(x,s)f


φ(x, s)


ds,

Hv(x, t) = e−αt∧t∗(x)−Λ(x,t∧t∗(x))v

φ(x, t ∧ t∗(x))


= E


e−α(t∧t∗(Z0))v


φ(Z0, t ∧ t∗(Z0))


× 1{S1≥t∧t∗(Z0)}

Z0 = x

,

Iw(x, t) =

 t∧t∗(x)

0
e−αs−Λ(x,s)λQw


φ(x, s)


ds

= E

e−αS1w(Z1)1{S1<t∧t∗(Z0)}

Z0 = x

.

Finally for notational convenience, let us introduce for (v, w) ∈ C2,
x ∈ E and t ≥ 0.
J(v, w)(x, t) = F(x, t) + Hv(x, t) + Iw(x, t),
Kw(x) = F(x, t∗(x)) + HQw(x, t∗(x)) + Iw(x, t∗(x)).
It is easy to show that for all n ∈ N

Kv(x) = E

F(Zn, t∗(Zn)) + e−αSn+1v(Zn+1)

Zn = x

,

J(v, w)(x, t) = E

F(Zn, t) + e−αSn+1w(Zn+1)1{Sn+1<t∧t∗(Zn)}

+ e−αt∧t∗(Zn)v(φ(Zn, t ∧ t∗(Zn)))

× 1{Sn+1≥t∧t∗(Zn)}

Zn = x

. (1)

Note that these operators involve the original non controlled pro-
cess {X(t)} and only depend on the underlying Markov chain
(Θn) = (Zn, Sn). The equalities above are valid for all n because
(Θn) is an homogeneous Markov chain. Finally, for (v, w) ∈ C2, ϕ
defined on U and x ∈ E, set
Mϕ(x) = inf

y∈U


c(x, y) + ϕ(y)


,

L(v, w)(x) = inf
t∈R+

J(v, w)(x, t) ∧ Kw(x),

Lw(x) = L(Mw, w)(x).
As explained in Costa and Davis (1989), operator L applied to w
is the value function of the single-jump-or-intervention problem
with cost function w and the value function V can be computed
by iterating L. More precisely, let h be the cost associated to the
no-impulse strategy:

h(x) = Ex


∞

0
e−αsf (Xs)ds


,

for all x ∈ E. Thenwe recall Proposition 4 of Costa andDavis (1989).

Proposition 4.3. Assume that g is in L and g ≥ h. Define V
g
0 = g

and V
g
n+1 = L(V

g
n ), for all n ≥ 0. Then for all x ∈ E

V(x) = lim
n→∞

Vg
n (x).

As pointed out in Costa and Davis (1989), if one chooses exactly
g = h, then Vh

n corresponds to the value function of the impulse
problem where only n jumps plus interventions are allowed, and
after that, there are no further interventions.

Remark 4.4. Note that operator L is quite similar to the operator
used in optimal stopping, see e.g. Costa and Davis (1988), de
Saporta et al. (2010). However, the iteration procedure here does
not rely on L but on L. The difference between operators L
and L comes from the operator M that chooses optimally the
next starting point. This is one of the main technical differences
between approximating the value functions of an optimal stopping
and impulse problems, and it makes the approximation scheme
significantly more difficult, as explained in the next section.

5. Approximation of the value function

From now on, we assume that the distribution of X(0) is given
by δx0 for some fixed point x0 in the state space E. We also choose
a function g in L satisfying g ≥ h. Our approximation of the value
function at x0 is based on Proposition 4.3. Following the approach
proposed by Costa and Davis (1989), we suppose now that we
have selected a suitable index N such that V(x0) − V

g
N(x0) is small

enough see the example in Section 6.We turn to the approximation
of V

g
N(x0) which is the main object of this paper. In all generality,

finding an index N such that V(x0) − V
g
N(x0) is below a prescribed

level is a very difficult problem to solve. However, in particular
cases one can hope to be able to evaluate the distance between
V(x0) and V

g
N(x0). As suggested by Costa and Davis (1989), a value

of N can be chosen by calculating V
g
n (x0) for different values of n

and stoppingwhen the difference between two consecutive values
is small enough. Our results of convergence are derived for a fixed
but arbitrary N .

Recall that ifV0 = h, thenVh
N corresponds to the value function

of the impulse problemwhere onlyN jumps plus interventions are
allowed. This is an interesting problem to be solved in itself. For
notational convenience, we will change our notation in the sequel
and reverse the indices for the sequence (V

g
n )0≤n≤N . Set

vN = g = V
g
0 ,

vn = Lvn+1 = V
g
N−n, for all 0 ≤ n < N.

As explained in the introduction, the keystone of the approxi-
mation procedure for optimal stopping in de Saporta et al. (2010) is
that the analogue of Proposition 4.3 yields a recursive construction
of the random variables vn(Zn). Unfortunately, this key and impor-
tant property does not hold anymore here. Indeed, one has:

vn(Zn) = Lvn+1(Zn)

=


inf

t∈R+

E

F(Zn, t) + e−αSn+1vn+1(Zn+1)1{Sn+1<t∧t∗(Zn)}

+ e−αt∧t∗(Zn)Mvn+1(φ(Zn, t ∧ t∗(Zn)))

× 1{Sn+1≥t∧t∗(Zn)}

Zn
∧ E


F(Zn, t∗(Zn)) + e−αSn+1vn+1(Zn+1)

Zn.
And Mvn+1(φ(Zn, t ∧ t∗(Zn))) cannot be written as a function
of vn+1(Zn+1). Hence, we have no recursive construction of the
random variables vn(Zn) and we cannot apply the same procedure
that we used for optimal stopping. Thus, we propose a new
procedure to evaluateMvn+1(φ(Zn, t∧t∗(Zn))) separately from the
main computation of the value function.

Note that for all 0 ≤ n < N , to compute Mvn+1 at any
point, one actually only needs to evaluate the value functions
vn+1 at the points of the control grid U. We propose again a
recursive computation based on theMarkov chain (Zn, Sn) butwith
a different starting point. Set Zy

0 = y ∈ U and Sy0 = 0. We denote
by (Zy

n , S
y
n) the Markov chain starting from this point (y, 0). One

clearly knows vN = g on U. Now suppose we have computed all
the vn on U for k + 1 ≤ n ≤ N . Therefore, all functions Mvn are
known everywhere. We can then propose the following recursive
computation to evaluate vk at y ∈ U:

vN(Zy
N−k) = g(Zy

N−k)

vk+n(Zy
n) = L(Mvk+n+1, vk+n+1)(Zy

n),
∀0 ≤ n ≤ N − k − 1.

(2)

This way, one obtains vk(Z
y
0) that exactly equals vk(y). Note that,

since the functions Mvk+n are known, this provides a tractable
recurrence relation on the random variables vk+n(Z

y
k ).
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Fig. 1. Step by step procedure.

Remark 5.1. Note that this procedure requires the knowledge of
function g for all the random variables (Zy

n)n≤N−1 defined for the
different starting points y ∈ U. This is why, in general, we are
not able to use the no-impulse cost function h. Indeed, it is hard to
compute this function, especially if we need to know it everywhere
on the state space. The most practical solution is to take g equal to
a upper bound of h, and therefore constant.

There is yet another new difficulty hidden in the recurrence
relation (2) above as regards its discretization. Indeed, to compute
vn(y), one needs first to compute all the vk+n(Z

y
n)with 1 ≤ n ≤ N−

k, and to compute vk+1(y) for instance, one has already computed
all the vk+n(Z

y
n−1) for 2 ≤ n ≤ N − k. Unfortunately, one cannot

re-use the values of vk+n(Z
y
n−1) to compute that of vk+n(Z

y
n), so

the computation has to be started all over again each time, and
one has to be very careful in the design of the approximation
scheme. However, all these computations can be done with the
same discretization grids for (Zy

n , S
y
n), so that our procedure is still

reasonably fast, see Section 5.2 for details, and Fig. 1 for a graphical
illustration of our procedure.

Remark 5.2. The recursive procedure (2) is triangular in the sense
that one needs to compute all the vk+n(Z

y
n) for 0 ≤ k ≤ N and

0 ≤ n ≤ N − k.

Our approximation procedure is in three steps, as explained
in the following sections. The first step consists in replacing the
continuous minimization in the definition of operator L by a
discrete-time minimization, on path adapted grids. The second
step is specific to the impulse problem, and is due to the operator
M as explained in details above. The second step hence consists
in carefully approximating the value functions vn on the control
grid U. The last step will then be similar to the approximation of
the optimal stopping problem and will consist in approximating
the value functions at the points of the quantization grids of the no
impulse process.

5.1. Time discretization

We define the path-adapted discretization grids as follows.

Definition 5.3. For z ∈ E, set ∆(z) ∈ ]0, t∗(z)[. Define n(z) =

int
 t∗(z)

∆(z)


− 1, where int(x) denotes the greatest integer smaller

than or equal to x. The set of points (ti)i∈{0,...,n(z)} with ti = i∆(z)
is denoted by G(z). This is the grid associated to the time interval
[0, t∗(z)].

Remark 5.4. It is important to note that, for all z ∈ E, not only one
has t∗(z) ∉ G(z), but also maxG(z) = tn(z) ≤ t∗(z) − ∆(z). This
property is crucial for the sequel.

We propose the following approximation of operator L, where
the continuous minimization is replaced by a discrete-time
minimization on the path-adapted grids.

Definition 5.5. For (v, w) ∈ L2 and x ∈ E, set

Ld(v, w)(x) = min
t∈G(x)

J(v, w)(x, t) ∧ Kw(x).

Now we compute the error induced by the replacement of the
continuous minimization by the discrete one.

Lemma 5.6. Let (v, w) ∈ L2. Then for all x ∈ E, inf
t≤t∗(x)

J(v, w)(x, t) − min
s∈G(x)

J(v, w)(x, s)


≤

Cf + CwCλ +


v

2 + Cv(Cλ + α)


∆(x).

Proof. We have inf
t≤t∗(x)

J(v, w)(x, t) − min
s∈G(x)

J(v, w)(x, s)


= min
s∈G(x)

J(v, w)(x, s) − inf
t≤t∗(x)

J(v, w)(x, t).

Clearly, there exists t ∈ [0, t∗(x)] such that inft≤t∗(x) J(v, w)(x, t)
= J(v, w)(x, t). Moreover, there exists 0 ≤ i ≤ n(x) such that
t ∈ [ti, ti+1] (with tn(x)+1 = t∗(x)). Consequently, LemmaA.5 yields inf
t≤t∗(x)

J(v, w)(x, t) − min
s∈G(x)

J(v, w)(x, s)


≤ J(v, w)(x, ti) − J(v, w)(x, t)
≤

Cf + CwCλ +


v

2 + Cv(Cλ + α)


|t − ti|

implying the result. �
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Lemma 5.7. Let (v, w) ∈ L2 be nonnegative functions. Then for all
x ∈ E,L(v, w)(x) − Ld(v, w)(x)

 ≤


Cf + CwCλ

+

v

2 + Cv(Cλ + α)


∆(x).

Proof. Since the functions v andw are nonnegative, it follows from
the definition of L and Ld thatL(v, w)(x) − Ld(v, w)(x)


≤

 inf
t≤t∗(x)

J(v, w)(x, t) − min
s∈G(x)

J(v, w)(x, s)
 .

Now in view of the previous lemma, one obtains the result. �

5.2. Approximation of the value functions on the control grid U

Wenowneed to introduce the quantized approximations of the
underlying Markov chains (Θ

y
n). More precisely, we need several

approximations at this stage, one for each starting point y in the
control set U. Recall that U = {yi, 1 ≤ i ≤ u}. For all 1 ≤

i ≤ u, let (Z i
n, S

i
n)0≤n≤N−1 be the Markov chain (Zn, Sn)0≤n≤N−1

with starting point Z0 = yi, S0 = 0, and let (Z i
n,
S in)0≤n≤N−1 be

the quantized approximation of the sequence (Z i
n, S

i
n)0≤n≤N−1, see

Section 3. The quantization algorithm provides us with a finite grid
Γ i,Θ
n ⊂ E × R+ at each time 0 ≤ n ≤ N − 1 as well as weights for

each point of the grid and transition probabilities from one grid to
the next one, see e.g. Bally and Pagès (2003), Pagès (1998), Pagès
et al. (2004b) for details. Set p ≥ 1 such thatΘn has finitemoments
at least up to the order p + ϵ for some positive ϵ and let pin be
the closest-neighbour projection from E × R+ onto Γ i,Θ

n (for the
distance of norm p; if there are several equally close neighbours,
pick the one with the smallest index). Then the quantization of Θ i

n
conditionally to Z0 = yi is defined by

Θ i
n =

Z i
n,
S in = pin


Z i
n, S

i
n


.

We will also denote Γ i,Z
n the projection of Γ i,Θ

n on E and Γ i,S
n the

projection of Γ i,Θ
n on R+.

Although (Z i
n, S

i
n) is a Markov chain, its quantized approxima-

tion is usually not a Markov chain. It can be turned into a Markov
chain by slightly changing the ponderations in the grids, see Pagès
et al. (2004a), but this Markov chain will not be homogeneous in
any case. Therefore, the following quantized approximations of op-
erators H , I , K , J and Ld depend on both indices n and i.

Definition 5.8. For v ∈ L2, w defined on Γ
i,Z
n+1, x ∈ E, 0 ≤ n ≤

N − 1, 1 ≤ i ≤ u and z ∈ Γ i,Z
n , consider

H i
n+1v(z, t) = E


e−α(t∧t∗(Z in))vφ(Z i

n, t ∧ t∗(Z i
n))


× 1Sin+1≥t∧t∗(Z in)
Z i

n = z


,

I in+1w(z, t) = E


e−αSin+1w(Z i

n+1)1Sin+1<t∧t∗(Z in)
Z i

n = z


,

K i
n+1w(z) = E


F(Z i

n, t
∗(Z i

n)) + e−αSin+1w(Z i
n+1)

Z i
n = z


,

J in+1(v, w)(z, t) = E


F(Z i

n, t) + e−αSin+1w(Z i
n+1)

× 1Sin+1<t∧t∗(Z in)
Z i

n = z



+ E


e−α(t∧t∗(Z in))v(φ(Z i

n, t ∧ t∗(Z i
n)))

× 1Sin+1≥t∧t∗(Z in)
Z i

n = z


,

Li,dn+1(v, w)(z) = min
t∈G(z)

J in+1(v, w)(z, t) ∧K i
n+1w(z).

Our approximation scheme goes backwards in time, in as much
as it is initialized with computing vN at the points of the last
quantization grids Γ

i,Z
N , then vN−1 is computed on Γ

i,Z
N−1 and so on.

Definition 5.9. Set vN(yi) = g(yi) for 1 ≤ i ≤ u. Then, for
1 ≤ k ≤ N − 1 and 1 ≤ i ≤ u, setvk(yi) =vi,k

k (yi), where

vi,k
N (z) = g(z), z ∈ Γ

i,Z
N−k,vi,k

k+n−1(z) =Li,dn (Mvk+n,vk
k+n)(z),

z ∈ Γ
i,Z
n−1, n ∈ {1, . . . ,N − k}.

See Fig. 1 for a graphical illustration of this numerical procedure.

Remark 5.10. Note the use of bothvk+n andvk
k+n in the scheme

above. This is due to the fact that we have to reset all our
calculations for each value function vk and cannot use the
calculations made for e.g. vk+1 because the value functions are
evaluated at different points, and are approximated with different
discrete operators. This is mostly because the quantized process
(Z i

n,
S in) is not an homogeneous Markov chain.

We can now state our first result on the convergence rate of this
approximation.

Theorem 5.11. For all 1 ≤ k ≤ N − 1, 0 ≤ n ≤ N − k − 1 and
1 ≤ i ≤ d, suppose that ∆(z) for z ∈ Γ i,Z

n is such thatd4
Z i

n −Z i
n


p
+ d5

S in+1 −S in+1


p

d3
< min

z∈Γ
i,Z
n

{∆(z)}.

Then we havevk+n(Z i
n) −vi,k

k+n(
Z i
n)


p

≤

vk+n+1(Z i
n+1) −vi,k

k+n+1(
Z i
n+1)


p

+ max
y∈U

vk+n+1(y) −vk+n+1(y)


+ d1k,n
Z i

n −Z i
n


p + 2


vk+n+1

 Z i
n+1 −Z i

n+1


p

+ Cf
S in+1 −S in+1


p + d2k,n

∆(Z i
n)

p

+ 2


d3

d4
Z i

n −Z i
n


p + d5

S in+1 −S in+1


p


,

with

d1k,n =


Q


vk+n+1

∗
+ 2E3


∨


Cc

E1 + α


t∗


+ 2

c

1

+

c

2


t∗


+ [vk+n] +

Q


vk+n+1

1

Cλ

α
+

Cf

α
(E1 + E2),
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d2k,n = Cf + Cvk+n+1Cλ +

c

2 + (Cc + Cvk+n+1)(Cλ + α),

d3 =


2Cf

α
+ Cc


Cλ,

d4 =
Cf

α


1 +


t∗


+ Cc

t∗

,

d5 = 2

2
Cf

α
+ Cc


.

Remark 5.12. Recall that vN = vi,k
N = vN = g . Hence, one has

∥vN(Z i
N−k) −vi,k

N (Z i
N−k)∥p ≤ [g]

Z i
N − Z i

N


p
and maxy∈U

vN(y) −vN(y)
 = 0. In addition, the quantization error ∥Θ i

n − Θ i
n∥p goes

to zero as the number of points in the grids goes to infinity, see e.g.
Pagès (1998). Therefore, according toDefinition 5.9 and by using an
induction proceduremaxy∈U

vk(y)−vk(y)
 can bemade arbitrarily

small by an adequate choice of the discretization parameters. From
a theoretical point of view, the error can be calculated by iterating
the result of Theorem 5.11. However, this result is not presented
here because it would lead to an intricate expression. From a
numerical point of view, a computer can easily estimate this error
as shown in the example of Section 6.

The proof is going to be detailed in the following sections. We
first split the error into four terms. For all 1 ≤ k ≤ N − 1,
0 ≤ n ≤ N − k − 1 and 1 ≤ i ≤ d, we havevk+n(Z i

n) −vi,k
k+n(

Z i
n)


p

≤

4
j=1

Υ i
j ,

where

Υ i
1 =

vk+n(Z i
n) − vk+n(Z i

n)

p ,

Υ i
2 =

L(Mvk+n+1, vk+n+1)(Z i
n) − Ld(Mvk+n+1, vk+n+1)(Z i

n)

p ,

Υ i
3 =

Ld(Mvk+n+1, vk+n+1)(Z i
n) −Li,dn+1(Mvk+n+1, vk+n+1)(Z i

n)


p
,

Υ i
4 =

Li,dn+1(Mvk+n+1, vk+n+1)(Z i
n)

−Li,dn+1(Mvk+n+1,vi,k
k+n+1)(

Z i
n)


p
.

The first two terms are easy enough to handle thanks to
Corollary A.12 and Lemma 5.7.

Lemma 5.13. A upper bound for Υ i
1 isvk+n(Z i

n) − vk+n(Z i
n)


p

≤ [vk+n]

Z i
n −Z i

n


p
.

Lemma 5.14. A upper bound for Υ i
2 isL(Mvk+n+1, vk+n+1)(Z i

n) − Ld(Mvk+n+1, vk+n+1)(Z i
n)

p

≤


Cf + Cvk+n+1Cλ

+

c

2 +


Cc + Cvk+n+1


(Cλ + α)

 ∆(Z i
n)


p
.

The fourth term is also easy enough to deal with as it is a mere
comparison of two finite weighted sums.

Lemma 5.15. A upper bound for Υ i
4 isLi,dn+1 (Mvk+n+1, vk+n+1) (Z i

n)

−Li,dn+1


Mvk+n+1,vi,k

k+n+1


(Z i

n)


p

≤

vk+n+1

 Z i
n+1 −Z i

n+1


p

+

vk+n+1(Z i
n+1) −vi,k

k+n+1(
Z i
n+1)


p

+ max
y∈U

|vk+n+1(y) −vk+n+1(y)| .

Proof. We clearly haveLdn+1 (Mvk+n+1, vk+n+1) (Z i
n)

−Li,dn+1


Mvk+n+1,vi,k

k+n+1


(Z i

n)


p

≤

 max
t∈G(Z in)

J in+1(Mvk+n+1, vk+n+1)(Z i
n, t)

−J in+1(Mvk+n+1,vi,k
k+n+1)(

Z i
n, t)


p

∨

K i
n+1vk+n+1(Z i

n) −K i
n+1vi,k

k+n+1(
Z i
n)


p

≤

E[vk+n+1(Z i
n+1) −vi,k

k+n+1(
Z i
n+1)

Z i
n]


p

+

E

Mvk+n+1


φ(Z i

n, t ∧ t∗(Z i
n))


−Mvk+n+1

φ(Z i

n, t ∧ t∗(Z i
n))
 Z i

n


p

≤
vk+n+1(Z i

n+1) − vk+n+1(Z i
n+1)


p

+

vk+n+1(Z i
n+1) −vi,k

k+n+1(
Z i
n+1)


p

+ max
y∈U

vk+n+1(y) −vk+n+1(y)
,

showing the result. �
We now turn to the third term. This is the key step of the

error evaluation, because on the one hand, this is where we
deal with the indicator functions. The main idea is that although
they are not continuous, we prove in the following two lemmas
that the set where the discontinuity actually occurs is of small
enough probability. This is also where our special choice of time
discretization grids is crucial. On the other hand, we use here the
specific properties of quantization.

Lemma 5.16. For all 1 ≤ i ≤ d, n ∈ {0, . . . ,N − 1} and 0 < η <
minz∈Γ

i,Z
n

{∆(z)},1t∗(Z in)<t∗(Z in)−η


p

≤

[t∗]
Z i

n −Z i
n


p

η
.

Proof. By using the Chebyshev’s inequality, one clearly has

E
1t∗(Z in)<t∗(Z in)−η

p = P

t∗(Z i

n) < t∗(Z i
n) − η


≤ P

t∗(Z i
n) − t∗(Z i

n)
 > η


≤

[t∗]p
Z i

n −Z i
n

p
p

ηp
,

showing the result. �

Lemma 5.17. For all 1 ≤ i ≤ d, n ∈ {0, . . . ,N − 1} and 0 < η <
minz∈Γ

i,Z
n

{∆(z)}, max
s∈G(Z in) E


|1

Sin+1<s∧t∗(Z in)
 − 1Sin+1<s∧t∗(Z in)|

Z i
n


p

≤
2
η

S in+1 −S in+1


p + Cλη +

2[t∗]
η

Z i
n −Z i

n


p .
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Proof. Set 0 < η < minz∈Γ
i,Z
n

{∆(z)} and s ∈ G(Z i
n). By definition

of the grid G(Z i
n) and η, one has s + η < t∗(Z i

n), see Remark 5.4.
Thus, the difference of indicator functions can be written as1Sin+1<s∧t∗(Z in)

 − 1Sin+1<s∧t∗(Z in)


≤

1Sin+1<s∧t∗(Z in)
 − 1Sin+1<s∧t∗(Z in)



1

t∗(Z in)≤t∗(Z in)− η
2



+ 1
t∗(Z in)>t∗(Z in)− η

2




≤ 1
t∗(Z in)≤t∗(Z in)− η

2

 + 1
t∗(Z in)>s+ η

2

 1Sin+1<s
 − 1Sin+1<s


≤ 1

t∗(Z in)≤t∗(Z in)− η
2

 + 1
|Sin+1−

Sin+1|>
η
2


+ 1

t∗(Z in)>s+ η
2

1
|Sin+1−s|≤ η

2

.
This yields max

s∈G(Z in) E
1Sin+1<s∧t∗(Z in)

 − 1Sin+1<s∧t∗(Z in)
 Z i

n


p

≤

1t∗(Z in)≤t∗(Z in)− η
2


p
+

1|Sin+1−
Sin+1|>

η
2


p

+

 max
s∈G(Z in) E


1

t∗(Z in)>s+ η
2

1
|Sin+1−s|≤ η

2

Z i
n


p

. (3)

On the one hand, Chebyshev’s inequality gives1
|Sin+1−

Sin+1|>
η
2

p
p

= P

|S in+1 −S in+1| >

η

2



≤

2p
S in+1 −S in+1

p
p

ηp
. (4)

On the other hand, one has

E


1

t∗(Z in)>s+ η
2

1
|Sin+1−s|≤ η

2


Z i

n



= E


E

1

t∗(Z in)>s+ η
2

1
s− η

2 ≤Sin+1≤s+ η
2

 Z i
n

 Z i
n


= E


1

t∗(Z in)>s+ η
2

  s+ η
2

s− η
2

λ(φ(Z i
n, u))du

Z i
n


≤ ηCλ. (5)

Combining Lemma 5.16 and Eqs. (3)–(5), the result follows. �

We now look up the error made in replacing K byK i
n+1. This is

where we use the specific properties of quantization.

Lemma 5.18. For all 1 ≤ i ≤ d, k ∈ {1, . . . ,N − 1} and n ∈

{1, . . . ,N − k}, one hasKvk+n+1(Z i
n) −K i

n+1vk+n+1(Z i
n)


p

≤ Cf

S in+1 −S in+1


p
+

vk+n+1

Z i
n+1 −Z i

n+1


p

+


Q


vk+n+1

1

Cλ

α
+

Q


vk+n+1

∗
+

Cf

α


E1 + E2


+ 2E3

Z i
n −Z i

n


p
.

Proof. We haveKvk+n+1(Z i
n) −K i

n+1vk+n+1(Z i
n)


≤

Kvk+n+1(Z i
n) − E


Kvk+n+1(Z i

n)
Z i

n


+

EKvk+n+1(Z i
n)
Z i

n


−K i

n+1vk+n+1(Z i
n)


≤ E

Kvk+n+1(Z i
n) − Kvk+n+1(Z i

n)
Z i

n


+

EKvk+n+1(Z i
n)
Z i

n


−K i

n+1vk+n+1(Z i
n)

. (6)

By using the Lipschitz property ofK stated in LemmaA.4,we obtainE
Kvk+n+1(Z i

n) − Kvk+n+1(Z i
n)
Z i

n


p

≤


Q


vk+n+1

1

Cλ

α
+

Q


vk+n+1

∗

+ Cvk+n+1


E1 + E2


+ E3

Z i
n −Z i

n


p
. (7)

Then, recall that by construction of the quantized process, one
has

Z i
n,
S in = pin


Z i
n, S

i
n


. Hence we have the following crucial

property: σ {Z i
n} ⊂ σ {Z i

n, S
i
n}. By using the special structure of

the PDMP {X(t)}, we also have σ {Z i
n, S

i
n} ⊂ FTn , so that one has

σ {Z i
n} ⊂ σ {Z i

n}. It now follows from the definition of K given in
Eq. (1) thatEKvk+n+1(Z i

n)
Z i

n


−K i

n+1vk+n+1(Z i
n)


≤ E

F(Z i
n, t

∗(Z i
n)) − F(Z i

n, t
∗(Z i

n))
Z i

n


+ E

e−αSin+1vk+n+1(Z i
n+1) − e−αSin+1vk+n+1(Z i

n+1)
Z i

n


.

(8)

From Lemma A.3, we readily obtainE
F(Z i

n, t
∗(Z i

n)) − F(Z i
n, t

∗(Z i
n))
Z i

n


p

≤ E3
Z i

n −Z i
n


p , (9)

and it is easy to show thatE
e−αSin+1vk+n+1(Z i

n+1) − e−αSin+1vk+n+1(Z i
n+1)

Z i
n


p

≤

vk+n+1

 Z i
n+1 −Z i

n+1


p + αCvk+n+1

S in+1 −S in+1


p . (10)

Finally, recalling that Cvk+n ≤
Cf
α

and combining Eqs. (6)–(10) we
obtain the expected result. �

We turn to the error made in replacing J byJ in+1. Here we use
the specific properties of quantization again, and the lemmas on
indicator functions.

Lemma 5.19. For all 1 ≤ i ≤ d, k ∈ {1, . . . ,N − 1}, n ∈

{1, . . . ,N − k}, and 0 < η < minz∈Γ
i,Z
n

{∆(z)}, one has max
t∈G(Z in)

J (Mvk+n+1, vk+n+1) (Z i
n, t)

−J in+1 (Mvk+n+1, vk+n+1) (Z i
n, t)


p

≤


Q


vk+n+1

1

Cλ

α
+

Cf

α


E1 + E2 + α


t∗

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+ Cc

E1 + α


t∗


+ 2

c

1 +


c

2


t∗


+
1
η


Cf

α


1 +


t∗


+ Cc

t∗
Z i

n −Z i
n


p

+


2
η


2
Cf

α
+ Cc


+ Cf

S in+1 −S in+1


p

+

vk+n+1

Z i
n+1 −Z i

n+1


p
+


2Cf

α
+ Cc


Cλη.

Proof. By definition of J , we haveJ(Mvk+n+1, vk+n+1)(Z i
n, t)

−J in+1(Mvk+n+1, vk+n+1)(Z i
n, t)


≤

Ivk+n+1(Z i
n, t) −I in+1vk+n+1(Z i

n, t)


+

HMvk+n+1(Z i
n, t) −H i

n+1Mvk+n+1(Z i
n, t)

. (11)

For the first term on the right hand side of Eq. (11), we proceed as
for K in the preceding lemmaIvk+n+1(Z i

n, t) −I in+1vk+n+1(Z i
n, t)


≤ E

Ivk+n+1(Z i
n, t) − Ivk+n+1(Z i

n, t)
Z i

n


+

EIvk+n+1(Z i
n, t)

Z i
n


−I in+1vk+n+1(Z i

n, t)
.

On the one hand, it follows from Lemma A.3 that max
t∈G(Z in) E

Ivk+n+1(Z i
n, t) − Ivk+n+1(Z i

n, t)
Z i

n


p

≤


1
α


Q


vk+n+1

1Cλ + Cvk+n+1


λ

1


1 + CλCt∗


+ Cvk+n+1Cλ


t∗
 Z i

n −Z i
n


p
.

On the other hand, we use again the fact that σ {Z i
n} ⊂ σ {Z i

n} to
obtainEIvk+n+1(Z i

n, t)
Z i

n


−I in+1vk+n+1(Z i

n, t)


≤ E

1

{Sin+1<t∧t∗(Z in)}

e−αSin+1vk+n+1(Z i
n+1)

− e−αSin+1vk+n+1(Z i
n+1)

Z i
n


+ E


e−αSin+1vk+n+1(Z i

n+1)
1

{Sin+1<t∧t∗(Z in)}

− 1
{Sin+1<t∧t∗(Z in)}Z i

n


.

It remains to deal with the indicator function. Lemma 5.17 yields max
t∈G(Z in)

EIvk+n+1(Z i
n, t)

Z i
n


−I in+1vk+n+1(Z i

n, t)


p

≤ Cvk+n+1Cλη +


α +

2
η


Cvk+n+1

S in+1 −S in+1


p

+

vk+n+1

Z i
n+1 −Z i

n+1


p
+

2Cvk+n+1


t∗


η

Z i
n −Z i

n


p
.

By using the same arguments and Lemmas A.1 and A.3, we obtain
similar results for the second term on the right hand side of
Eq. (11), namely max
t∈G(Z in) E

HMvk+n+1(Z i
n, t) − HMvk+n+1(Z i

n, t)
Z i

n


p

≤


c

1 +


c

2


t∗

+ (Cvk+n+1 + Cc)


Ct∗

λ

1

+ (Cλ + α)

t∗
 Z i

n −Z i
n


p
,

and max
t∈G(Z in)

E HMvk+n+1(Z i
n, t)

Z i
n


−H i

n+1Mvk+n+1(Z i
n, t)


p

≤
2
η
(Cvk+n+1 + Cc)

S in+1 −S in+1


p
+ Cλ(Cvk+n+1 + Cc)η

+


α

t∗

(Cvk+n+1 + Cc) +


c

1 +


c

2


t∗


+
2[t∗]

η
(Cvk+n+1 + Cc)

Z i
n −Z i

n


p
,

showing the result. �

We now add up the preceding results to obtain the following
upper bound for Υ i

3.

Lemma 5.20. A upper bound for Υ i
3 isLd (Mvk+n+1, vk+n+1) (Z i

n)

−Li,dn+1 (Mvk+n+1, vk+n+1) (Z i
n)


p

≤ ∥Z i
n −Z i

n∥p


Q


vk+n+1

1

Cλ

α
+

Cf

α
(E1 + E2)

+


Q


vk+n+1

∗
+ 2E3


∨


Cc

E1 + α


t∗


+ 2

c

1 +


c

2


t∗


+
1
η


Cf

α


1 +


t∗


+ Cc

t∗


+

S in+1 −S in+1


p


Cf +

2
η


2
Cf

α
+ Cc



+

vk+n+1

Z i
n+1 −Z i

n+1


p
+


2Cf

α
+ Cc


Cλη.

5.3. Approximation of the value function

Nowwe have computed the value functions on the control grid,
we turn to the actual approximation of v0. As in the preceding
section, we define the quantized approximation of the underlying
Markov chain (Θn) starting from (x0, 0), the actual starting point of
the PDMP. Let (Zn,Sn)0≤n≤N−1 be the quantized approximation of
the sequence (Zn, Sn)0≤n≤N−1. The quantization algorithmprovides
us with another series of finite grids Γ Θ

n ⊂ E × R+ for all 0 ≤ n ≤

N − 1 as well as weights for each point of the grids and transition
probabilities from one grid to the next one. Let pn be the closest-
neighbour projection from E×R+ onto Γ Θ

n . Then the quantization
of Θn conditionally to Z0 = x0 is defined byΘn =

Zn,Sn = pn

Zn, Sn


.

We will also denote Γ Z
n the projection of Γ Θ

n on E and Γ S
n

the projection of Γ Θ
n on R+. We use yet again new quantized

approximations of operators H , I , K , J and Ld.
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Definition 5.21. For v ∈ L2, w defined on Γ Z
n+1, x ∈ E, n ∈

{0, . . . ,N − 1} and z ∈ Γ z
n , considerHn+1v(z, t) = E


e−α(t∧t∗(Zn))vφ(Zn, t ∧ t∗(Zn))

× 1{Sn+1≥t∧t∗(Zn)}
Zn = z


,

In+1w(z, t) = E

e−αSn+1w(Zn+1)1{Sn+1<t∧t∗(Zn)}

Zn = z

,

Kn+1v(z) = E

F(Zn, t∗(Zn)) + e−αSn+1v(Zn+1)

Zn = z

,

Jn+1(v, w)(z, t) = E

F(Zn, t) + e−αSn+1w(Zn+1)

× 1{Sn+1<t∧t∗(Zn)}Zn = z


+ E

e−α(t∧t∗(Zn))v(φ(Zn, t ∧ t∗(Zn)))

× 1{Sn+1≥t∧t∗(Zn)}Zn = z

,Ldn+1(v, w)(z) = min

t∈G(z)
Jn+1(v, w)(z, t) ∧Kn+1w(z).

With these discretized operators and the previous evaluation of thevk, we propose the following approximation scheme.

Definition 5.22. ConsidervN(z) = g(z) where z ∈ Γ Z
N and for

k ∈ {1, . . . ,N}

vk−1(z) =Ldk(Mvk,vk)(z), (12)

where z ∈ Γ Z
k−1.

See Fig. 1 for a graphical illustration of this numerical procedure.
Thereforev0(Z0) will be an approximation of v0(Z0) = v0(x0). The
derivation of the error bound for this scheme follows exactly the
same lines as in the preceding section. Therefore we omit it and
only state our main result.

Theorem 5.23. For all 0 ≤ n ≤ N−1, suppose that ∆(z) for z ∈ Γ Z
n

is such thatD4
Zn −Zn

p
+ D5

Sn+1 −Sn+1


p

D3
< min

z∈Γ Z
n

{∆(z)}.

Then we havevn(Zn) −vn(Zn)
p

≤

vn+1(Zn+1) −vn+1(Zn+1)


p
+ max

y∈U

vn+1(y) −vn+1(y)


+D1
n∥Zn −Zn∥p + 3


vn+1

Zn+1 −Zn+1


p

+ 2Cf

Sn+1 −Sn+1


p
+ D2

n

∆(Zn)
p

+ 2


D3


D4
Zn −Zn

p
+ D5

Sn+1 −Sn+1


p


,

with

D1
n = [vn] +


Q


vn+1

1

Cλ

α
+

Cf

α


E1 + E2


+


Q


vn+1

∗
+ 2E3


∨


2

c

1 +


c

2


t∗


+ CcE1

+ α

t∗
 Cf

α
+ Cc


,

D2
n = Cf + Cvn+1Cλ +


c

2 + (Cc + Cvn+1)(Cλ + α),

D3
=


2Cf

α
+ Cc


Cλ,

D4
= 2


t∗
 2Cf

α
+ Cc


,

D5
= 2


2Cf

α
+ Cc


.

Remark 5.24. By using the same arguments as in Remark 5.12, it
can be shown that ∥vn(Zn) − vn(Zn)∥p can be made arbitrarily
small by an adequate choice of the discretization parameters. From
a theoretical point of view, the error can be calculated by iterating
the result of Theorem 5.23. However, this result is not presented
here because it would lead to an intricate expression. From a
numerical point of view, a computer can easily estimate this error
as shown in the example of Section 6.

5.4. Step by step description of the algorithm

Recall that themain objective of our algorithm is to compute the
approximationv0(x0) of the value function of the impulse control
problem v0(x0). The global recursive procedure is described on
Fig. 1.
The calculation of v0(x0) is based on the backward recursion
given in Definition 5.22 and described in the first line of Fig. 1. It
involves the operatorsLdj constructed with the quantized processΘn starting from x0. This recursion is not self contained and
requires previous evaluation of the functionsvj on the control set
U.
The lower part of Fig. 1, shows how to compute these functionsvj
at each point of the control grid U. This is the triangular backward
recursion given in Definition 5.9. More precisely, definevN = g
and set j < N and suppose that all the vl for all l > j have
already been computed everywhere on the control set U. One then
computesvj in the following way, following the j-th line of Fig. 1
counting from the bottom. One first iterates the operatorsL1,dk and
uses the quantized process Θ1

n , to obtainvj(y1). Then one iterates
the operatorsL2,dk and uses the quantized process Θ2

n , to obtainvj(y2), and so on until the last pointvj(yu). Thus one obtainsvj at
all points of the control set U.

5.5. Practical implementation

The procedure defined above is the natural one to obtain
convergence rates for our approximations. However, in practicewe
proceed in a different order.

The first step is to fix the computational horizon N . This point
was discussed earlier. The second step is not the time discretiza-
tion, but the computation of the quantized approximations of the
sequences (Θn) and (Θ i

n). The quantization algorithmmay be quite
long to run. However, it must be pointed out that this quantiza-
tion step only depends on the optimization procedure through the
control set U but it does not depend on the cost functions f and c .
The sequence (Θn) is obtained in a straightforward way. As for the
(Θ i

n), if the control set is very small, it is possible to run as many
sequences of grids as there are points in the control set. Otherwise,
one can do with only one sequence of grids computed with the
Markov chain (Θ

µ
n ) with a random starting point Z0 = Zµ

0 uni-
formly distributed on the control set U. To derive the point-wise
approximation error, one simply uses the finiteness of U and the
definition of the Lp norm.

|vk(yi) −vk(yi)| ≤ u
u

i=1

|vk(yi) −vk(yi)|
1
u

≤ u1/p
vk(Z

µ

0 ) −vk(Zµ

0 )


p
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where u is the cardinal of U. Notice that the last term is bounded
in Theorem 5.11. Hence, one really only needs two series of
quantization grids.

Once the quantization grids are computed and stored, one
computes the path-adapted time grids G(z) for all z in all the
quantization grids, that is only a finite number of z. The step ∆(z)
can usually be chosen constant equal to ∆, so that either one can
store the whole time grids, or one only needs to store the values of
∆ and t∗(z) for all z in the quantization grids.

Once these preliminary computations are done, one can finally
compute the value function. This last step is comparatively faster.
The only point left to discussion is how to choose the initializing
function g . The most interesting starting function is the cost h of
the no impulse strategy, because then the value function VN has a
natural interpretation. However, in general, one needs additional
assumptions on Q to ensure that h is in L. Another problem, is
that in general computing h is a difficult problem, especially as we
need to know its value at many different points, as explained in
Remark 5.1. To overcome these difficulties, one can choose g to be
a upper bound of h, for instance, g = α−1Cf . In the special cases
where h can be explicitly computed, we advise to use h.

6. Example

Now we apply our procedure to a simple PDMP and present
numerical results. This example is quite similar to example (54.29)
in Davis (1993), we only added random jumps to obtain a non
trivial Markov chain (Zn, Sn).

Set E = [0, 1[, and ∂E = {1}. The flow is defined on [0, 1] by
φ(x, t) = x+vt for some positive v, the jump rate is defined on [0,
1] by λ(x) = βx, with β > 0, and for all x ∈ [0, 1], one sets Q (x, ·)
to be the uniform law on [0, 1/2]. Thus, the process moves with
constant speed v towards 1, but the closer it gets to the boundary
1, the higher the probability to jump backwards on [0, 1/2]. Figs. 2
and 3 show two trajectories of this process for x0 = 0, v = 1 and
β = 3 and up to the 10-th jump.
The running cost is defined on E by f (x) = 1 − x and the
intervention cost is a constant c0. Therefore, the best performance
is obtainedwhen the process is close to the boundary 1. The control
set U is the set of k

u , 0 ≤ k ≤ u− 1 for some fixed integer u. In this
special case, the control grid is already a discretization of thewhole
state space of the process. Therefore one needs only one series of
grids starting from the control points to obtain an approximation
of the value function at each point of the control grid.

We ran our algorithm for the parameters x0 = 0, v = 1, β = 3,
c0 = 0.08, the discount factor α = 2 and u = 50 points in the
control grid and several values of the horizon N .

For an horizon N = 5 (respectively, N = 10, N = 15)
interventions or jumps, Fig. 4 (respectively, Figs. 5 and 6) gives
the approximated value function we obtained (computed at the 50
points of the control grid) for 50, 100 and 500 discretization points
in each quantization grid and. As expected, the approximation gets
smoother and lower as the number of points in the quantization
grids increases.

The theoretical errors corresponding to the horizon N = 5
(respectively, N = 10, N = 15) are given in Table 1 (respectively,
Tables 2 and 3). The values of the error are fairly high and
conservative, but it must be pointed out that on the one hand,
they do decrease as the number of points in the quantization grids
increase, as expected; on the other hand their expressions are
calculated and valid for a very wide and general class of PDMPs,
hence when applied to a specific example, they cannot be very
sharp.

Notice also that the approximated value function obtained for
the horizon of N = 10 jumps or interventions is much lower
than that obtained for the horizon N = 5 jumps or interventions.

Fig. 2. One trajectory of the PDMP.

Fig. 3. Another trajectory of the PDMP.

Fig. 4. Approximated value function for N = 5.

Table 1
Theoretical errors for N = 5.

Number of points in the quant. grids ∥v0(Z0) −v0(Z0)∥2

50 4636
100 3700
500 2141
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Fig. 5. Approximated value function for N = 10.

Fig. 6. Approximated value function for N = 15.

Table 2
Theoretical errors for N = 10.

Number of points in the quant. grids ∥v0(Z0) −v0(Z0)∥2

50 5.341·1011

100 4.501·1011

500 2.567·1011

Table 3
Theoretical errors for N = 15.

Number of points in the quant. grids ∥v0(Z0) −v0(Z0)∥2

50 1.460·1021

100 1.288·1021

500 0.750·1021

This is natural as it is a minimization problem, and the more
there are possible interventions the lower the value function is.
This also suggests that the horizon N = 5 is not large enough

Fig. 7. Approximated value function for N = 5, N = 10 and N = 15 for 500 points
in the quantization grids.

to approximate the infinite horizon problem. Fig. 7 gives the
approximated value function we obtained (computed at the 50
points of the control grid) for 500 points in the quantization grids
and respective horizons of N = 5, N = 10 and N = 15 jumps
or interventions. There is very little difference between the results
for N = 10 and N = 15, suggesting that it is enough to take an
horizon of 10 jumps or intervention to approximate the infinite
horizon optimization problem.

Appendix. Lipschitz continuity results

A.1. Lipschitz properties of the operators

We start with preliminary results on operatorsM , H , F and I .

Lemma A.1. For any g defined on U, Mg ∈ L. Moreover,
Mg

1 ≤


c

1,


Mg

2 ≤


c

2,


Mg

∗

≤

c

∗
,

CMg ≤ Cc + Cg .

Proof. By using the fact that
Mg(x) − Mg(y)

 ≤ supz∈U

c(x, z)−
c(y, z)

 and Assumption 4.2, the result follows easily. �

Lemma A.2. Let v ∈ L. Then for all (x, y) ∈ E2 and (t, u) ∈ R2
+
, one

has

|Hv(x, t) − Hv(y, u)| ≤ D1(v) |x − y| + D2(v)|t − u|,

where

• if t < t∗(x) and u < t∗(y),

D1(v) =

v

1 + CvCt∗


λ

1, D2(v) =


v

2 + Cv(Cλ + α),

• if t = t∗(x) and u = t∗(y),

D1(v) =

v

∗
+ Cv


Ct∗

λ

1 + (Cλ + α)


t∗


,

D2(v) = 0,

• otherwise,

D1(v) =

v

1 +


v

2


t∗

+ Cv


Ct∗

λ

1 + (Cλ + α)


t∗


,

D2(v) =

v

2 + Cv(Cλ + α).
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Proof. This is straightforward. �

Lemma A.3. For all w ∈ L, (x, y) ∈ E2 and (t, u) ∈ R2
+
, one hasF(x, t) − F(y, u)

 ≤
1
α


f

1 + Cf Ct∗


λ

1


|x − y|

+ Cf

|t − u| ∨


t∗

|x − y|


,Iw(x, t) − Iw(y, u)

 ≤
1
α


Q


w

1Cλ

+ Cw


λ

1


1 + CλCt∗


|x − y|

+ CwCλ


|t − u| ∨


t∗

|x − y|


.

Proof. Suppose, without loss of generality, that t ∧ t∗(x) ≤ u ∧

t∗(y). Then, one hasF(x, t) − F(y, u)
 ≤

 t∧t∗(x)

0
e−αs

f φ(x, s)

e−Λ(x,s)

− f

φ(y, s)


e−Λ(y,s)

ds
+

 u∧t∗(y)

t∧t∗(x)

f φ(y, s)

e−αs−Λ(y,s)

ds
≤


f

1 + Cf Ct∗


λ

1

  ∞

0
e−αsds|x − y|

+ Cf
u ∧ t∗(y) − t ∧ t∗(x)

.
From the fact that

u ∧ t∗(y) − t ∧ t∗(x)
 ≤ |t − u| ∨


t∗

|x − y|

we get the first inequality. By using similar arguments, it is easy to
obtain the last result. �

Now we turn to the Lipschitz property of operator K .

Lemma A.4. For w ∈ L and (x, y) ∈ E2, one hasKw(x) − Kw(y)
 ≤


Q


w

1

Cλ

α
+

Q


w

∗

+ Cw


E1 + E2


+ E3


|x − y| .

Proof. This is a direct consequence of the definition of operator K
and Lemmas A.2 and A.3. �

Finally, we study the Lipschitz properties of operator J .

Lemma A.5. For all (v, w) ∈ C2, x ∈ E and (t, u) ∈ R2
+
, one hasJ(v, w)(x, t) − J(v, w)(x, u)

 ≤


Cf + CwCλ

+

v

2 + Cv(Cλ + α)


|t − u| .

Proof. By using (1) and Lemmas A.2 and A.3, the result follows
easily. �

Lemma A.6. For all (v, w) ∈ L2, (x, y) ∈ E2 and t ≥ 0, one has

|J(v, w)(x, t) − J(v, w)(y, t)| ≤


v

1 +


v

2


t∗


+

Q


w

1

Cλ

α
+ CvE1 + CwE2 + E3


|x − y|

where

E1 = Ct∗

λ

1 + (Cλ + α)


t∗

,

E2 = Cλ


t∗

+

λ

1

1 + CλCt∗

α
,

E3 =

f

1

1
α

+ Cf


Ct∗

λ

1

α
+

t∗


.

Proof. Again, this is a direct consequence of (1) and Lemmas A.2
and A.3. �

Remark A.7. It is easy to obtain that for (v, w) ∈ C2, s ∈ R+ and
(x, y) ∈ E2,inft≥s

J(v, w)(x, t) − inf
t≥s

J(v, w)(y, t)


≤ sup
t≥0

J(v, w)(x, t) − J(v, w)(y, t)
.

Lemma A.8. Let (v, w) ∈ L2. Then for all x ∈ E and (s, t) ∈ R2
+
,infu≥t

J(v, w)(x, u) − inf
u≥s

J(v, w)(x, u)


≤


Cf + CwCλ +


v

2 + Cv(Cλ + α)


|t − s|.

Proof. Without loss of generality it can be assumed that s ≤ t .
Therefore, one hasinfu≥t

J(v, w)(x, u) − inf
u≥s

J(v, w)(x, u)


= inf
u≥t

J(v, w)(x, u) − inf
u≥s

J(v, w)(x, u). (A.1)

Remark that there exists s ∈ [s ∧ t∗(x), t∗(x)] such that
infu≥s J(w, g)(x, u) = J(w, g)(x, s). Consequently, if s ≥ t ∧ t∗(x)

then one has
 infu≥t J(v, w)(x, u) − infu≥s J(v, w)(x, u)

 = 0.

Now if s ∈ [s ∧ t∗(x), t ∧ t∗(x)[, then one has

inf
u≥t

J(v, w)(x, u) − inf
u≥s

J(v, w)(x, u)

≤ J(v, w)(x, t) − J(v, w)(x, s).

From Lemma A.5, we obtain the following inequality

inf
u≥t

J(v, w)(x, u) − inf
u≥s

J(v, w)(x, u)

≤


Cf + CwCλ +


v

2 + Cv(Cλ + α)


|t − s| . (A.2)

Combining Eqs. (A.1) and (A.2) and the fact that |t − s| ≤ |t − s|
the result follows. �

A.2. Lipschitz properties of the operator L

Now we study the Lipschitz continuity of our main operator.

Lemma A.9. For all (v, w) ∈ L2, x ∈ E and t ∈ [0, t∗(x)) and
u ∈ R+, one has

F

φ(x, t), u


= eαt+Λ(x,t)


F(x, t + u) − F(x, u)


,

Iw

φ(x, t), u


= eαt+Λ(x,t)


Iw(x, t + u) − Iw(x, u)


,

Hv

φ(x, t), u


= eαt+Λ(x,t)Hv(x, t + u).

Proof. By using the semi-group property of φ, we have Λ

φ(x, t),

u


= Λ(x, t + u) − Λ(x, t) for t + u < t∗(x) and noting that
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t∗(φ(x, t)) = t∗(x) − t for t < t∗(x), a simple change of variable
yields

F

φ(x, t), u


= eαt+Λ(x,t)

 (t+u)∧t∗(x)

t
e−αs−Λ(x,s)f


φ(x, s)


ds,

and we get the first equation. The other equalities can be obtained
by using similar arguments. �

Lemma A.10. For all (v, w) ∈ L2, x ∈ E and t ∈ [0, t∗(x)),

L(v, w)

φ(x, t)


= eαt+Λ(x,t)


inf
s≥t

J(v, w)(x, s) ∧ Kw(x)


− F(x, t) − Iw(x, t)


.

Proof. For t ∈ [0, t∗(x)) and u ∈ R+, we have from Lemma A.9,
(1)

J(v, w)

φ(x, t), u


= eαt+Λ(x,t)J(v, w)(x, t + u)

− F(x, t) − Iw(x, t)

,

Kw

φ(x, t)


= eαt+Λ(x,t)Kw(x) − F(x, t) − Iw(x, t)


.

Consequently, from Eq. (2), it follows

L(v, w)

φ(x, t)


= eαt+Λ(x,t)


inf
u≥0

J(v, w)(x, t + u)

∧ Kw(x)


− F(x, t) − Iw(x, t)


,

showing the result. �

Proposition A.11. For all w ∈ L, Lw ∈ L, and
Lw


1 ≤ e(α+Cλ)Ct∗


Cf

α


+


c

1 +


c

2


t∗


+ CcE1


∨


Q


w

∗


+

λ

1Ct∗Cc + 2E3 +

2

Q

Cλ

α


w

1

+


E1 + 2E2 +


λ

1Ct∗(1 + Cλ/α)


Cw


,


Lw


2 ≤ e(α+Cλ)Ct∗


3Cf +


c

2 + 2Cc(Cλ + α) +

Cf Cλ

α

+ Cw


4Cλ +

C2
λ

α
+ α


,

Lw

∗

≤

Lw


1 +


Lw


2


t

∗
,

Lw


≤


Q

Cλ

α


w

1 + E3 +


c

1 +


c

2


t∗


+ CcE1

∨


Q


w

∗


+

E1 + E2


Cw.

Proof. Let us denote Lw by g . We have for (x, y) ∈ E2 and t ∈

[0, t∗(x) ∧ t∗(y)]g(φ(x, t)) − g(φ(y, t))
 ≤ eαt+Λ(y,t)

F(x, t) − F(y, t)


+
Iw(x, t) − Iw(y, t)


+ eαt+Λ(y,t)

infs≥t
J(Mw, w)(x, s)

− inf
s≥t

J(Mw, w)(y, s)


∨
Kw(x) − Kw(y)


+
eαt+Λ(x,t)

− eαt+Λ(y,t)


×

infs≥t
J(Mw, w)(x, s)

∧ Kw(x)


− F(x, t) − Iw(x, t)
 .

It is easy to show that for x ∈ E, t ∈ [0, t∗(x)], and w ∈ L we have

eαt+Λ(x,t)
≤ e(α+Cλ)Ct∗ ,

infs≥t J(Mw, w)(x, s)∧Kw(x)

−F(x, t)−

Iw(x, t)
 ≤

1
α
(Cf + CλCw) + Cc + Cw and for (x, y) ∈ E2 and t ∈

[0, t∗(x)∧t∗(y)]
eαt+Λ(x,t)

−eαt+Λ(y,t)
 ≤ e(α+Cλ)Ct∗


λ

1Ct∗ |x − y|.

Consequently, by using Lemmas A.3 and A.4 and Remark A.7, we
get the first equation.

For x ∈ E and (s, t) ∈ [0, t∗(x)]2g(φ(x, s)) − g(φ(x, t))


≤ eαt+Λ(x,t)
Iw(x, s) − Iw(x, t)


+ eαt+Λ(x,t)

infu≥s
J(Mw, w)(x, u) − inf

u≥t
J(Mw, w)(x, u)


+ |F(x, s) − F(x, t)|


+

eαs+Λ(x,s)
− eαt+Λ(x,t)


×


inf
u≥s

J(Mw, w)(x, u) ∧ Kw(x)


− F(x, s) − Iw(x, s)
.

Note that for x ∈ E, (s, t) ∈ [0, t∗(x)]2
eαs+Λ(x,s)

− eαt+Λ(x,t)
 ≤

e(α+Cλ)Ct∗ (Cλ + α)|t − s|. Consequently, by using Lemmas A.3 and
A.8, we obtain the second equation.

The third inequality is straightforward and finally, for (x, y) ∈

E2 we haveg(x) − g(y)
 ≤

infs≥0
J(Mw, w)(x, s)

− inf
s≥0

J(Mw, w)(y, s)
 ∨ |Kw(x) − Kw(y)| .

By using Remark A.7 and Lemma A.4, we get the last equation. �

Corollary A.12. For all 0 ≤ n ≤ N, the value functions vn are in L.

Proof. As vN = g is in L by assumption, a recursive application of
Proposition A.11 yields the result. �
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1. Introduction

The aim of this paper is to propose a practical numerical method to approximate
some expectations related to a piecewise deterministic Markov process thanks to
the quantization of a discrete-time Markov chain naturally embedded within the
continuous-time process.

Piecewise deterministic Markov processes (PDMP’s) have been introduced by
M. H. A. Davis in [5] as a general class of stochastic models. PDMP’s are a
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family of Markov processes involving deterministic motion punctuated by random
jumps. The motion depends on three local characteristics namely the flow ˆ, the
jump rate � and the transition measure Q, which specifies the postjump location.
Starting from the point x, the motion of the process follows the flow ˆ.x; t/ until
the first jump time T1, which occurs either spontaneously in a Poisson-like fashion
with rate �.ˆ.x; t// or when the flow ˆ.x; t/ hits the boundary of the state space.
In either case, the location of the process at the jump time T1 is selected by the
transition measure Q.ˆ.x;T1/; � / and the motion restarts from this new point XT1

denoted by Z1. We define similarly the time S2 until the next jump, T2 D T1CS2

with the next postjump location defined by Z2 DXT2
and so on. Thus, associated

to the PDMP we have the discrete-time Markov chain .Zn;Sn/n2N, given by the
postjump locations and the interjump times. A suitable choice of the state space
and the local characteristics ˆ, � and Q provides stochastic models covering a
great number of problems of operations research as described in [5, Section 33].

We are interested in the approximation of expectations of the form

Ex

�Z TN

0

l.Xt / dt C

NX
jD1

c.XT�
j
/1fXT�

j
2@Eg

�

where .Xt /t�0 is a PDMP and l and c are some nonnegative, real-valued, bounded
functions and @E is the boundary of the domain. Such expectations are discussed
by M. H. A. Davis in [5, Chapter 3]. They often appear as cost or reward functions
in optimization problems. The first term is referred to as the running cost while
the second may be called the boundary jump cost. Besides, they are quite general
since Davis shows how a “wide variety of apparently different functionals” can be
obtained from the above specific form. For example, this wide variety includes
quantities such as a mean exit time and even, for any fixed t � 0, the distribution
of Xt (that is, Ex Œ1F .Xt /� where F is a measurable set).

There are surprisingly few works in the literature devoted to the actual computa-
tion of such expectations, using other means than direct Monte Carlo simulations.
Davis showed that these expectations satisfy integrodifferential equations. How-
ever, the set of partial differential equations that is obtained is unusual. Roughly
speaking, these differential equations are basically transport equations with a non-
constant velocity and they are coupled by the boundary conditions and by some
integral terms involving kernels that are derived from the properties of the underly-
ing stochastic process. The main difficulty comes from the fact that the domains on
which the equations have to be solved vary from one equation to another making
their numerical resolution highly problem specific. Another similar approach has
been recently investigated in [4; 7]. It is based on a discretization of the Chapman
Kolmogorov equations satisfied by the distribution of the process .Xt /t�0. The
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authors propose an approximation of such expectations based on finite volume
methods. Unfortunately, their method is only valid if there are no jumps at the
boundary. Our approach is completely different and does not rely on differential
equations, but on the fact that such expectations can be computed by iterating
an integral operator G. This operator only involves the embedded Markov chain
.Zn;Sn/n2N and conditional expectations. It is therefore natural to propose a com-
putational method based on the quantization of this Markov chain, following the
same idea as [6].

There exists an extensive literature on quantization methods for random vari-
ables and processes. The interested reader may for instance consult [8], [9] and
the references within. Quantization methods have been developed recently in nu-
merical probability or optimal stochastic control with applications in finance (see
[1; 2; 9], for instance). The quantization of a random variable X consists in finding
a finite grid such that the projection yX of X on this grid minimizes some Lp norm
of the difference X � yX . Roughly speaking, such a grid will have more points in the
areas of high density of X . As explained for instance in [9, Section 3], under some
Lipschitz-continuity conditions, bounds for the rate of convergence of functionals
of the quantized process towards the original process are available.

In the present work, we develop a numerical method to compute expectations
of functionals of the above form where the cost functions l and c satisfy some
Lipschitz-continuity conditions. We first recall the results presented by Davis ac-
cording to whom, the above expectation may be computed by iterating an operator
denoted by G. Consequently, it appears natural to follow the idea developed in [6]
namely to express the operator G in terms of the underlying discrete-time Markov
chain .Zn;Sn/n2N and to replace it by its quantized approximation. Moreover, in
order to prove the convergence of our algorithm, we replace the indicator function
1fXT�

j
2@Eg contained within the functional by some Lipschitz continuous approx-

imation. Bounds for the rate of convergence are then obtained. However, and this
is the main contribution of this paper, we then tackle two important aspects that
had not been investigated in [6].

The first aspect consists in allowing c and l to be time-dependent functions,
although still Lipschitz continuous, so that we may compute expectations of the
form

Ex

�Z TN

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
:

This important generalization has huge applicative consequences. For instance, it
allows discounted cost or reward functions such as l.x; t/D e�ıt l.x/ and c.x; t/D

e�ıtc.x/ where ı is some interest rate. To compute the above expectation, our
strategy consists in considering, as suggested by Davis in [5], the time-augmented
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process zXt D .Xt ; t/. Therefore, a natural way to deal with the time-dependent
problem is to apply our previous approximation scheme to the time-augmented
process . zXt /t�0. However, it is far from obvious, that the assumptions required
by our numerical method still hold for this new PDMP . zXt /t�0.

The second important generalization is to consider the deterministic time hori-
zon problem. Indeed, it seems crucial, regarding the applications, to be able to
approximate

Ex

� Z tf

0

l.Xt ; t/ dt C
X

Tf�tf

c.XT�
f
;Tf /1fXT�

f
2@Eg

�

for some fixed tf > 0 regardless of how many jumps occur before this determin-
istic time. To compute this quantity, we start by choosing a time N such that
P .TN < tf / be small so that the previous expectation boils down to

Ex

�Z TN

0

l.Xt ; t/1ft�tf gdt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg1fTj�tf g

�
:

At first sight, this functional seems to be of the previous form. Yet, one must recall
that Lipschitz continuity conditions have been made concerning the cost functions
so that the indicator functions 1f��tf g prevent a direct application of the earlier
results. We deal with the two indicator functions in two different ways. On the one
hand, we prove that it is possible to relax the regularity condition on the running
cost function so that our algorithm still converges in spite of the first indicator
function. On the other hand, since the same reasoning cannot be applied to the
indicator function within the boundary jump cost term, we bound it between two
Lipschitz continuous functions. This provides bounds for the expectation of the
deterministic time horizon functional.

An important advantage of our method is that it is flexible. Indeed, as pointed
out in [1], a quantization based method is “obstacle free” which means, in our case,
that it produces, once and for all, a discretization of the process independently of
the functions l and c since the quantization grids merely depend on the dynamics
of the process. They are only computed once, stored off-line and may therefore
serve many purposes. Once they have been obtained, we are able to approximate
very easily and quickly any of the expectations described earlier. This flexibility
is definitely an important advantage of our scheme over standard methods such
as Monte Carlo simulations since, with such methods, we would have to run the
whole algorithm for each expectation we want to compute. This point is illustrated
in Section 6 where we easily solve an optimization problem that would be very
laboriously handled by Monte Carlo simulations.
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The paper is organized as follows. We first recall, in Section 2, the definition
of a PDMP and state our assumptions. In Section 3, we introduce the recursive
method to compute the expectation. Section 4 presents the approximation scheme
and a bound for the rate of convergence. The main contribution of the paper lies in
Section 5, which contains generalizations to time-dependent parameters and deter-
ministic time-horizon problems. The paper is illustrated by a numerical example
in Section 6; a conclusion (Section 7) is followed by some appendixes containing
technical results.

2. Definitions and assumptions

For all metric space E, we denote by B.E/ its Borel �-field and B.E/ the set of
real-valued, bounded and measurable functions defined on E. For a; b 2 R, set
a^ b Dmin.a; b/, a_ b Dmax.a; b/, and aC D a_ 0.

Definition of a PDMP. In this first section, let us define a piecewise deterministic
Markov process and introduce some general assumptions. Let M be a finite set
called the set of the modes that will represent the different regimes of evolution of
the PDMP. For each m 2M , the process evolves in Em, an open subset of Rd . Let

E D
˚
.m; �/;m 2M; � 2Em

	
:

This is the state space of the process .Xt /t2RC D .mt ; �t /t2RC . Let @E be its
boundary and E its closure and for any subset Y of E, Y c denotes its complement.

A PDMP is defined by its local characteristics .ˆm; �m;Qm/m2M .

� For each m 2M , ˆm W R
d �R! Rd is a continuous function called the flow

in mode m. For all t 2 R, ˆm. � ; t/ is an homeomorphism and t !ˆm. � ; t/

is a semigroup; i.e., for all � 2 Rd , ˆm.�; t C s/D ˆm.ˆm.�; s/; t/. For all
x D .m; �/ 2E, define the deterministic exit time from E:

t�.x/D inf
˚
t > 0 such that ˆm.�; t/ 2 @Em

	
:

We use here and throughout the convention inf ∅DC1.

� For all m 2 M , the jump rate �m W Em ! RC is measurable, and for all
.m; �/ 2E, there exists � > 0 such thatZ �

0

�m.ˆm.�; t// dt <C1:

� For all m 2M , Qm is a Markov kernel on .B.E/;Em/ that satisfies

Qm.�; f.m; �/g
c/D 1 for all � 2Em:
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From these characteristics, it can be shown (see [5]) that there exists a filtered
probability space .�;F;Ft ; .Px/x2E/ on which a process .Xt /t2RC is defined.
Its motion, starting from a point x 2E, may be constructed as follows. Let T1 be
a nonnegative random variable with survival function

Px.T1 > t/D

�
e�ƒ.x;t/ if 0� t < t�.x/;

0 if t � t�.x/;

where for x D .m; �/ 2E and t 2 Œ0; t�.x/�,

ƒ.x; t/D

Z t

0

�m.ˆm.�; s// ds:

One then chooses an E-valued random variable Z1 according to the distribution
Qm.ˆm.�;T1/; � /. The trajectory of Xt for t � T1 is

Xt D

�
.m; ˆm.�; t// if t < T1;

Z1 if t D T1:

Starting from the point XT1
DZ1, one then selects in a similar way S2 D T2�T1

the time between T1 and the next jump, Z2 the next postjump location and so on.
Davis shows, in [5], that the process so defined is a strong Markov process .Xt /t�0

with jump times .Tn/n2N (with T0 D 0). The process .‚n/n2N D .Zn;Sn/n2N

where Zn D XTn
is the postjump location and Sn D Tn �Tn�1 (with S0 D 0) is

the n-th interjump time is clearly a discrete-time Markov chain.
The following assumption about the jump-times is standard (see [5, Section 24],

for example):

Assumption 2.1. For all .x; t/ 2E �RC, Ex

�P
k 1fTk<tg

�
<C1.

It implies in particular that Tk goes to infinity a.s. when k goes to infinity.

Notation and assumptions. For notational convenience, any function h defined on
E will be identified with its component functions hm defined on Em. Thus, one
may write

h.x/D hm.�/ when x D .m; �/ 2E:

We also define a generalized flow ˆ WE �RC!E such that

ˆ.x; t/D .m; ˆm.�; t// when x D .m; �/ 2E:

Define on E the following distance, for x D .m; �/ and x0 D .m0; �0/ 2E:

jx�x0j D

�
C1 if m¤m0;

j� � �0j otherwise.
(1)
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For any function w in B.E/, introduce the notation

Qw.x/D

Z
E

w.y/Q.x; dy/, Cw D sup
x2E

jw.x/j;

and for any Lipschitz continuous function w in B.E/, denote by Œw�E , or if there
is no ambiguity by Œw�, its Lipschitz constant:

Œw�E D sup
x¤y2E

jw.x/�w.y/j

jx�yj
;

with the convention 1

1
D 0.

Remark 2.2. For w 2 B.E/ and from the definition of the distance on E, one has
Œw�Dmaxm2M Œwm�.

Definition 2.3. Denote by Lc.E/ the set of functions w 2B.E/ that are Lipschitz
continuous along the flow; i.e., the real-valued, bounded, measurable functions
defined on E and satisfying the following conditions:

� For all x 2 E, the map w.ˆ.x; � // W Œ0; t�.x//! R is continuous, and the
limit limt!t�.x/w.ˆ.x; t// exists and is denoted by w

�
ˆ.x; t�.x//

�
.

� There exists Œw�E
1
2 RC such that for all x;y 2E and t 2 Œ0; t�.x/^ t�.y/�,

one has ˇ̌
w.ˆ.x; t//�w.ˆ.y; t//

ˇ̌
� Œw�E1 jx�yj:

� There exists Œw�E
2
2 RC such that for all x 2E and t;u 2 Œ0; t�.x/�, one hasˇ̌

w.ˆ.x; t//�w.ˆ.x;u//
ˇ̌
� Œw�E2 jt �uj:

� There exists Œw�E� 2 RC such that for all x;y 2E, one hasˇ̌
w.ˆ.x; t�.x///�w.ˆ.y; t�.y///

ˇ̌
� Œw�E� jx�yj:

Denote by Lc.@E/ the set of real-valued, bounded, measurable functions de-
fined on @E satisfying the following condition:

� There exists Œw�@E� 2 RC such that for all x;y 2E, one hasˇ̌
w.ˆ.x; t�.x///�w.ˆ.y; t�.y///

ˇ̌
� Œw�@E� jx�yj:

Remark 2.4. When there is no ambiguity, we will use the notation Œw�i instead of
Œw�Ei for i 2 f1; 2;�g and Œw�� instead of Œw�@E� .

Remark 2.5. In Definition 2.3, we used the generalized flow for notational conve-
nience. For instance, the definition of Œw�1 is equivalent to the following: for all
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m 2M , there exists Œwm�1 2 RC such that for all �; �0 2Em and t 2 Œ0; t�.m; �/^

t�.m; �0/�, one hasˇ̌
wm.ˆm.�; t//�wm.ˆm.�

0; t//
ˇ̌
� Œwm�1j� � �

0
j:

Let Œw�1 Dmaxm2M Œwm�1.

Definition 2.6. For all u � 0, denote by Lu
c .E/ the set of functions w 2 B.E/

Lipschitz continuous along the flow until time u; i.e., the real-valued, bounded,
measurable functions defined on E and satisfying the following conditions:

� For all x2E, the mapw.ˆ.x; � // W Œ0; t�.x/^u/!R is continuous. If t�.x/�

u, then limt!t�.x/w.ˆ.x; t// exists and is denoted by w
�
ˆ.x; t�.x//

�
.

� There exists Œw�E;u
1
2RC such that for all x;y 2E and t 2 Œ0; t�.x/^t�.y/^u�,

one has ˇ̌
w.ˆ.x; t//�w.ˆ.y; t//

ˇ̌
� Œw�

E;u
1
jx�yj:

� There exists Œw�E;u
2
2 RC such that for all x 2E and t; t 0 2 Œ0; t�.x/^u�, one

has ˇ̌
w.ˆ.x; t//�w.ˆ.x; t 0//

ˇ̌
� Œw�

E;u
2
jt � t 0j:

� There exists Œw�E;u� 2RC such that for all x;y 2E, if t�.x/�u and t�.y/�u,
one has ˇ̌

w.ˆ.x; t�.x///�w.ˆ.y; t�.y///
ˇ̌
� Œw�

E;u
� jx�yj:

Remark 2.7. For all u � u0, one has Lu0

c .E/ � Lu
c .E/ with Œw�E;ui � Œw�

E;u0

i

where i 2 f1; 2;�g.

Remark 2.8. Definitions 2.3 and 2.6 correspond respectively to the Lipschitz and
local Lipschitz continuity along the flow that is, along the trajectories of the process.
They can be replaced by (local) Lipschitz assumptions on the flow ˆ, t� and w in
the classical sense.

We will require the following assumptions.

Assumption 2.9. The jump rate � is bounded and there exists Œ��1 2 RC such that
for all x;y 2E and t 2 Œ0; t�.x/^ t�.y/�, one hasˇ̌

�.ˆ.x; t//��.ˆ.y; t//
ˇ̌
� Œ��1jx�yj:

Assumption 2.10. The deterministic exit time from E, denoted by t�, is assumed
to be bounded and Lipschitz continuous on E.

Remark 2.11. Since the deterministic exit time t� is bounded by Ct� , one may
notice that Lu

c .E/ for u� Ct� is no other than Lc.E/.
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Remark 2.12. In most practical applications, the physical properties of the system
ensure that either t� is bounded, or the problem has a natural finite deterministic
time horizon tf . In the latter case, there is no loss of generality in considering that
t� is bounded by this deterministic time horizon. This leads to replacing Ct� by tf .
An example of such a situation is presented in an industrial example in Section 6.2.

Assumption 2.13. The Markov kernel Q is Lipschitz in the following sense: there
exists ŒQ� 2 RC such that for all u� 0 and for all function w 2Lu

c .E/, one has

(1) for all x;y 2E and t 2 Œ0; t�.x/^ t�.y/^u/,ˇ̌
Qw.ˆ.x; t//�Qw.ˆ.y; t//

ˇ̌
� ŒQ� Œw�

E;u
1
jx�yj:

(2) for all x;y 2E such that t�.x/_ t�.y/� u,ˇ̌
Qw.ˆ.x; t�.x///�Qw.ˆ.y; t�.y///

ˇ̌
� ŒQ�

�
Œw�

E;u
� C Œw�

E;u
1

�
jx�yj:

Remark 2.14. Assumption 2.13 is slightly more restrictive that its counterpart in
[6] (Assumption 2.5), because of the introduction of the state space Lu

c .E/. This is
to ensure that the time-augmented process still satisfies a similar assumption; see
Section 5.1.

3. Expectation

From now on, we will assume that Z0Dx a.s. for some x 2E. For all fixed N 2N�,
we intend to numerically approximate the quantity

JN .l; c/.x/DEx

�Z TN

0

l.Xt / dt C

NX
jD1

c.XT�
j
/1fXT�

j
2@Eg

�
; (2)

where l 2B.E/, c 2B.@E/ and Xt� is the left limit of Xt . Thus, XT�
j

is the j -th
prejump location. Since the boundary jumps occur exactly at the deterministic exit
times from E, one has,

JN .l; c/.x/DEx

�Z TN

0

l.Xt / dt C

NX
jD1

c
�
ˆ.Zj�1; t

�.Zj�1//
�
1fSjDt�.Zj�1/g

�
:

In many applications, JN .l; c/.x/ appears as a cost or a reward function. The first
term, that depends on l , is called the running cost and the second one, that depends
on c, is the boundary jump cost.

The rest of this section is devoted to formulating the expectation above in a way
that will allow us to derive a numerical computation method. The Lipschitz con-
tinuity property will be a crucial point when it comes to proving the convergence
of our approximation scheme. For this reason, the first step of our approxima-
tion is to replace the indicator function in JN .l; c/.x/ by a Lipschitz continuous
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function. Then we present a recursive method yielding the required expectation.
This recursive formulation will be the basis of our numerical method.

3.1. Lipschitz continuity. We introduce a regularity assumption on l and c.

Assumption 3.1. We assume that l 2Lc.E/ and c 2Lc.@E/.

Moreover, we replace the indicator function in JN .l; c/.x/ by a Lipschitz con-
tinuous function ıA, with A> 0. Let then

J A
N .l; c/.x/DEx

�Z TN

0

l.Xt / dt C

NX
jD1

c
�
ˆ.Zj�1; t

�.Zj�1//
�
ıA.Zj�1;Sj /

�
;

where ıA is a triangular approximation of the indicator function. It is defined on
E �R by

ıA.x; t/D

8̂̂̂<̂
ˆ̂:

A
�
t �

�
t�.x/�

1

A

��
for t 2

h
t�.x/�

1

A
I t�.x/

i
;

�A
�
t �

�
t�.x/C

1

A

��
for t 2

h
t�.x/I t�.x/C

1

A

i
;

0 otherwise:

For all x 2 E, the function ıA.x; t/ goes to 1ftDt�.x/g when A goes to in-
finity. The following proposition proves the convergence of J A

N
.l; c/.x/ towards

JN .l; c/.x/ with an error bound.

Proposition 3.2. For all x 2E, A> 0, N 2 N�, l 2Lc.E/ and c 2Lc.@E/, one
has ˇ̌

J A
N .l; c/.x/�JN .l; c/.x/

ˇ̌
�

NCcC�

A
:

Proof. For all x 2E, one hasˇ̌
J A

N .l; c/.x/�JN .l; c/.x/
ˇ̌

D

ˇ̌̌̌
Ex

� NX
jD1

c
�
ˆ.Zj�1; t

�.Zj�1//
��
ıA.Zj�1;Sj /�1fSjDt�.Zj�1/g

��ˇ̌̌̌

� Cc

NX
jD1

Ex

�
jıA.Zj�1;Sj /�1fSjDt�.Zj�1/gj

�
� Cc

NX
jD1

Ex

�
E
�
jıA.Zj�1;Sj /�1fSjDt�.Zj�1/gj

ˇ̌
Zj�1

��
:

We recall that the conditional law of Sj with respect to Zj�1 has density

s! �
�
ˆ.Zj�1; s/

�
e�ƒ.Zj�1;s/
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on Œ0I t�.Zj�1// and puts the weight e�ƒ.Zj�1;t
�.Zj�1// on the point t�.Zj�1/.

We also recall that � is bounded thanks to Assumption 2.9. Finally, one hasˇ̌
J A

N .l; c/.x/�JN .l; c/.x/
ˇ̌

� Cc

NX
jD1

Ex

�Z t�.Zj�1/

t�.Zj�1/�
1
A

ıA.Zj�1; s/�
�
ˆ.Zj�1; s/

�
e�ƒ.Zj�1;s/ds

�

�
NCcC�

A
:

Hence the result. �

Consequently to this proposition, we consider, from now on, the approximation
of J A

N
.l; c/.x/ for some fixed A, large enough to ensure that the previous error is

as small as required. The suitable choice of A will be discussed in Section 4.2.

3.2. Recursive formulation. Davis shows in [5, Section 32] that the expectation
J A

N
.l; c/.x/ we are interested in is obtained by merely iterating an operator that

we will denote by G. The rest of this section is dedicated to presenting this method
from which we will derive our approximation scheme in Section 4.

Definition 3.3. Introduce the functions L, C and F defined for all x 2 E and
t 2 Œ0I t�.x/� by

L.x; t/D

Z t

0

l
�
ˆ.x; s/

�
ds;

C.x; t/D c
�
ˆ.x; t�.x//

�
ıA.x; t/;

F.x; t/DL.x; t/CC.x; t/;

along with the operator G: B.E/! B.E/ given by

Gw.x/DEx

�
F.x;S1/Cw.Z1/

�
:

Definition 3.4. Define the sequence of functions .vk/0�k�N in B.E/ by

vN .x/D 0; vk.x/DGvkC1.x/:

Davis then shows in [5, Equation 32.33] that, for all k 2 f0; : : : ;N g,

vN�k.x/DEx

�Z Tk

0

l.Xt / dt C

kX
jD1

c
�
ˆ.Zj�1; t

�.Zj�1//
�
ıA.Zj�1;Sj /

�
:

Thus, the quantity J A
N
.l; c/.x/ we intend to approximate is none other than v0.x/.
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Notice that, thanks to the Markov property of the chain .Zn;Sn/n2N, one has
for all k 2 f0; : : : ;N � 1g,

Gw.x/DE
�
F.Zk ;SkC1/Cw.ZkC1/

ˇ̌
Zk D x

�
: (3)

Hence, for all k 2 f0; : : : ;N g, let Vk D vk.Zk/ so that one has

VN D 0; Vk DE
�
F.Zk ;SkC1/CVkC1

ˇ̌
Zk

�
:

This backward recursion provides the required quantity

V0 D J A
N .l; c/.x/:

Hence, we need to approximate the sequence of random variables .Vk/0�k�N .
This sequence satisfies a recursion that only depends on the chain .Zk ;Sk/0�k�N .
Therefore, it appears natural to propose an approximation scheme based on a dis-
cretization of this chain .Zk ;Sk/0�k�N , called quantization, similarly to the ideas
developed in [6] and [3].

4. Approximation scheme

Let us now turn to the approximation scheme itself. We explained in the previous
section how the expectation we are interested in stems from the iteration of the
operator G that only depends on the discrete-time Markov chain .Zk ;Sk/0�k�N .
The first step of our numerical method is therefore to discretize this chain in order
to approximate the operator G.

4.1. Quantization of the chain .Zk;Sk/k�N . Our approximation method is based
on the quantization of the underlying discrete time Markov chain .‚k/k�N D

.Zk ;Sk/k�N . This quantization consists in finding an optimally designed dis-
cretization of the process to provide for each step k the best possible approximation
of ‚k by a random variable y‚k which state space has a finite and fixed number
of points. Here, optimal means that the distance between ‚k and y‚k in a suitably
chosen Lp norm is minimal. For details on the quantization methods, we mainly
refer to [9] but the interested reader can also consult [1], [2] and the references
therein.

More precisely, consider X an Rq-valued random variable such that kXkp <1
and let K be a fixed integer. The optimal Lp-quantization of the random variable
X consists in finding the best possible Lp-approximation of X by a random vector
yX 2 fx1; : : : ;xK g taking at most K values: This procedure consists of two steps:

(1) Find a finite weighted grid � � Rq with � D fx1; : : : ;xK g.

(2) Set yX D yX� where yX� D proj�.X / with proj� denotes the closest neighbor
projection on � .
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The asymptotic properties of the Lp-quantization are given by the following
result; see [9], for example.

Theorem 4.1. If EŒjX jpC�� <C1 for some � > 0 then one has

lim
K!1

Kp=q min
j�j�K

kX � yX�
k

p
p D Jp;q

Z
jhjq=.qCp/.u/ du;

where the law of X is PX .du/D h.u/�q.du/C� with � ? �q , Jp;q a constant and
�q the Lebesgue measure in Rq .

Remark that X needs to have finite moments up to the order p C � to ensure
the above convergence. In this work, we used the CLVQ quantization algorithm
described in [1], Section 3.

There exists a similar procedure for the optimal quantization of a Markov chain
fXkgk2N. There are two approaches to provide the quantized approximation of a
Markov chain. The first one, based on the quantization at each time k of the random
variable Xk is called the marginal quantization. The second one that enhances the
preservation of the Markov property is called Markovian quantization. Remark
that for the latter, the quantized Markov process is not homogeneous. These two
methods are described in details in [9, Section 3]. In this work, we used the mar-
ginal quantization approach for simplicity reasons.

The quantization algorithm provides for each time step 0� k �N a finite grid
�k of E �RC as well as the transition matrices . yQk/0�k�N�1 from �k to �kC1.
Let p � 1 such that for all k � N , Zk and Sk have finite moments at least up
to order p and let proj�k

be the closest-neighbor projection from E � RC onto
�k (for the distance associated to norm p). The quantized process .y‚k/k�N D

. yZk ; ySk/k�N takes values for each k in the finite grid �k of E�RC and is defined
by

. yZk ; ySk/D proj�k
.Zk ;Sk/: (4)

Moreover, we also denote by �Z
k

and �S
k

, respectively, the projections of �k on
E and RC.

Some important remarks must be made concerning the quantization. On the one
hand, the optimal quantization has nice convergence properties stated by Theorem
4.1. Indeed, the Lp-quantization error k‚k �

y‚kkp goes to zero when the number
of points in the grids goes to infinity. However, on the other hand, the Markov
property is not maintained by the algorithm and the quantized process is generally
not Markovian. Although the quantized process can be easily transformed into a
Markov chain (see [9]), this chain will not be homogeneous. It must be pointed
out that the quantized process .y‚k/k2N depends on the starting point ‚0 of the
process.
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In practice, we begin with the computation of the quantization grids which
merely requires to be able to simulate the process. This step is quite time-consuming,
especially when the number of points in the quantization grids is large. However,
the grids are only computed once and for all and may be stored off-line. What is
more, they only depend on the dynamics of the process, not on the cost functions
l and c. Hence, the same grids may be used to compute different expectations
of functionals as long as they are related to the same process. Our schemes are
then based on the following simple idea: we replace the process by its quantized
approximation within the operator G. The approximation is thus obtained in a very
simple way since the quantized process has finite state space.

4.2. Approximation of the expectation and rate of convergence. We now use the
quantization of the process .‚k/k�N D .Zk ;Sk/k�N . In order to approximate
the random variables .Vk/k�N , we introduce a quantized version of the operator
G. Notice that the quantized process is no longer an homogeneous Markov chain
so that we have different operators for each time step k. Their definitions naturally
stem from a remark made in the previous section: recall that for all k 2 f1; : : : ;N g

and x 2E,

Gw.x/DE
�
F.Zk�1;Sk/Cw.Zk/

ˇ̌
Zk�1 D x

�
:

Definition 4.2. For all k 2 f1; : : : ;N g, w 2 B.�Z
k
/ and z 2 �Z

k�1
, let

yGkw.z/DE
�
F.z; ySk/Cw. yZk/

ˇ̌
yZk�1 D z

�
:

Introduce also the functions . Ovk/0�k�N by

OvN .z/D 0 for all z 2 �Z
N ;

Ovk.z/D yGkC1 OvkC1.z/ for all k 2 f0; : : : ;N � 1g and z 2 �Z
k :
:

Finally, for all k 2 f0; : : : ;N g, let

yVk D Ovk. yZk/:

Remark 4.3. The conditional expectation in yGkw.z/ is a finite sum. Thus, the
numerical computation of the sequence . yVk/k will be easily performed as soon as
the quantized process .y‚k/k�N has been obtained.

Remark 4.4. We have assumed that Z0 D x a.s. Thus, the quantization algorithm
provides that yZ0 D x a.s. too. Consequently, the random variable yV0 D Ov0. yZ0/ is,
in fact, deterministic.

The following theorem states the convergence of yV0 towards V0 D J A
N
.l; c/.x/

and provides a bound for the rate of convergence.
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Theorem 4.5. For all k 2 f0; : : : ;N g, one has vk 2Lc.E/. Moreover, the approx-
imation error satisfies

jJN .l; c/.x/� yV0j � "N .l; c;X;A/;

where

"N .l; c;X;A/D

N�1X
kD0

�
2ŒvkC1�kZkC1�

yZkC1kpC
�
2Œvk �C ŒF �1

�
kZk�

yZkkp

C ŒF �2kSkC1�
ySkC1kp

�
C

NCcC�

A

with

ŒF �1 D Ct� Œl �1C Œc��CAŒt ��Cc ;

ŒF �2 D Cl CACc :

Cvn
� n

�
Ct�Cl CCc

�
;

Œvn�1 � eCt�C�
�
K.A; vn�1/C nCt� Œ��1.Ct�Cl CCc/

�
CCt� Œl �1;

Œvn�2 � eCt�C�
�
Ct�ClC�C 2Cl CC�Cc C .2n� 1/C�.Ct�Cl CCc/

�
CCl ;

Œvn�� � Œvn�1C Œt
�� Œvn�2;

Œvn� �K.A; vn�1/;

and for allw 2Lc.E/, K.A; w/DE1CE2ACE3Œw�1CE4CwC ŒQ� Œw��, where

E1 D 2Œl �1Ct� CCl

�
Œt��C 2C 2

t� Œ��1
�
C Œc��.1CCt�C�/

CCc

�
2Œ��1Ct� CC�C 2

t� Œ��1C 2Œt��C�
�
;

E2 D CcCt�C�Œt
��;

E3 D .1CCt�C�/ŒQ�;

E4 D 2C�Œt
��CCt� Œ��1.2CCt�C�/:

The choice of A. Proposition 3.2 suggests that A should be as large as possible.
However, the constants ŒF �1, ŒF �2 and Œvn� that appear in the bound of the approx-
imation error proposed by the above Theorem 4.5 grow linearly with A. Thus,
in order to control this error, it is necessary that the order of magnitude of the
quantization error k‚k �

y‚kkp be at most 1=A.
The convergence of the approximation scheme can be derived from Theorem 4.5.

Indeed, on the one hand, one must remind that V0 D J A
N
.l; c/.x/ is the expectation

we intended to approximate and on the other hand, k‚k �
y‚kkp may become

arbitrarily small when the number of points in the quantization grids goes to infinity
(see [9], for example). An outline of the proof is presented in Appendix C.
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5. Time-dependent functionals

We now turn to the main contribution of this paper and present two generaliza-
tions of the previous problem. On the one hand, we will consider time-dependent
functionals of the form

Ex

�Z TN

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
where l and c are Lipschitz continuous functions. On the other hand, we wish to
replace the random time horizon TN by a deterministic one, denoted by tf :

Ex

�Z tf

0

l.Xt ; t/ dt C
X

Tj�tf

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
:

We will reason as follows. As suggested by Davis in [5], we will introduce a trans-
formation . zXt /t�0 of the initial process .Xt /t�0 by including the time variable
into the state space: . zXt /D .Xt ; t/. Indeed, we will see that both the expectation
of the time-dependent functional and the one with deterministic time horizon are
no other than expectations of time invariant functionals for the time-augmented
process . zXt /t�0. We therefore intend to apply the previously exposed approxima-
tion scheme to this new PDMP. However, it is far from obvious that the Lipschitz
continuity assumptions 2.9, 2.13 and 2.10 still hold for this new process.

Thus, the rest of this section is organized as follows. First, we recall the precise
definition of the time-augmented process and prove that it satisfies the Lipschitz
continuity assumptions required by our approximation scheme. Then, we will see
that the time-dependent functional case corresponds to a time invariant functional
for the new transformed process and may therefore be obtained thanks to the earlier
method. Finally, we consider the deterministic time horizon problem that features
an additional hurdle namely the presence of non-Lipschitz continuous indicator
functions.

5.1. The time-augmented process. Davis suggests, in [5, Section 31], that the case
of the time-dependent functionals may be treated by introducing the time variable
within the state space. Thus, it will be possible to apply our previous numerical
method to the time-augmented process. However, and this is what we discuss in
this section, it is necessary to check whether the Lipschitz continuity assumptions
still hold. We first recall the definition of the time-augmented process given by
Davis.

Definition 5.1. Introduce the new state space

zE DE �RC
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equipped with the norm defined by: for all � D .x; t/, � 0 D .x0; t 0/ 2 zE, let

j� � � 0j D jx�x0jC jt � t 0j (5)

where the norm on E is given by (1). On this state space, we define the process

zXt D .Xt ; t/:

The local characteristics of the PDMP . zXt /t�0, denoted by .Q�; zQ; ẑ /, are given
for all � D .x; t/ 2 zE by8̂<̂

:
Q�.�/D �.x/;

ẑ .�; s/D
�
ˆ.x; s/; t C s

�
for s � t�.x/,

zQ
�
�;A� ftg

�
DQ.x;A/ for all A 2B.E/.

Moreover, we naturally define for all � D .x; t/ 2 zE

Qt�.�/D inffs > 0 such that ẑ .�; s/ 2 @ zEg D t�.x/

Clearly, Assumptions 2.9 and 2.10 still hold with ŒQ��1 D Œ��1 and Œ Qt�� D Œt��.
However, proving Assumption 2.13 is more intricate. We start with the following
lemma.

Lemma 5.2. Let u; t � 0 and w 2 Lu
c .
zE/. Denote by wt the function of B.E/

defined by wt D w. � ; t/. One has then wt 2Lt^u
c .E/ with

Œwt �
E;t^u
1

� Œw�
zE;u

1
;

Œwt �
E;t^u
2

� Œw�
zE;u

1
C Œw�

zE;u
2

;

Œwt �
E;t^u
� � .1C Œt��/Œw�

zE;u
� :

Proof. Let u; t � 0 and w 2Lu
c .
zE/. For x;x0 2E and s � t�.x/^ t�.x0/^ t ^u,

one hasˇ̌
wt .ˆ.x; s//�wt .ˆ.x

0; s//
ˇ̌
D
ˇ̌
w
�
ẑ ..x; t � s/; s/

�
�w

�
ẑ ..x0; t � s/; s/

�ˇ̌
:

We now use the fact that w 2Lu
c .
zE/ which yields since s � uˇ̌

wt .ˆ.x; s//�wt .ˆ.x
0; s//

ˇ̌
� Œw�

zE;u
1

ˇ̌
.x; t � s/� .x0; t � s/j D Œw�

zE;u
1

ˇ̌
x�x0

ˇ̌
:

Hence, Œwt �
E;t^u
1

� Œw�
zE;u

1
, and similarly one obtains Œwt �

E;t^u
2

� Œw�
zE;u

1
C Œw�

zE;u
2

.
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On the other hand, for x;x0 2E such that t�.x/_ t�.x0/� t ^u, one hasˇ̌
wt .ˆ.x; t

�.x///�wt .ˆ.x
0; t�.x0///

ˇ̌
D
ˇ̌
w
�
ẑ ..x; t � t�.x//; t�.x//

�
�w

�
ẑ ..x0; t � t�.x0//; t�.x0//

�ˇ̌
D

ˇ̌̌
w
�
ẑ
�
.x; t � t�.x//; Qt�.x; t � t�.x//

��
�w

�
ẑ
�
.x0; t � t�.x0//; Qt�.x0; t � t�.x0//

��ˇ̌̌
I

moreover since w 2Lu
c .
zE/ and Qt�.x; t � t�.x//_ Qt�.x0; t � t�.x0//� u one hasˇ̌

wt .ˆ.x; t
�.x///�wt .ˆ.x

0; t�.x0///
ˇ̌
� Œw�

zE;u
�

ˇ̌
.x; t � t�.x//� .x0; t � t�.x0//

ˇ̌
:

We conclude thanks to the Lipschitz continuity assumption 2.10 on t�, which
yields

ˇ̌
.x; t�t�.x//�.x0; t�t�.x0//

ˇ̌
� .1CŒt��/jx�x0j. One obtains Œwt �

E;t^u
� �

Œw�
zE;u
�

�
1C Œt��

�
and wt 2Lt^u

c .E/. �

The next proposition proves that Assumption 2.13 holds for the time-augmented
process . zX /t�0.

Proposition 5.3. Let w 2Lu
c .
zE/.

(1) For all � , � 0 2 zE and s 2 Œ0; Qt�.�/^ Qt�.� 0/^u�,ˇ̌
zQw
�
ẑ .�; s/

�
� zQw

�
ẑ .� 0; s/

�ˇ̌
� .ŒQ�_ 1/Œw�

zE;u
1
j� � � 0j:

(2) For all � , � 0 2 zE such that Qt�.�/_ Qt�.� 0/� u,ˇ̌
zQw
�
ẑ .�; Qt�.�//

�
� zQw

�
ẑ .� 0; Qt�.� 0//

�ˇ̌
� .ŒQ�_ 1/.1C Œt��/

�
Œw�
zE;u
� C Œw�

zE;u
1

�
j� � � 0j:

In other words, Assumption 2.13 is satisfied with Œ zQ�D .ŒQ�_ 1/.1C Œt��/.

Proof. As in the previous lemma, for all t � 0, we will denote by wt the function
of B.E/ defined by wt D w. � ; t/. For � D .x; t/ 2 zE and w 2 Lu

c .
zE/, one has,

by the definition of zQ,

zQw.�/D

Z
�02 zE

w.� 0/ zQ
�
.x; t/; d� 0

�
D

Z
z2E

w.z; t/Q
�
x; dz

�
DQwt .x/: (6)

We may now check the regularity assumption on zQ. Let � D .x; t/ and � 0 D
.x0; t 0/ 2 zE. Let s 2 Œ0I Qt�.�/^ Qt�.� 0/^ u�. Thanks to the definition of ẑ and (6)
one hasˇ̌
zQw. ẑ .�; s//� zQw. ẑ .� 0; s//

ˇ̌
D
ˇ̌
zQw.ˆ.x; s/; t C s/� zQw.ˆ.x0; s/; t 0C s/

ˇ̌
D
ˇ̌
QwtCs.ˆ.x; s//�Qwt 0Cs.ˆ.x

0; s//
ˇ̌
:
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We split this into the sum of two differences:ˇ̌
QwtCs.ˆ.x; s//�Qwt 0Cs.ˆ.x

0; s//
ˇ̌

�
ˇ̌
QwtCs.ˆ.x; s//�QwtCs.ˆ.x

0; s//
ˇ̌
C
ˇ̌
Q.wtCs �wt 0Cs/.ˆ.x

0; s//
ˇ̌
:

On the one hand, we recall that thanks to Lemma 5.2, wtCs 2 L
.tCs/^u
c .E/, so

that, since s � .t C s/^u, we may use the Lipschitz continuity assumption 2.13
on Q and the first term is bounded as follows:ˇ̌

QwtCs.ˆ.x; s//�QwtCs.ˆ.x
0; s//

ˇ̌
� ŒQ� ŒwtCs �

E;.tCs/^u
1

jx�x0j:

Lemma 5.2 also provides ŒwtCs �
E;.tCs/^u
1

� Œw�
zE;u

1
. On the other hand, and more

basically, the second term in the equation above satisfiesˇ̌
Q.wtCs �wt 0Cs/.ˆ.x

0; s//
ˇ̌
� Œw�

zE;u
1
jt � t 0j:

We obtain ˇ̌
zQw
�
ẑ .�; s/

�
� zQw

�
ẑ .� 0; s

�
/
ˇ̌
� .ŒQ�_ 1/Œw�

zE;u
1
j� � � 0j:

We reason similarly to bound
ˇ̌
zQw
�
ẑ .�; Qt�.�//

�
� zQw

�
ẑ .� 0; Qt�.� 0//

�ˇ̌
, where

� D .x; t/ and � 0D .x0; t 0/2 zE are such that Qt�.�/_ Qt�.� 0/� u. Equation (6) yieldsˇ̌
zQw
�
ẑ .�; Qt�.�//

�
� zQw

�
ẑ .� 0; Qt�.� 0//

�ˇ̌
D
ˇ̌
QwtCt�.x/

�
ˆ.x; t�.x//

�
�Qwt 0Ct�.x0/

�
ˆ.x0; t�.x0//

�ˇ̌
;

which we now split as follows:ˇ̌
QwtCt�.x/

�
ˆ.x; t�.x//

�
�Qwt 0Ct�.x0/

�
ˆ.x0; t�.x0//

�ˇ̌
�
ˇ̌
QwtCt�.x/

�
ˆ.x; t�.x//

�
�QwtCt�.x/

�
ˆ.x0; t�.x0//

�ˇ̌
C
ˇ̌
.QwtCt�.x/�Qwt 0Ct�.x0//

�
ˆ.x0; t�.x0//

�ˇ̌
:

Thanks to Lemma 5.2, wtCt�.x/ 2L
.tCt�.x//^u
c .E/. We assume, without loss of

generality, that t�.x/ � t�.x0/, so t�.x/ _ t�.x0/ � .t C t�.x// ^ u. Therefore,
the first term in the above equation is bounded, thanks to the Lipschitz continuity
assumption 2.13 on Q and Lemma 5.2, by

ŒQ�
�
.1C Œt��/Œw�

zE;u
� C Œw�

zE;u
1

�
jx�x0j:

It is more straightfoward to obtain a bound for the second term, of the form

Œw�
zE;u

1

ˇ̌
t � t 0C t�.x/� t�.x0/

ˇ̌
� Œw�

zE;u
1

�
jt � t 0jC Œt��jx�x0j

�
:
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We obtainˇ̌
zQw
�
ẑ .�; Qt�.�//

�
� zQw

�
ẑ .� 0; Qt�.� 0//

�ˇ̌
� ŒQ�.1C Œt��/Œw�

zE;u
� jx�x0jC Œw�

zE;u
1

�
ŒQ�jx�x0jC jt � t 0jC Œt��jx�x0j

�
�
�
ŒQ�_ 1

��
1C Œt��

��
Œw�
zE;u
� C Œw�

zE;u
1

�
j� � � 0j:

Hence the result. �

Consequently, we may apply our numerical method to the time-augmented pro-
cess . zXt /t�0. In other words, for l 2Lc. zE/, c 2Lc.@ zE/ and � 2 zE, our approxi-
mation scheme may be used to compute

zJN .l; c/.�/DE�

�Z TN

0

l. zXt / dt C

NX
jD1

c. zXT�
j
/1
f zXT�

j
2@ zEg

�
: (7)

We will now see that the time-dependent functional and the deterministic time
horizon problems boil down to computing such quantities zJN .l; c/.�/ for suitably
chosen functions l and c.

5.2. Lipschitz continuous cost functions. We first consider the time-dependent
functional problem with Lipschitz continuous cost functions. Thus, let then l 2

Lc. zE/, c 2Lc.@ zE/ and x 2E, we wish to compute

Ex

�Z TN

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
:

It is straightforward to show that this quantity may be expressed using the time-
augmented process starting from the point �0 D .x; 0/. Indeed, one has

zJN .l; c/.�0/DEx

�Z TN

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
;

where zJN .l; c/.�0/ is given by (7). Although they are time-dependent, the cost
functions l and c are seen, in the left-hand side term, as time invariant functions of
the time-augmented process. The expectation of the time-dependent functional is
therefore obtained by computing the expectation of a time invariant functional for
the transformed PDMP thanks to the approximation scheme described in Section 4.
This is what expresses the following theorem, which proof stems from the previous
discussion.

Theorem 5.4. Let l 2Lc. zE/ and c 2Lc.@ zE/ and apply the approximation scheme
described in Section 4 to the time-augmented process . zXt /t�0, one has then
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ˇ̌̌̌
Ex

�Z TN

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
� yV0

ˇ̌̌̌
� "N .l; c; zX ;A/;

where we denote by "N .l; c; zX ;A/ the bound of the approximation error provided
by Theorem 4.5 when our approximation scheme is applied with cost functions l

and c to the time-augmented process . zXt /t�0.

Remark 5.5. The quantity "N .l; c; zX ;A/ is computed with respect to the process
. zXt /t�0 instead of .Xt /t�0, as presented in Theorem 4.5, so that

"N .l; c; zX ;A/D

N�1X
kD0

�
2ŒvkC1�

zE
k zZkC1�

bzZkC1kp

C
�
2Œvk �

zE
C ŒF �01C ŒF �

00
1A
�
k zZk �

bzZkkp

C
�
ŒF �02CAŒF �002

�
k zSkC1�

bzSkC1kp

�
C

NCcC�

A
:

where . zZk ; zSk/k2N denotes the sequence of the postjump locations and the inter-
jump times of the time-augmented process . zXt /t�0, and where

ŒF �01 D Ct� Œl �
zE

1 C Œc�
zE
� ;

ŒF �001 D Œt
��Cc ;

ŒF �02 D Cl ;

ŒF �002 D Cc ;

Cvn
� n

�
Ct�Cl CCc

�
;

Œvn�
zE

1 � eCt�C�
�
zK.A; vn�1/C nCt� Œ��1.Ct�Cl CCc/

�
CCt� Œl �

zE
1 ;

Œvn�
zE

2 � eCt�C�
�
Ct�ClC�C 2Cl CC�Cc C .2n� 1/C�.Ct�Cl CCc/

�
CCl ;

Œvn�
zE
� � Œvn�

zE
1 C Œt

�� Œvn�
zE

2 ;

Œvn�
zE
� zK.A; vn�1/;

and for all w 2Lc.E/ we have

zK.A; w/D zE1CE2AC zE3Œw�
zE

1 CE4CwC Œ zQ� Œw�
zE
� ;

where
Œ zQ�D .ŒQ�_ 1/.1C Œt��/;

zE1 D 2Œl �
zE

1 Ct� CCl

�
Œt��C 2C 2

t� Œ��1
�
C Œc�

zE
� .1CCt�C�/

CCc

�
2Œ��1Ct� CC�C 2

t� Œ��1C 2Œt��C�
�
;

E2 D CcCt�C�Œt
��;
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zE3 D .1CCt�C�/Œ zQ�;

E4 D 2C�Œt
��CCt� Œ��1.2CCt�C�/:

5.3. Deterministic time horizon. In the context of applications, it seems relevant
to consider a deterministic time horizon tf . For instance, one may want to estimate
a mean cost over a given period no matter how many jumps occur during this period.
Actually, we will choose a time horizon of the form tf ^TN with N large enough
to ensure the N -th jump will occur after time tf with high probability: in other
words, that Px.TN < tf / be close to zero. For a discussion concerning the choice
of such N , and in particular a theoretical bound of the probability Px.TN < tf /,
we refer to [3]. Simply notice that in practice, this probability may be estimated
through Monte Carlo simulations. We thus intend to approximate the following
quantity for l 2Lc. zE/, c 2Lc.@ zE/ and x 2E:

Ex

� Z TN^tf

0

l.Xt ; t/ dt C
X

Tj�tf

c.XT�
j
;Tj /1fXT�

j
2@Eg

�

DEx

� Z TN

0

l.Xt ; t/1ft�tf gdt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg1fTj�tf g

�
:

The natural approach would consist in killing the process at time tf as Davis sug-
gests in [5, Section 31], and applying our method to the new process. However,
the killed process will not necessarily fulfill our Lipschitz continuity assumptions
because of the discontinuity introduced at time tf .

A second idea would then be to use the previous results, to consider the time-
augmented process, and to define Ql.x; t/D l.x; t/1ft�tf g and Qc.x; t/Dc.x; t/1ft�tf g.
However, a similar problem appears. Indeed, such functions Ql and Qc are not Lips-
chitz continuous and our numerical method requires this assumption. In the rest of
this section, we will see how to overcome this drawback. On the one hand, we prove
that the Lipschitz continuity condition on l may be relaxed so that our numerical
method may be used directly to approximate zJN .Ql ; c/ for any c 2Lc.@ zE/. On the
other hand, in the general case, we will deal with the non-Lipschitz continuity of
Qc by bounding it between two Lipschitz continuous functions.

5.3.1. Direct estimation of the running cost term. Let us explain how the Lips-
chitz continuity condition on the running cost function may be relaxed so that
Theorem 4.5, stating the convergence of our approximation scheme, remains true
when the running cost function is Ql.x; t/ D l.x; t/1ft�tf g with l 2 Lc. zE/ and
the boundary jump cost function is c 2Lc.@ zE/ (although with slightly different
constants in the bound of the convergence rate). Indeed, the running cost function
Ql appears inside an integral that will have a regularizing effect allowing us to derive
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the required Lipschitz property of the functional in spite of the discontinuity of Ql .
Details are provided in Appendix B.

Consequently, our approximation scheme may be used to compute zJN .Ql ; c/.�/

for any � 2 zE. We recall that zJN is defined by (7) and that for all x 2E, one has

zJN .Ql ; c/.x; 0/DEx

�Z TN^tf

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
:

We now turn to the indicator function 1fTj�tf g required within the boundary jump
cost term.

5.3.2. Bounds of the boundary jump cost term. We explained how the Lipschitz
continuity condition on l may be relaxed. However, when it comes to c, this con-
dition cannot be avoided and our numerical method cannot be used directly with
Qc.x; t/D c.x; t/1ft�tf g. We overcome this drawback by using Lipschitz continuous
approximations of the indicator function. Indeed, for B > 0, we introduce the real-
valued functions uB and NuB defined on R by

uB.t/D

8<:
1 if t < tf � 1=B,
�B.t�tf / if tf � 1=B � t < tf ,
0 if tf � t ,

NuB.t/D

8<:
1 if t < tf ,
�B.t�tf /C 1 if tf � t < tf C 1=B,
0 if tf C 1=B � t .

The following lemma is straightforward.

Lemma 5.6. For all t � 0, limB!C1 uB.t/ D 1Œ0Itf /.t/ and limB!C1 NuB.t/ D

1Œ0Itf �.t/. Furthermore, for all B > 0, uB and NuB are Lipschitz continuous with
Lipschitz constant B. Moreover,

ˇ̌
uB � 1Œ0Itf �

ˇ̌
� 1,

ˇ̌
NuB � 1Œ0Itf �

ˇ̌
� 1 and

uB � 1Œ0Itf � � NuB:

Thus, define for l 2Lc. zE/

Ql.x; t/D l.x; t/1ft�tf g (8)

and for c 2Lc.@ zE/ and for all B > 0,

cB.x; t/D c.x; t/uB.t/ and NcB.x; t/D c.x; t/ NuB.t/: (9)

We now check that these functions satisfy our Lipschitz continuity conditions.

Proposition 5.7. The functions cB and NcB belong to Lc.@ zE/ with ŒcB ��; Œ NcB �� �

Œc��CBCc.1_ Œt
��/.
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Proof. We prove the result for cB , the other case being similar. For all � D
.x; t/; � 0 D .x0; t 0/ 2 zE, one hasˇ̌
cB

�
ẑ .�; t�.�//

�
� cB

�
ẑ .� 0; t�.� 0//

�ˇ̌
D
ˇ̌
c
�
ẑ .�; Qt�.�//

�
uB.t C Qt�.�//� c

�
ẑ .� 0; Qt�.� 0//

�
uB.t

0
C Qt�.� 0//

ˇ̌
� Œc��j� � �

0
jCCc

ˇ̌
uB.t C Qt�.�//�uB.t

0
C Qt�.� 0//

ˇ̌
� Œc��j� � �

0
jCCcB

�
jt � t 0jC Œ Qt��jx�x0j

�
�
�
Œc��CCcB.1_ Œt��/

�
j� � � 0j:

Hence the result. �
Therefore, the functions cB and NcB are acceptable boundary jump cost functions

and we may bound the deterministic horizon expectation by

zJN .Ql ; cB/.x; 0/�Ex

�Z TN

0

l.Xt /1ft�tf gdt C

NX
jD1

c.XT�
j
/1fXT�

j
2@Eg1fTj�tf g

�
� zJN .Ql ; NcB/.x; 0/:

The following proposition provides the convergence of the bounds.

Proposition 5.8. For all x 2E, one has

lim
B!C1

zJN .Ql ; cB/.x; 0/

D lim
B!C1

zJN .Ql ; NcB/.x; 0/

DEx

�Z TN^tf

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg1fTj�tf g

�
:

Convergence holds for every tf > 0 in the case of zJN .Ql ; NcB/.x; 0/ but only for
almost every tf > 0 with respect to the Lebesgue measure on R in the case of
zJN .Ql ; cB/.x; 0/.

Proof. Let x 2E. We first consider zJN .Ql ; NcB/.x; 0/.ˇ̌̌̌
Ex

� NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg1fTj�tf g�

NX
jD1

NcB.XT�
j
;Tj /1fXT�

j
2@Eg

�ˇ̌̌̌

�Ex

� NX
jD1

ˇ̌
c.XT�

j
;Tj /

ˇ̌ ˇ̌
1fTj�tf g� NuB.Tj /

ˇ̌�

� CcEx

� NX
jD1

1
ftf<Tj�tfC

1
B
g

�
� Cc

NX
jD1

�
'j

�
tf C

1

B

�
�'j .tf /

�
;
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where 'j is the distribution function of Tj . For all j � N , the summand in this
last expression goes to 0 as B!C1, since 'j is right-continuous; this shows the
required convergence.

We now turn to the case of zJN .Ql ; cB/.x; 0/. Similar computations yield

ˇ̌̌̌
Ex

� NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg1fTj�tf g�

NX
jD1

cB.XT�
j
;Tj /1fXT�

j
2@Eg

�ˇ̌̌̌

� Cc

NX
jD1

�
'j .tf /�'j

�
tf �

1

B

��
:

One cannot conclude as in the previous case, since 'j need not be left-continuous.
We therefore assume that tf is not an atom of any of the laws of the random
variables Tj . Then, for all j � N , the summand on the right-hand side tends
to 0 as B!C1, and the result follows. Indeed, the set of the atoms of Tj is at
most countable, so the convergence holds for almost every tf with respect to the
Lebesgue measure on R. �

5.3.3. Bounds in the general case. The previous results show that the deterministic
horizon expectation may be bounded by applying our numerical method with Ql and
successively cB and NcB . In other words, we have shown:

Theorem 5.9. Let l 2 Lc. zE/ and c 2 Lc.@ zE/. Let .V k;B/0�k�N (respectively
.V k;B/0�k�N ) be the sequence of random variables .Vk/0�k�N described in
Section 4 when applying our approximation scheme to the time-augmented pro-
cess . zXt /t�0 with cost functions Ql and cB (respectively NcB) defined by (8) and (9).
The bounds of the approximation error provided by Theorem 4.5 are respectively
denoted by

"N .l; cB; zX ;A;B/ and "N .l; NcB; zX ;A;B/:

One has then

V 0;B � "N .l; cB; zX ;A;B/

�Ex

�Z TN^tf

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg1fTj�tf g

�
� V 0;BC "N .l; NcB; zX ;A;B/:

Remark 5.10. In the previous theorem, the quantity "N .l; cB; zX ;A;B/ (and sim-
ilarly "N .l; NcB; zX ;A;B/) is computed with respect to the process . zXt /t�0 instead
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of .Xt /t�0 as presented in Theorem 4.5 so that one has

"N .l; cB; zX ;A;B/

D

N�1X
kD0

�
2ŒvkC1�

zE
k zZkC1�

bzZkC1kp

C
�
2Œvk �

zE
C ŒF �01C ŒF �

00
1AC ŒF �0001 B

�
k zZk �

bzZkkp

C
�
ŒF �02C ŒF �

00
2A
�
k zSkC1�

bzSkC1kp

�
C

NCcC�

A
:

where . zZk ; zSk/k2N denotes the sequence of the postjump locations and the inter-
jump times of the time-augmented process . zXt /t�0 and with

ŒF �0001 D Cc.1_ Œt
��/;

Œvn�
zE

1 � eCt�C�
�
zK.A;B; vn�1/C nCt� Œ��1.Ct�Cl CCc/

�
CCt� Œl �

zE
1 ;

Œvn�
zE
� zK.A;B; vn�1/;

and for all w 2Lc.E/ we have

zK.A;B; w/DE01CE002BCE2AC zE3Œw�
zE

1 CE4CwC Œ zQ� Œw�
zE
� ;

where
E01 D 2Œl �

zE
1 Ct� CCl

�
Œt��C 2C 2

t� Œ��1
�
C Œc�

zE
� .1CCt�C�/

CCc

�
2Œ��1Ct� CC�C 2

t� Œ��1C 2Œt��C�
�
;

E001 D Cc.1_ Œt
��/.1CCt�C�/

The other constants remain unchanged; see Remark 5.5 for their expressions.

Furthermore, it is important to stress the fact that applying twice our numerical
method does not increase significantly the computing time. Indeed, the computa-
tion of the quantization grids is, by far, the most costly step. These grids, that only
depend on the dynamics of the process, may be stored off-line and used for the
approximation of both bounds.

The choice of B. We now discuss the choice of the parameter B, the discussion is
quite similar to the one concerning the choice of A in Section 4.2. Proposition 5.8
suggests that B should be chosen as large as possible. However, choosing a large
value for B will lead to large Lipschitz constants that will decrease the sharpness
of the bounds "N .l; cB; zX / and "N .l; NcB; zX / for the approximation error provided
by Theorem 4.5. Indeed, it is easy to check that Œvn� grows linearly with B (see
the precise expressions of the Lipschitz constants above). Thus, in order to control
the error proposed by Theorem 4.5, it is necessary that the order of magnitude of
the quantization error k‚n�

y‚nkp be at most 1=B.
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6. Numerical results

6.1. A repair workshop model. We now present a repair workshop model adapted
from [5, Section 21].

In a factory, a machine produces goods which daily value is r.x/, where x 2 Œ0I 1�

represents a parameter of evolution of the machine, a setting chosen by the operator.
For instance, x may be some load or some pace imposed on the machine. This ma-
chine, initially working, may break down with an age-dependent hazard rate �.t/
and is then sent to the workshop for repair. Besides, the factory’s management has
decided that, whenever the machine has worked for a whole year without requiring
repair, it is sent to the workshop for maintenance. The daily cost of maintenance is
q.x/, while the daily cost of a repairs is p.x/, with reasonably p.x/ > q.x/. We
assume that after a repair or maintenance, both lasting a fixed time s, the machine
is totally repaired and is not worn down.

We therefore consider three modes: the machine is working (m D 1), being
repaired (mD 2), or undergoing maintenance (mD 3). The state of the process at
time t will be denoted by Xt D .mt ; �t ; t/, where �t is the time since the last change
of mode. (This component is required since the hazard rate � is age-dependent.)
The state space is ED

�
f1g�Œ0I 365��RC

�
[
�
f2g�Œ0I s��RC

�
[
�
f3g�Œ0I s��RC

�
.

In each mode, the flow is ˆm

�
.�; t/;u

�
D .�Cu; t Cu/. Concerning the transition

kernel, one sees from the previous discussion that, for instance, from the point
.1; �; t/, the process can jump to the point .2; 0; t/ if � < 365 and the jump is
forced to .3; 0; t/ if � D 365. Figure 1 presents the state space and an example of
trajectory of the process.

z4

z3

z1
z0

z2

m=1 365 7 7m=2 m=3

Figure 1. An example trajectory. The process starts from the point Z0 in mode mD 1

(machine in service). The machine may be sent to the workshop for repairs (mD 2) or
for maintenance (mD 3/.
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Our aim is to find the value of the setting x that maximizes the expected total
benefits B.x/, that is, the discounted value (for an interest rate �) of production
minus maintenance and reparation costs over a period tf D 5 years:

B� D sup
x2Œ0I1�

B.x/;

where

B.x/DE.1;0;0/

�Z tf

0

e��t
�
r.x/1fmtD1g�p.x/1fmtD2g� q.x/1fmtD3g

�
dt

�
:

We will use the following values r.x/D x, p.x/D 100x2, q.x/D 5, sD 7 days,
�D 0:03

365
and � represents a Weibull distribution with parameters ˛D 2 et ˇD 600.

Our assumptions clearly hold so that we may run our numerical method. We
first need to find N 2 N such that P.1;0;0/.TN < tf / be small. Monte Carlo
simulations lead to the value N D 18. For a fixed x 2 Œ0I 1�, we will therefore
compute zJN .Ql ; 0/.1; 0; 0/ where Ql.m; �; t/ D e��t

�
r.x/1fmD1g � p.x/1fmD2g �

q.x/1fmD3g

�
1ft�tf g. Finally, notice that we could have chosen r , p and q slightly

more generally by allowing them to be time-dependent.
It is important to stress the fact that, once the Markov chain associated to the

process is quantized, we will be able to compute the approximation of B.x/ almost
instantly for any x 2 Œ0I 1� because the same grids are used for every computation.
Thanks to this flexibility, we are able to draw the function x ! B.x/ and, thus,
to solve the above optimization problem very easily. This is a very important
advantage of our method. Indeed, if we computed B.x/ through standard methods
such as Monte Carlo simulations, we would have to repeat the whole algorithm
again and again for each value of x and solving the optimization problem would
be intractable.

The following figure represents the approximation of the function B computed
on a constant step grid of Œ0I 1� with step 10�2. This leads to the solution of the
earlier optimization problem. Indeed, we obtain B� D B.x�/ D 537:84 where
x� D 0:78 is the value of the setting x that maximizes the benefits of the factory.

Now let x D 0:78. The following table presents the values of yVN , which are the
approximations of B.x/, for different number of points in the quantization grids.
A reference value BMonte Carlo D 537:69 is obtained via the Monte Carlo method
(108 simulations).

Points in the quantization grids yVN relative error to 537:69

20 points 542.14 0.83%
50 points 539.57 0.35%
100 points 538.24 0.10%
500 points 537.84 0.03%
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Figure 2. The function B drawn with 500 points in the quantization grids.

From a computational time point of view, we have already explained that the
computation of large quantization grids is, by far, the most costly step since it may
take up to several hours whereas the approximation of the expectation that follows
is then almost instantaneous. However, we may notice, in the above table, that
grids containing only 50 points yield a quite accurate result with merely 0.35%
error. Such grids only require a few minutes to be designed.

Remark 6.1. We already noticed that the same grids may serve several purposes.
For instance, we may also have been interested in the computation of the mean
time spent by the machine in the workshop by taking l.m; �; t/D 1fm2f2I3gg.

6.2. A corrosion model. We consider here a corrosion model for an aluminum
metallic structure. This example was provided by Astrium. It concerns a small
structure within a strategic ballistic missile. The missile is stored successively in
three different environments which are more or less corrosive. It is made to have
potentially large storage durations. The requirement for security is very strong.
The mechanical stress exerted on the structure depends in part on its thickness. A
loss of thickness will cause an overconstraint and therefore increase the risk of
rupture. It is thus crucial to study the evolution of the thickness of the structure
over time.

Let us describe more precisely the usage profile of the missile. It is stored
successively in three different environments: the workshop (mD 1), the submarine
in operation (mD 2) and the submarine in dry-dock (mD 3). This is because the
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structure must be equipped and used in a given order. Then it goes back to the work-
shop and so on. The missile stays in each environment during a random duration
with exponential distribution. Its parameter �m depends on the environment. The
degradation law for the thickness loss then depends on the environment through
two parameters, a deterministic transition period �m and a random corrosion rate
� uniformly distributed within a given range. Typically, the workshop and dry-
dock are the most corrosive environments but the time spent in operation is more
important. The randomness of the corrosion rate accounts for small variations and
uncertainties in the corrosiveness of each environment.

In each environment m 2 f1I 2I 3g, the thickness loss dm evolves in time as

dm.�; s/D �
�
sC �m.e

�s=.2�m/� 1/
�
: (10)

Here are the numerical values of the parameters of the corrosion model:

environment 1 environment 2 environment 3

�m (h�1) .17520/�1 .131400/�1 .8760/�1

�m (h) 30000 200000 40000
� (mm/h) Œ10�6; 10�5� Œ10�7; 10�6� Œ10�6; 10�5�

Initially, the structure is in environment m D 1 and the thickness loss is null.
One draws the corrosion rate �0 uniformly distributed in the interval Œ10�6; 10�5�

and the time of the first change of environment T1 exponentially distributed with
parameter �1 D .17520/�1 hours�1. The corrosion starts according to (10) so that,
for all 0 � t � T1, the loss of thickness is d1.�0; t/. The structure then moves to
environment 2 and the process restarts similarly: a new corrosion rate �T1

is drawn
according to an uniform law on Œ10�7; 10�6�, the time of the second jump T2 is
drawn so that T2�T1 is exponentially distributed with parameter �2D .131400/�1

hours�1 and for T1 � t � T2, the loss of thickness is d1.�0;T1/Cd2.�T1
; t �T1/

and so on.
At each change of environment, a new corrosion rate � is drawn according to a

uniform law on the corresponding interval. The thickness loss, however, evolves
continuously.

We are interested in computing the mean loss of thickness in environment 2 until
a given time tf D 18 years.

Modeling by PDMP.

The state space E. The loss of thickness will be modeled by a PDMP whose modes
are the different environments. Let then M D f1; 2; 3g. The PDMP .Xt /t�0 will
contain the following components: the mode m 2M , the loss of thickness d , the
time since the last jump s (this is to ensure that the Markov property is satisfied),
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the corrosion rate � and the time t (since we consider the time-augmented process).
Clearly, one has always s � t , so we can reasonably consider the state space

E D
˚
.m; d; s; �; t/ 2M �RC �RC � Œ10�7

I 10�5��RC such that s � t
	
:

The flow ˆ. The flow is given for all u� 0 by

ˆ.

0BBBB@
m

d

s

�

t

1CCCCA ;u/D
0BBBB@

m

d C dm.�; sCu/� dm.�; s/

sCu

�

t Cu

1CCCCA :

The transition kernel Q. Let us now study the jumps of this process. When the
process jumps from a point x D .m; d; s; �; t/ 2E, m becomes mC 1 modulo 3
(denoted mC 1Œ3�/, d and t remain unchanged, s becomes 0. Only � is randomly
drawn, according to a uniform law on an interval Œ�minI �max� that depends on the
new mode. One has then for w 2 B.E/, x D .m; d; s; �; t/ 2E, and u� 0,

Qw
�
ˆ.

0BBBB@
m

d

s

�

t

1CCCCA ;u/�DQw

0BBBB@
cm

dCdm.�; sCu/�dm.�; s/

sCu

�

tCu

1CCCCA

D
1

�max� �min

Z �max

�min

w

0BBBB@
mC 1Œ3�

d C dm.�; sCu/� dm.�; s/

0

Q�

t Cu

1CCCCA d Q�: (11)

The cost function l . The function l 2 B.E/ will be the cost function to compute
the mean loss of thickness in mode 2. It is defined as follows: for all x D

.m; d; s; �; t/ 2E and u� 0,

l.ˆ.x;u//D �
�
1� 1

2
e�.sCu/=.2�m/

�
1fmD2g D

d

du

�
dm.�; sCu/

�
1fmD2g: (12)

One then defines Ql.ˆ.x;u//D l.ˆ.x;u//1ftCu�tf g, so that

L.x;u/D

Z u

0

Ql
�
ˆ.x;u0/

�
du0 D

Z u^.tf�t/C

0

l
�
ˆ.x;u0/

�
du0

D
�
dm.�; sCu^ .tf � t/C/� dm.�; s/

�
1fmD2gI
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that is indeed the thickness lost in mode 2 from the point x D .m; d; s; �; t/ during
a time u^ .tf � t/C.

The assumptions. Assumptions 2.1 and 2.9 are clearly satisfied. It is easy to check,
from (12), that l 2Lc.E/, so Assumption 3.1 holds.

We now turn to Assumption 2.13 and we will see that, although it does not hold
for any function w 2 Lvc .E/, it holds for a sufficiently big subclass of functions.
We first need to make a remark. Recall that for all x D .m; d; s; �; t/ 2 E and
for all k 2 f0; : : : ;N g, one has vN�k.x/DExbigl Œ

R Tk

0 l
�
ˆ.x;u/

�
1ftCu�tf gdu

�
.

Therefore, for all k 2 f0; : : : ;N g the function vk as well as the function Ql satisfy

x D .m; d; s; �; t/ 2E and t � tf D) w.x/D 0: (13)

The next step consists in proving that Assumption 2.13, although it is not sat-
isfied for any function w 2 Lvc .E/, holds for any function w 2 Lvc .E/ that also
satisfies condition (13). This is done in Lemma 6.2 and it is sufficient because
in the proof of the theorem that ensures the convergence of our approximation
scheme, Assumption 2.13 is only used with the functions .vk/k2f0;:::;N g that do
satisfy condition (13).

Lemma 6.2. There exists ŒQ� 2 RC such that for all v � 0 and w 2 Lvc .E/ that
satisfies condition (13), one has for all x, x0 2E and 0� u� v,ˇ̌

Qw
�
ˆ.x;u/

�
�Qw

�
ˆ.x0;u/

�ˇ̌
� ŒQ� Œw�

E;v
1
jx�x0j:

Proof. Let xD .m; d; s; �; t/ and x0D .m0; d 0; s0; �0; t 0/2E with for instance t � t 0.
First we may choose mDm0; otherwise, jx � x0j D C1 and there is nothing to
prove. Now, we are facing three different cases:

� If tf � tCu� t 0Cu, then one has Qw
�
ˆ.x;u/

�
DQw

�
ˆ.x0;u/

�
D 0 because

w satisfies condition (13) and there is nothing to prove.

� If t Cu� tf � t 0Cu, notice that

Qw
�
ˆ.x0;u/

�
DQw

�
ˆ..m0; d 0; s0; �0; tf /;u/

�
D 0

(this stems from condition (13)), so that we are reduced to the following case.

� We assume from now on that t C u � t 0 C u � tf . We now intend to boundˇ̌
Qw

�
ˆ.x;u/

�
�Qw

�
ˆ.x0;u/

�ˇ̌
. It is clear from (11) that we only need to prove

that the function .�; s/! dm.�; s/, defined by (10), is Lipschitz continuous with
respect to both its variables on the set Œ10�7I 10�5�� Œ0I tf �. Indeed, we have s � t

and s0 � t 0 so that s; s0; sCu; s0Cu� tf . Standard computations yield

jdm.�; s/� dm.�
0; s0/j � sj�� �0jC 3

2
�0js� s0j � tf j�� �

0jC
3
2
10�5js� s0j:

Hence the result. �
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Assumption 2.10 is not satisfied because in our corrosion model, one has t�.x/D

C1 for all x 2 E. Besides, we may notice that the previous proof would have
been more straightforward if t� had been bounded. Indeed in that case, we would
have had s; s0; sCu; s0Cu�Ct� and the introduction of condition (13) would have
been unnecessary. Nevertheless, we have been able to overcome the drawback of
having t� unbounded by noticing that somehow the deterministic time horizon tf
plays the part of the missing Ct� . This is the meaning of condition (13): roughly
speaking, we do not consider what happens beyond tf .

More generally, we will now see that in our deterministic time horizon problem,
the boundedness of t� may be dropped and our results remain true replacing Ct�

by tf . This is clear in the case of Proposition A.2 because the function Ql satisfies
the condition (13). Proposition A.7 remains also true replacing Ct� by tf . Indeed,
on the one hand, it is clear that L.x;u/ � tf Cl . On the other hand, when com-
puting jvn.ˆ.x;u//� vn.ˆ.x

0;u0//j, we are facing three cases, as in the proof of
Lemma 6.2:

� If tf � u� u0, one has

vn.ˆ.x;u//D vn.ˆ.x
0;u0//D 0;

by condition (13).

� If u� tf � u0, one hasˇ̌
vn.ˆ.x;u//� vn.ˆ.x

0;u0//
ˇ̌
D
ˇ̌
vn.ˆ.x;u//� vn.ˆ.x

0; tf //
ˇ̌
;

since vn.ˆ.x
0;u0// D vn.ˆ.x

0; tf // D 0 (condition (13) once again), so that we
are reduced to the next case.

� If u � u0 � tf , the computations remain unchanged and tf replaces Ct� as a
bound for u and u0.

Numerical results. The table below presents the values of the loss of thickness in
environment 2 obtained through our approximation scheme with quantization grids
of varying fineness, as well as the relative deviation with respect to the Monte Carlo
value of 0.036755, obtained with 108 simulations.

Quantization grids yV0 error Quantization grids yV0 error
20 points 0.038386 4.43% 2000 points 0.037041 0.77%
50 points 0.037804 2.85% 4000 points 0.037007 0.69%

100 points 0.037525 2.09% 6000 points 0.036973 0.57%
200 points 0.037421 1.81% 8000 points 0.036944 0.49%
500 points 0.037264 1.38% 10000 points 0.036911 0.40%

1000 points 0.037160 1.10% 12000 points 0.036897 0.36%
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Figure 3. Log-log plot of error when approximating the loss of thickness in environ-
ment 2 versus number of points in the quantization grids. The empirical convergence rate,
estimated through a regression model, is �0:35.

Figure 3 presents respectively the empirical convergence rate. The convergence
rate, estimated through a regression model is �0:35. This is roughly the same
order of magnitude as the rate of convergence of the optimal quantizer (see for
instance [9]) since here the dimension is 3 (indeed, m is deterministic and s D 0

immediately after a jump so that we only quantize the variables �, d and t ).
Finally, we show here the CPU time to compute the expectations from the quan-

tization grids (computations are run with Matlab R2010b on a MacBook Pro 2.66
GHz i7 processor). The CPU time for 108 Monte Carlo simulations was approxi-
mately 16 000 s. It can be seen that, once the quantization grids are obtained, our
approximation scheme performs very fast.

Quantization grids CPU time (s) Quantization grids CPU time (s)
20 points 0.0059 2000 points 1.5
50 points 0.0085 4000 points 5.6

100 points 0.014 6000 points 13
200 points 0.034 8000 points 24
500 points 0.12 10000 points 35

1000 points 0.37 12000 points 54
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7. Conclusion

We have presented an efficient and easy to implement numerical method to approxi-
mate expectations of functionals of piecewise deterministic Markov processes. We
proved the convergence of our algorithm with bounds for the rate of convergence.

Although our method concerns time invariant functionals, we proved that we
are able to tackle time-dependent problems such as Lipschitz continuous time-
dependent functionals or deterministic time horizon expectations. Indeed, we proved
that, thanks to the introduction of the time-augmented process, time-dependent
problems may be seen, paradoxically, as special cases of the time invariant situa-
tion.

Our method is easy to implement because it merely requires to be able to simu-
late the process. Furthermore, although the computation of the quantization grids
may be quite time-consuming, it may be performed preliminarily because the grids
only depend on the dynamics of the process and not on the cost functions l and c.
Therefore, they may be stored off-line and serve several purposes. As illustrated by
the examples presented in Section 6, storing the grids provides to our approxima-
tion scheme efficiency and flexibility. Indeed, the computation of the expectation
can be performed very quickly once the grids are available. Thus, if one decides for
instance to modify the functional, the same grids may be used so that the new result
is obtained very quickly. This flexibility is an important advantage over standard
Monte Carlo simulations.

Appendix A. Lipschitz continuity of F , G and vn

The first lemma and the first proposition of this section present mainly the Lipschitz
continuity of the functions ıA and F . They are stated without proof because they
are quite straightforward.

Lemma A.1. The function ıA is Lipschitz continuous with respect to both its vari-
ables; i.e., for all x, y 2E and u, t 2 R, one has

jıA.x; t/� ıA.y; t/j �AŒt��jx�yj;

jıA.x; t/� ıA.x;u/j �Ajt �uj;

Moreover, one has for all x 2E and t; s � 0 such that t C s � t�.x/,

ıA.ˆ.x; s/; t/D ıA.x; t C s/:

Proposition A.2. The function F introduced in Definition 3.3, is Lipschitz continu-
ous with respect to both its variables. For all x, y 2E and u; v 2 Œ0I t�.x/^ t�.y/�,
one has

jF.x;u/�F.y; v/j � ŒF �1jx�yjC ŒF �2ju� vj;
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with

ŒF �1 D Ct� Œl �1C Œc��CAŒt��Cc ; ŒF �2 D Cl CACc :

The next two lemmas are adapted from [6], the second one being a special case
of Lemma A.1 there. Thus, they are stated without proof.

Lemma A.3. For h 2Lc.E/, .x;y/ 2E2, and t � t�.x/^ t�.y/ˇ̌̌̌Z t�.x/

t

h.ˆ.x; s//e�ƒ.x;s/ds�

Z t�.y/

t

h.ˆ.y; s//e�ƒ.y;s/ds

ˇ̌̌̌
�
�
Ct� Œh�1C .C

2
t� Œ��1C Œt

��/Ch

�
jx�yj:

Lemma A.4. For h 2Lc.@E/ [Lc.E/ and x;y 2E, one hasˇ̌
e�ƒ.x;t

�.x//h
�
ˆ.x; t�.x//

�
� e�ƒ.y;t

�.y//h
�
ˆ.y; t�.y//

�ˇ̌
�
�
Œh��CCh

�
Ct� Œ��1C Œt

��C�
��
jx�yj:

The following notation will be convenient later on. For w 2Lc.E/, x 2E and
t 2 Œ0I t�.x/�, we define

Gtw.x/DEx

��
F.x;S1/Cw.Z1/

�
1fS1�tg

�
DEx

��
L.x;S1/CC.x;S1/Cw.Z1/

�
1fS1�tg

�
:

In particular, G0 DG. Since we know the law of .Z1;S1/, it can be shown that

Gtw.x/D ‡1.x/C‡2.x/C‡3.x/C‡4.x/C‡5.x/; (14)

with

‡1.x/D e�ƒ.x;t/
Z t

0

l ıˆ.x; s/ ds;

‡2.x/D

Z t�.x/

t

l ıˆ.x; s/e�ƒ.x;s/ds:

‡3.x/D c ıˆ.x; t�.x//

Z t�.x/

t

ıA.x; s/� ıˆ.x; s/e�ƒ.x;s/ds;

‡4.x/D

Z t�.x/

t

�
�Qw

�
ıˆ.x; s/e�ƒ.x;s/ds;

‡5.x/D e�ƒ.x;t
�.x//

�
QwC c

�
ıˆ.x; t�.x//:

Proposition A.5. For w 2Lc.E/, .x;y/ 2E2 and t 2 Œ0I t�.x/^ t�.y/�, one hasˇ̌
Gtw.x/�Gtw.y/

ˇ̌
�K.A; w/jx�yj;
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where K.A; w/DE1CE2ACE3Œw�1CE4CwC ŒQ� Œw��, with

E1 D 2Œl �1Ct� CCl

�
Œt��C 2C 2

t� Œ��1
�
C Œc��.1CCt�C�/

CCc

�
2Œ��1Ct� CC�C 2

t� Œ��1C 2Œt��C�
�
;

E2 D CcCt�C�Œt
��;

E3 D .1CCt�C�/ŒQ�;

E4 D 2C�Œt
��CCt� Œ��1.2CCt�C�/:

Proof. Let w 2Lc.E/, .x;y/ 2E2 and t 2 Œ0I t�.x/^ t�.y/�. In view of (14), we
naturally split jGtw.x/�Gyw.y/j into the sum of five differences.

The first one, j‡1.x/�‡1.y/j, is bounded by

j‡1.x/�‡1.y/j � Ct�Cl

ˇ̌
e�ƒ.x;t/� e�ƒ.y;t/

ˇ̌
C

Z t

0

�
l ıˆ.x; s/� l ıˆ.y; s/

�
ds

�
�
C 2

t�Cl Œ��1CCt� Œl �1
�
jx�yj:

The differences j‡2.x/�‡2.y/j and j‡4.x/�‡4.y/j can be bounded thanks
to Lemma A.3, with successively hD l and hD �Qw. Notice that C�Qw � C�Cw
and Œ�Qw�1 � C�ŒQ� Œw�1CCw Œ��1.

For the difference of the ‡5 terms, we use Lemma A.4 with hDQwCc. Notice
that CQwCc � CwCCc and that ŒQwC c�� � ŒQ�

�
Œw��C Œw�1

�
C Œc��.

Finally, to bound j‡3.x/�‡3.y/j, we assume without loss of generality that
t�.x/� t�.y/ and we have

j‡3.x/�‡3.y/j

� Cc

Z t�.x/

t

ˇ̌
ıA.x; s/� ıˆ.x; s/e�ƒ.x;s/� ıA.y; s/� ıˆ.y; s/e�ƒ.y;s/

ˇ̌
ds

CCc

Z t�.y/

t�.x/

ˇ̌
ıA.y; s/� ıˆ.y; s/e�ƒ.y;s/

ˇ̌
dsC Œc��Ct�C�jx�yj

� Cc

Z t�.x/

t

�
C�
ˇ̌
ıA.x; s/�ıA.y; s/

ˇ̌
C Œ��1jx�yjCC�

ˇ̌
e�ƒ.x;s/� e�ƒ.y;s/

ˇ̌�
ds

CCc Œt
��C�jx�yjC Œc��Ct�C�jx�yj

�
�
CcCt�

�
C�AŒt��C Œ��1CC�Ct� Œ��1

�
CCc Œt

��C�C Œc��Ct�C�
�
jx�yj:

The result follows. �

The next lemma is stated without proof, as it is very close to [5, Lemma 51.7].

Lemma A.6. For all x 2E and t 2 Œ0I t�.x/�, one has

vn.ˆ.x; t//D eƒ.x;t/Gtvn�1.x/�

Z t

0

l ıˆ.x; s/ ds:
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Proposition A.7. For all n 2 f0; 1; : : : ;N g, one has vn 2Lc.E/ and

Cvn
� n

�
Ct�Cl CCc

�
;

Œvn�1 � eCt�C�
�
K.A; vn�1/C nCt� Œ��1.Ct�Cl CCc/

�
CCt� Œl �1;

Œvn�2 � eCt�C�
�
Ct�ClC�C 2Cl CC�Cc C .2n� 1/C�.Ct�Cl CCc/

�
CCl ;

Œvn�� � Œvn�1C Œt
�� Œvn�2;

Œvn� �K.A; vn�1/;

Proof. Recall that for x 2E, one has from Definition 3.3

vn.x/DGvn�1.x/DEx ŒL.x;S1/�CEx ŒC.x;S1/�CEx Œvn�1.Z1/�:

Thus, Cvn
� Ct�Cl CCc CCvn�1

� n
�
ct�Cl CCc

�
by induction.

Let us now turn to Œvn�1. Lemma A.6 yields

jvn.ˆ.x; t//� vn.ˆ.y; t//j

� jeƒ.x;t/Gtvn�1.x/�eƒ.y;t/Gtvn�1.y/jC

Z t

0

ˇ̌
l ıˆ.x; s/� l ıˆ.y; s/

ˇ̌
ds

� eƒ.x;t/
ˇ̌
Gtvn�1.x/�Gtvn�1.y/

ˇ̌
C
ˇ̌
Gtvn�1.y/

ˇ̌ ˇ̌
eƒ.x;t/� eƒ.y;t/

ˇ̌
CCt� Œl �1jx�yj:

The result follows using Proposition A.5 and noticing that

ƒ.x; t/� Ct�C�;

jGtvn�1.y/j � Ct�Cl CCc CCvn�1
� n.Ct�Cl CCc/;

jeƒ.x;t/� eƒ.y;t/j � eCt�C�Ct� Œ��1jx�yj:

We now turn to Œvn�2. For x 2E and s, t 2 Œ0; t�.x/� with s � t , one has

ˇ̌
vn.ˆ.x; t//� vn.ˆ.x; s//

ˇ̌
� eƒ.x;t/

ˇ̌
Gtvn�1.x/�Gsvn�1.x/

ˇ̌
C
ˇ̌
Gsvn�1.x/

ˇ̌ ˇ̌
eƒ.x;t/� eƒ.x;s/

ˇ̌
CCl jt � sj:
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Moreover, from (14), one hasˇ̌
Gtvn�1.x/�Gsvn�1.x/

ˇ̌
�Ex

�
jF.x;S1/C vn�1.Z1/j1fs�S1<tg

�
�

ˇ̌̌̌
e�ƒ.x;t/

Z t

0

l.ˆ.x;u// du� e�ƒ.x;s/
Z s

0

l.ˆ.x;u// du

ˇ̌̌̌
C

Z t

s

ˇ̌
l.ˆ.x;u//e�ƒ.x;u/

ˇ̌
du

C
ˇ̌
c ıˆ.x; t�.x//

ˇ̌ Z t

s

ˇ̌
ıA.x;u/� ıˆ.x;u/e�ƒ.x;u/

ˇ̌
du

C

Z t

s

ˇ̌
.�Qvn�1/ ıˆ.x;u/e

�ƒ.x;u/
ˇ̌
du

�
�
Ct�Cl

ˇ̌
e�ƒ.x;t/� e�ƒ.x;s/

ˇ̌
CCl jt � sj

�
C .Cl jt � sj/

C .CcC�jt � sj/C .C�Cvn�1
jt � sj/

and

jeƒ.x;t/� eƒ.x;s/j � eCt�C�C�jt � sj:

Finally, the bound for Œvn� is a direct consequence from Proposition A.5. �

Appendix B. Relaxed assumption on the running cost function

In this section, we consider the approximation applied to the time-augmented
process so that the local characteristics are ẑ , Q� and zQ defined in Section 5.1.
Moreover, we consider a function l 2Lc. zE/ and we define Ql 2 B. zE/ by

for all � D .x; t/ 2 zE, Ql.�/D l.x; t/1ft�tf g:

We intend to prove that the convergence of our approximation scheme, stated by
Theorem 4.5, remains true if we choose Ql as the running cost function even though
it does not fulfill the required Lipschitz conditions, i.e., Ql 62 Lc. zE/. Indeed, the
Lipschitz continuity of l is used four times in the proof of the theorem, once in
Proposition A.2, twice in Proposition A.5 (when bounding the difference of the ‡1

terms and the one of the ‡2 ones) and once in Proposition A.7 (when bounding
Œvn�1). In each case, the Lipschitz continuity of the running cost function l is used
to bound a term of the formZ s0

s

ˇ̌
Ql ı ẑ .�;u/� Ql ı ẑ .� 0;u/

ˇ̌
du (15)
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for � , � 0 2 zE and s, s0 2 Œ0I Qt�.�/^ Qt�.� 0/�, or of the formZ Qt�.�/^Qt�.�0/
s

ˇ̌
Ql ı ẑ .�;u/e�

zƒ.�;u/
� Ql ı ẑ .� 0;u/e�

zƒ.�0;u/
ˇ̌
du (16)

for �, � 0 2 zE and s 2 Œ0I Qt�.�/ ^ Qt�.� 0/� and where we use the natural notation
zƒ.�;u/D

R u
0
Q�. ẑ .�; v// dv. Concerning this second form, Equation (16), notice

thatZ Qt�.�/^Qt�.�0/
s

ˇ̌
Ql ı ẑ .�;u/e�

zƒ.�;u/
� Ql ı ẑ .� 0;u/e�

zƒ.�0;u/
ˇ̌
du

�

Z Qt�.�/^Qt�.�0/
s

ˇ̌
Ql ı ẑ .�;u/� Ql ı ẑ .� 0;u/

ˇ̌
du

CCl

Z Qt�.�/^Qt�.�0/
s

ˇ̌
e�
zƒ.�;u/

� e�
zƒ.�0;u/

ˇ̌
du

�

Z Qt�.�/^Qt�.�0/
s

ˇ̌
Ql ı ẑ .�;u/� Ql ı ẑ .� 0;u/

ˇ̌
duCClC

2
t� Œ��1j� � �

0
j;

so that, to ensure that Theorem 4.5 remains true with Ql as the running cost function,
it is sufficient to be able to bound terms of the form (15). This is done in the
following lemma.

Lemma B.1. For � D .x; t/; � 0 D .x0; t 0/ 2 zE and s 2 Œ0I Qt�.�/^ Qt�.� 0/�, one hasZ s

0

ˇ̌̌
Ql ı ẑ .�;u/� Ql ı ẑ .� 0;u/

ˇ̌̌
du� .Ct� Œl �1CCl/j� � �

0
j:

Proof. Let � D .x; t/; � 0 D .x0; t 0/ 2 zE and s 2 Œ0I Qt�.�/^ Qt�.� 0/�. One hasZ s

0

ˇ̌
Ql ı ẑ .�;u/� Ql ı ẑ .� 0;u/

ˇ̌
du

�

Z s

0

ˇ̌
l ı ẑ .�;u/1ftCu�tf g� l ı ẑ .� 0;u/1ft 0Cu�tf g

ˇ̌
du

�

Z s

0

ˇ̌
l ı ẑ .�;u/� l ı ẑ .� 0;u/

ˇ̌
duCCl

Z s

0

ˇ̌
1ftCu�tf g�1ft 0Cu�tf g

ˇ̌
du

The left-hand side term is bounded by Ct� Œl �1j� � �
0j since l 2 Lc. zE/. For the

right-hand side term, assume without loss of generality that t � t 0, one hasˇ̌
1ftCu�tf g�1ft 0Cu�tf g

ˇ̌
D
ˇ̌
1ft�tf�ug�1ft 0�tf�ug

ˇ̌
D 1ft�tf�u<t 0�tf g;

so that the right-hand side term is bounded by Cl jt � t 0j � Cl j� � �
0j. The result

follows. �
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Theorem 4.5 remains true if we choose Ql as the running cost function. One only
needs to slightly modify the Lipschitz constants given in propositions A.2, A.5 and
A.7. The terms Ct� Œl �1 have to be replaced by Ct� Œl �1CCl .

Appendix C. Proof of Theorem 4.5

The Lipschitz continuity of the functions vk is proved by Proposition A.7. Now
let A> 0 and notice that

jJN .l; c/.x/� yV0j � jJN .l; c/.x/�V0jC jV0�
yV0j:

Proposition 3.2 says that jJN .l; c/.x/�V0j �NCcC�=A since V0 D J A
N
.l; c/.x/.

We now have to bound jV0�
yV0j.

Some of the arguments of the proof are similar to the ones used in Theorem 5.1
from [6], thus we will not develop the details of the proof. Recall that kVN �

yVN kp D 0 and let k 2 f0; : : : ;N � 1g. In order to bound the approximation error,
let us split it into three terms kVk �

yVkkp �„1C„2C„3, where

„1 D kvk.Zk/� vk. yZk/kp;

„2 D kGvkC1. yZk/� yGkC1vkC1. yZk/kp;

„3 D k
yGkC1vkC1. yZk/� yGkC1 OvkC1. yZk/kp:

The theorem is then a direct consequence from the three following lemmas, stated
without proof, that provide bounds for each of these three terms.

Lemma C.1. The first term, „1, is bounded by

kvk.Zk/� vk. yZk/kp � Œvk �kZk �
yZkkp:

Lemma C.2. The second term, „2, is bounded by

GvkC1. yZk/� yGkC1vkC1. yZk/




p

� ŒvkC1�kZkC1�
yZkC1kpC

�
Œvk �C ŒF �1

�
kZk�

yZkkpC ŒF �2kSkC1�
ySkC1kp:

Lemma C.3. The third term, „3, is bounded by

 yGkC1vkC1. yZk/� yGkC1 OvkC1. yZk/




p

� ŒvkC1�kZkC1�
yZkC1kpCkVkC1�

yVkC1kp:
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NUMERICAL METHODS FOR THE EXIT
TIME OF A PIECEWISE-DETERMINISTIC
MARKOV PROCESS

ADRIEN BRANDEJSKY,∗ Université Bordeaux, IMB and INRIA Bordeaux Sud-Ouest

BENOÎTE DE SAPORTA,∗ Université Bordeaux, Gretha and INRIA Bordeaux Sud-Ouest

FRANÇOIS DUFOUR,∗ ∗∗ Université Bordeaux, IMB and INRIA Bordeaux Sud-Ouest

Abstract

We present a numerical method to compute the survival function and the moments of the
exit time for a piecewise-deterministic Markov process (PDMP). Our approach is based
on the quantization of an underlying discrete-time Markov chain related to the PDMP.
The approximation we propose is easily computable and is even flexible with respect to
the exit time we consider. We prove the convergence of the algorithm and obtain bounds
for the rate of convergence in the case of the moments. We give an academic example
and a model from the reliability field to illustrate the results of the paper.

Keywords: Exit time; piecewise-deterministic Markov process; quantization; numerical
method

2010 Mathematics Subject Classification: Primary 60J25; 65C20
Secondary 60K10

1. Introduction

The aim of this paper is to propose a practical numerical method to approximate the survival
function and the moments of the exit time for a piecewise-deterministic Markov process based
on the quantization of a discrete-time Markov chain naturally embedded within the continuous-
time process.

Piecewise-deterministic Markov processes (PDMPs) were introduced by Davis [5] as a
general class of stochastic models. PDMPs are a family of Markov processes involving
deterministic motion punctuated by random jumps. The motion depends on three local charact-
eristics, namely the flow �, the jump rate λ, and the transition measure Q, which specifies the
post-jump location. Starting from the point x, the motion of the process follows the flow�(x, t)
until the first jump time T1, which occurs either spontaneously in a Poisson-like fashion with
rate λ(�(x, t)) or when the flow�(x, t) hits the boundary of the state space. In either case, the
location of the process at the jump time T1 is selected by the transition measureQ(·,�(x, T1))

and the motion restarts from this new pointX(T1) denoted by Z1. We similarly define the time
S2 until the next jump; the next jump time is T2 = T1 + S2, the next post-jump location
Z2 = X(T2), and so on. Thus, associated to the PDMP we have discrete-time Markov chains
(Zn, Tn)n∈N, given by the post-jump locations and the jump times, and (Zn, Sn)n∈N, given by the
post-jump locations and the inter-jump times. Suitable choices of the state space and the local
characteristics �, λ, and Q provide stochastic models covering a great number of problems in
operations research; see, for example, [4], [5], and the corrosion model presented in this paper.

Received 6 January 2011; revision received 26 September 2011.
∗ Postal address: INRIA Bordeaux Sud-Ouest, CQFD Team, 351 cours de la Libération, F-33405 Talence, France.
∗∗ Email address: dufour@math.u-bordeaux1.fr
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Numerical computation of the moments of the exit time for a Markov process has been
studied by Helmes et al. [8]. Starting from an assumption related to the generator of the
process, they derived a system of linear equations satisfied by the moments. In addition to
these equations, they included finitely many Hausdorff moment conditions that are also linear
constraints. This optimization problem is a standard linear programming problem for which
a lot of efficient software is available. Lasserre and Prieto-Rumeau [9] introduced a similar
method, but they improved the efficiency of the algorithm by replacing the Hausdorff moment
conditions with semidefinite positivity constraints of some moment matrices. Nevertheless,
their approach cannot be applied to PDMPs because the assumption related to the generator
of the process is generally not satisfied. In [5, Section 33] Davis gave an iterative method to
compute the mean exit time for a PDMP, but his approach involved solving a large set of ordinary
differential equations whose forms are very problem specific, depending on the behaviour of
the process at the boundary of the state space. Besides, and in the context of applications to
reliability, it seems important to also study the distribution of the exit time.

There exists extensive literature on quantization methods for random variables and processes.
The interested reader is referred to, e.g. [7], [10], and the references therein. Quantization
methods have been developed recently for numerical probability or optimal stochastic control
problems with applications in finance (see, e.g. [1]–[3] and [10]). The quantization of a Markov
chain (�n)n∈N consists in finding, for each n, an optimally designed discretization of the state
space of �n providing the best possible Lp-approximation by a random variable �̂n taking
its values in a grid �n of finite and fixed size as well as a transition measure of the quantized
chain (�̂n)n∈N. As explained for instance in [10, Section 3], provided that the Markov kernel is
Lipschitz, bounds for the rate of Lp-convergence of the quantized process towards the original
process are obtained.

In the present work, we consider a PDMP (Xt )t≥0 with state space E and we present
approximation methods to compute the moments and the survival function of the exit time from
a set U ⊂ E, given that the PDMP exits the set U before the N th jump time TN . Roughly
speaking, we estimate the moments and the survival function for τ∧TN . In our approach, the first
step consists in expressing the j th moment (respectively the survival function) as the last term
of some sequence (pk,j )k≤N (respectively (pk)k≤N ) satisfying a recursion pk+1,j = ψ(pk,j )

(respectively pk+1 = ψ(pk)) specifically built within our paper.
In this context, a natural way to deal with these problems is to follow the idea developed

in [6], namely to write the recursions in terms of an underlying discrete-time Markov chain
and to replace it by its quantized approximation. The definitions of (pk,j )k and (pk)k involve
some discontinuities related to indicator functions, but, as in [6], we show that they occur with
small enough probabilities. However, an important feature that distinguishes the present work
from [6] and which prevents a straightforward application of the ideas developed therein, is
that an additional important difficulty appears in the definitions of the sequences (pk,j )k and
(pk)k . Indeed, the mapping ψ such that pk+1,j = ψ(pk,j ) and pk+1 = ψ(pk) is not Lipschitz
continuous. One of the main results of this paper is to overcome this difficulty by deriving new
and important properties of the Markov chain (Zn, Tn)n∈N, combined with a sharp feature of
the quantization algorithm. We are able to prove the convergence of the approximation scheme.
Moreover, in the case of the moments, we even obtain bounds for the rate of convergence. It is
important to stress that these assumptions are quite reasonable with regards to the applications.

An important advantage of our method is that it is flexible. Indeed, as pointed out in [1],
a quantization-based method is ‘obstacle free’, which means, in our case, that it produces,
once and for all, a discretization of the process independently of the set U . Consequently, the
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approximation schemes for both the moments and the distribution of the exit time are flexible
with respect to U . Indeed, if we are interested in the exit time from a new set U ′, it will
be possible, provided that U ′ satisfies the same assumptions as U , to obtain in a very simple
way the moments and the distribution of this new exit time. Indeed, the quantization grids are
computed only once, stored offline, and may therefore serve many purposes.

The paper is organized as follows. We first recall the definition of a PDMP and state our
assumptions. In Section 3, we introduce the moments and the distribution problems, and
present recursive methods to solve them. Section 4 contains the main contributions of this
paper, namely the approximation schemes, the proofs of convergence, and bounds for the rates
of convergence. Two numerical examples are developed in Section 5 and the advantages of our
approach are discussed in Section 6.

2. Definitions and assumptions

For any metric space X, we denote by B(X) its Borel σ -field and by B(X) the set of real-
valued, bounded, and measurable functions defined on X. For a, b ∈ R, a ∧ b = min(a, b)
and a ∨ b = max(a, b).

2.1. Definition of a PDMP

In this section we define a PDMP and introduce some general assumptions. Let M be a
finite set, called the set of the modes, that represents the different regimes of evolution of the
PDMP (M is supposed to be a finite space although it could be countable); for each m ∈ M ,
the process evolves in Em, an open subset of Rd(m) (where d : M → N∗). Let

E = {(m, ξ), m ∈ M, ξ ∈ Em}.
This is the state space of the process (Xt )t∈R+ = (mt , ξt )t∈R+ . Let ∂E be its boundary, let Ē
be its closure, and, for any subset Y of E, let Y c denote its complement.

Define on E the following distance: for x = (m, ξ) and x′ = (m′, ξ ′) ∈ E,

|x − x′| =
{

+∞ if m �= m′,
|ξ − ξ ′| otherwise.

Moreover, for any x ∈ E and Y ⊂ E, denote by d(x, Y ) the distance between the point x and
the set Y , i.e. d(x, Y ) = infy∈Y |x − y|.

A PDMP is defined by its local characteristics (�m, λm,Qm)m∈M .

• For each m ∈ M , �m : Rd(m) × R → Rd(m) is a continuous function called the flow in
mode m. For all t ∈ R, �m(·, t) is an homeomorphism and t → �m(·, t) is a group,
i.e. for all ξ ∈ Rd(m), �m(ξ, t + s) = �m(�m(ξ, s), t). For all x = (m, ξ) ∈ E, define
the deterministic exit time from E by

t∗(x) = inf{t > 0 such that �m(ξ, t) ∈ ∂Em}.
Here and throughout, we use the convention that inf ∅ = +∞.

• For all m ∈ M , the jump rate λm : Ēm → R+ is measurable and satisfies the following
condition:

for all (m, ξ) ∈ E, there exists ε > 0 such that
∫ ε

0
λm(�m(ξ, t)) dt < +∞.
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• For all m ∈ M , Qm is a Markov kernel on (B(Ē), Ēm) which satisfies the following
condition:

for all ξ ∈ Ēm, Qm(E \ {(m, ξ)}, ξ) = 1.

From these characteristics, it can be shown (see [5, p. 57]) that there exists a filtered probability
space (�,F ,Ft , (Px)x∈E) on which a process (Xt )t∈R+ is defined. Its motion, starting from
a point x ∈ E, may be constructed as follows. Let T1 be a nonnegative random variable with
survival function

Px(T1 > t) =
{

e−�(x,t) if 0 ≤ t < t∗(x),
0 if t ≥ t∗(x),

where, for x = (m, ξ) ∈ E and t ∈ [0, t∗(x)],

�(x, t) =
∫ t

0
λm(�m(ξ, s)) ds.

We then choose an E-valued random variable Z1 with distribution Qm(·,�m(ξ, T1)). The
trajectory of Xt for t ≤ T1 is

Xt =
{
(m,�m(ξ, t)) if t < T1,

Z1 if t = T1.

Starting from the point XT1 = Z1, we select the next inter-jump time T2 − T1 and the next
post-jump location Z2 in a similar way.

Davis showed (see [5]) that the process so defined is a strong Markov process (Xt )t≥0 with
jump times (Tn)n∈N (with T0 = 0). The process (�n)n∈N = (Zn, Tn)n∈N, where Zn = XTn is
the post-jump location and Tn is the nth jump time, is clearly a discrete-time Markov chain.
Besides, we denote by Sn = Tn − Tn−1 and S0 = 0 the inter-jump times.

The following assumption about the jump times is standard (see, for example, [5, Sec-
tion 24]).

Assumption 2.1. For all (x, t) ∈ E × R+, Ex[∑k 1{Tk<t}] < +∞.

Assumption 2.1 implies that Tk → +∞ almost surely (a.s.) when k → +∞.
For notational convenience, any functionh defined onEwill be identified with its component

functions hm defined on Em. Thus, we write

h(x) = hm(ξ) when x = (m, ξ) ∈ E.
We also define a generalized flow � : E × R+ → E such that

�(x, t) = (m,�m(ξ, t)) when x = (m, ξ) ∈ E.
2.2. Notation

For any function w in B(Ē), we introduce

Qw(x) =
∫
E

w(y)Q(dy, x), Cw = sup
x∈Ē

|w(x)|,

and, for any Lipschitz continuous function w in B(Ē), we denote its Lipschitz constant by

[w] = sup
x �=y∈Ē

|w(x)− w(y)|
|x − y| ,

with the convention that 1/∞ = 0.
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Remark 2.1. For w ∈ B(Ē) and from the definition of the distance on E, we have [w] =
supm∈M [wm].

3. Exit time

For allm ∈ M , let Um be a Borel subset of Em and let U = {(m, ξ), m ∈ M, ξ ∈ Um}. We
are interested in the exit time from U , denoted by τ and given by

τ = inf{s ≥ 0 such that Xs �∈ U}.
Denote by µ the distribution of the initial state of the process Z0. Since the present paper
concerns numerical computations, the following assumption appears natural.

Assumption 3.1. The process starts in U and eventually leaves it a.s., i.e. the support of µ is
included in U and Pµ(τ < +∞) = 1.

The aim of this paper is to provide approximation schemes for the survival function and
moments of the process. Our method has a high practical interest because it will provide
numerical approximations as soon as the process can be simulated. Our approach is based
on a recursive computation using the underlying discrete-time Markov chain (Zn, Tn)n∈N.
Therefore, we will study τ ∧TN rather than τ for someN ∈ N called the computation horizon.
Indeed, thanks to Assumption 2.1, when N goes to ∞, we have

τ ∧ TN → τ Pµ-a.s.

One may approximate τ by τ ∧ TN if N is chosen such that Pµ(τ > TN) is small enough (the
choice of N will be discussed in Section 3.3) because the evolution of the process beyond TN
will have little impact on the law or the moments of the exit time. In the rest of this section
we present the two problems we are interested in and describe the recursive methods we use to
solve them.

Definition 3.1. Let us define u∗(x) for all x ∈ U to be the time for the flow starting from the
point x to exit from U , i.e.

u∗(x) = inf{s ≥ 0 such that �(x, s) �∈ U}.
We now introduce some technical assumptions that will be in force throughout the paper.

The first three assumptions will be crucial, while the two last assumptions can be made without
loss of generality.

Assumption 3.2. The function u∗ is

(a) Lipschitz continuous,

(b) bounded by Cu∗ .

Assumption 3.3. For all m ∈ M , the set Um is convex.

Assumption 3.4. For α > 0, let Uα = {x ∈ E such that d(x, ∂U) ≤ α}. There exist C > 0
and β > 0 such that, for all k ∈ {0, . . . , N}, Pµ(Zk ∈ Uα) ≤ Cαβ .

Remark 3.1. Assumption 3.4 can be checked in most of the applications. We will see, in the
examples developed in Section 5, how it can be derived quite generally when Zk has a bounded
density. Moreover, it could be replaced by the following assumption, similar to an hypothesis
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introduced in [5, Section 24] and presented as quite general in applications: there exists ε > 0
such that, for all x ∈ U , Q(Uε, x) = 0, where Uε = {x ∈ E such that d(x, ∂U) ≤ ε}, i.e. for
all k ∈ {0, . . . , N}, Pµ(Zk ∈ Uε) = 0.

Assumption 3.5. The process cannot go back to U once it has left it, i.e. for all z ∈ U c,
Pz(there exists t ≥ 0, Xt ∈ U) = 0.

Assumption 3.6. The function t∗ is bounded by Ct∗ .

In our discussion, Assumption 3.5 does not imply any loss of generality and Assumption 3.6
stems from Assumption 3.2(b). Indeed, if any of the two previous assumptions is not satisfied
by the process (Xt )t∈R+ , we introduce the process killed at time τ , denoted by (X̃t )t∈R+ and
defined by

X̃t =
{
Xt for t < τ ,

� for t ≥ τ ,

where � denotes a cemetery state. The state space of the killed process is Ẽ = U ∪ {�} and
Assumption 3.5 is fulfilled since the killed process remains in � after leaving U . In addition,
t̃∗, the deterministic exit time from Ẽ for the killed process, equals u∗, which is bounded and
Lipschitz continuous according to Assumption 3.2.

3.1. Distribution

The first goal of this paper is to compute an approximation for the law of the exit time τ .
More precisely, we intend to approximate Pµ(τ > s | τ ≤ TN) for s > 0.

Our approach is of huge practical interest because we will see that, after some initial compu-
tations, any value of the survival function of τ may be quickly obtained. More importantly, our
approach is even flexible with respect toU in the sense that the survival function of the exit time
τ ′ from a new set U ′ ⊂ U will also be directly available (provided that Assumptions 3.2–3.5
are still fulfilled by U ′).

Definition 3.2. For all s > 0, define the sequences (pk(s))k≥0, (qk)k≥0, and (rk(s))k≥0 as
follows:

pk(s) = Pµ(τ > s | τ ≤ Tk),

qk = Pµ(τ ≤ Tk),

rk(s) = Pµ({τ > s} ∩ {Tk < τ ≤ Tk+1}).

Remark 3.2. The conditional probability pk(s) does not exist when qk = 0. We then choose
to extend the sequence by setting pk(s) = 0.

Our objective is to approximate pN(s), where N represents the computation horizon. The
following proposition provides a recursion for the sequence (pk)k≤N ; note that pN may be
computed as soon as the sequences (qk)k≤N and (rk)k≤N−1 are known.

Proposition 3.1. Under Assumption 3.1, for all k ∈ N and s > 0, p0(s) = 0 and

pk+1(s) =
⎧⎨⎩
pk(s)qk + rk(s)

qk+1
if qk+1 �= 0,

0 otherwise.
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Proof. First, recall that T0 = 0 so that we havep0 = 0 since the process starts inU according
to Assumption 3.1. Then, let k ∈ N such that qk+1 �= 0 and note that {τ ≤ Tk+1} = {τ ≤
Tk} ∪ {Tk < τ ≤ Tk+1}. Then we have

pk+1(s) = Pµ({τ > s} ∩ {τ ≤ Tk+1})
Pµ(τ ≤ Tk+1)

= Pµ({τ > s} ∩ {τ ≤ Tk})+ Pµ({τ > s} ∩ {Tk < τ ≤ Tk+1})
qk+1

= pk(s)qk + rk(s)

qk+1
,

completing the proof.

Now, before turning to computations, let us present the second problem we are interested in.

3.2. Moments

Our second goal is to approximate the moments of the exit time from U , i.e. for all j ∈ N,
we are interested in Eµ[τ j | τ ≤ TN ]. This is a very classical problem and some results are
already available. First, it is possible to use a Monte Carlo method, and we will point out
why the method we propose is more efficient and flexible. Furthermore, Helmes et al. [8]
introduced a numerical method for computing the moments of the exit time based on linear
programming. Lasserre and Prieto-Rumeau [9] improved this method by using semidefinite
positivity moment conditions. These methods are quite efficient, but they require an assumption
related to the generator of the process which is generally not fulfilled by the PDMP. The method
we introduce now is based on the use of the Markov chain (�n)n∈N = (Zn, Tn)n∈N associated
to the continuous-time process (Xt )t∈R+ .

Definition 3.3. For all j ∈ N, introduce the sequences (pk,j )k≥0 and (rk,j )k≥0 defined as
follows:

pk,j = Eµ[τ j | τ ≤ Tk], rk,j = Eµ[τ j 1{Tk<τ≤Tk+1}].
Our objective is to approximate pN,j , where N still represents the computation horizon.

Similarly to the previous section, the sequence (pk,j )k≤N satisfies a recursion whose parameters
are the sequences (qk)k≤N , previously introduced, and (rk,j )k≤N−1.

Proposition 3.2. Under Assumption 3.1, we have, for all k, j ∈ N, p0,j = 0 and

pk+1,j =
⎧⎨⎩
pk,j qk + rk,j

qk+1
if qk+1 �= 0,

0 otherwise.

Proof. The proof is similar to that of Proposition 3.1.

Before turning to the approximation method itself, let us discuss the crucial question of the
computation horizon.

3.3. The computation horizon

In this subsection we study more precisely the construction of the process (Xt ) in order to
obtain some results concerning the jump times (Tk)k∈N. For this purpose, we introduce, in this
section only, two additional hypotheses.
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Assumption 3.7. The jump rate λ is bounded by Cλ.

Assumption 3.8. There exists ε > 0 such that, for all x ∈ E,Q(x,Aε) = 1, whereAε = {x ∈
E such that t∗(x) ≥ ε}. Roughly speaking, the jumps cannot send the process too close to the
boundary of E.

Assumption 3.7 is satisfied in a large majority of applications; Assumption 3.8 is quite
general too and was introduced in [5, Section 24].

Let (�,A,P) be a probability space on which is defined a sequence (�k)k∈N of independent
random variables with uniform distribution on [0; 1]. Let x = (m, ξ) ∈ E and ω ∈ �, and let
us focus on the construction of the trajectory {Xt(ω), t > 0} of the process starting from the
point x. Let

F(t, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if t ≤ 0,

exp

(
−

∫ t

0
λ(m,�m(ξ, s)) ds

)
if 0 ≤ t < t∗(x),

0 if t ≥ t∗(x).

It is the survival function of the first jump time T1. Define its generalized inverse by

�(u, x) =
{

inf{t ≥ 0 : F(t, x) ≤ u},
+∞, if the above set is empty.

Let S1(ω) = T1(ω) = �(�1(ω), x) and, for all t < T1(ω),

Xt(ω) = (m,�m(ξ, t)).

If T1(ω) < +∞, choose XT1 with distribution Q(·,�m(ξ, T1)). Assume that the trajectory is
constructed until time Tk . If Tk(ω) < +∞, let

Sk+1(ω) = �(�k(ω),XTk ), Tk+1(ω) = Tk(ω)+ Sk+1(ω).

If Tk+1(ω) < +∞, choose XTk+1 with distribution Q(·,�mTk (ξTk , Sk+1)). The trajectory is
finally constructed by induction.

With the same notation as above, we state the following lemma.

Lemma 3.1. Let H be a survival function such that, for all t ∈ R and all x ∈ E, H(t) ≤
F(t, x). There exists a sequence of independent random variables (S̃k)k∈N with distributionH
and such that, for all K ∈ R and N ∈ N,

Pµ(TN < K) ≤ Pµ(T̃N < K),

where T̃N = ∑N
k=0 S̃k .

Proof. Let H be such a survival function, and let �̃ be its generalized inverse, i.e.

�̃(u) =
{

inf{t ≥ 0 : H(t) ≤ u},
+∞, if the above set is empty.

The assumption made on H yields, for all x ∈ E, �̃(u) ≤ �(u, x). Let, for all k ∈ N and all
ω ∈ �,

S̃k(ω) = �̃(�k(ω)).

Note that we are using the same�k as in the definition of Sk , allowing us to write S̃k ≤ Sk a.s.
and, therefore, T̃k ≤ Tk a.s. The result follows.
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Similarly to Davis [5, Section 33], we approximated τ by τ ∧ TN since τ ∧ TN → τ as
N → +∞ thanks to Assumption 2.1. It is therefore necessary to choose N large enough
such that Pµ(TN < τ) is small. It is difficult to estimate this probability for a general process
because the links between τ and the jump times are largely problem dependent. For instance,
the geometry of U can be very complex. Therefore, N will generally be estimated through
simulations. Indeed, we can compute Pµ(TN < τ) for some fixed N thanks to a Monte Carlo
method and increase the value of N until this probability becomes small enough. However,
we introduce another method to bound this probability that may prove useful in applications.
First, note that, for any K > 0,

{TN < τ } ⊂ {TN < K} ∪ {τ > K}.
This implies that

Pµ(TN < τ) ≤ Pµ(TN < K)+ Pµ(τ > K).

This will prove especially useful whenever τ is bounded, which happens quite often in appli-
cations, because there exists a K such that Pµ(τ > K) = 0. When τ is not bounded, it is
sometimes possible to obtain K such that Pµ(τ > K) is small.

Example 3.1. (A crack propagation model.) We adapt here an example studied by Chiquet and
Limnios [4], which models a crack propagation. Here Yt is a real-valued process representing
the crack size and satisfying

Y0 > 0, Ẏt = AtYt for all t ≥ 0,

whereAt is a Markov process with state space {α, β}, 0 < α ≤ β. We are interested in the time
τ before the crack size reaches a critical size yc. Consider the PDMP Xt = (At , Yt ), where At
represents the mode at time t . It is possible to bound the exit time by considering the slowest
flow: we clearly have, for all t ≥ 0, Yt ≥ Y0eαt and, thus,

Pµ

(
τ >

1

α
ln

(
yc

Y0

))
= 0.

We now intend to bound Pµ(TN < K) for a fixed K > 0. Let

H(t) =

⎧⎪⎨⎪⎩
1 if t ≤ 0,

e−Cλt if 0 ≤ t < ε,

0 if t ≥ ε.

Distribution H represents, roughly speaking, the worst distribution of the inter-jump times
Sk in the sense that it is the distribution that gives the most frequent jumps. Indeed, denote by
Fk the survival function of Sk . We haveH ≤ Fk for all k ∈ N. Therefore, Lemma 3.1 provides
a random variable T̃N = ∑N

k=0 S̃k , where the S̃k are independent and have survival functionH ,
such that

Pµ(TN < K) ≤ Pµ(T̃N < K).

We now bound Pµ(T̃N < K). Standard computations yield Eµ[T̃N ] = Nm and varµ[T̃N ] =
Nσ 2, where

m := Eµ[S̃1] = 1

Cλ
(1 − e−Cλε),

σ 2 := varµ[S̃1] = 1

C2
λ

(1 − 2Cλεe
−Cλε − e−2Cλε).
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Assume now that N is such that Nm > K , and note that

Pµ(T̃N < K) ≤ Pµ(|T̃N − Eµ[T̃N ]| > Eµ[T̃N ] −K).

Tchebychev’s inequality yields

Pµ(T̃N < K) ≤ Nσ 2

(Nm−K)2
.

The right-hand side term goes to 0 when N goes to ∞.
Finally, when τ is bounded with a high probability and when Assumptions 3.7 and 3.8 are

fulfilled, we are able to choose N a priori such that Pµ(TN < τ) is small. These conditions are
satisfied in a large class of applications.

4. Approximation scheme

4.1. The quantization algorithm

First, we describe the quantization procedure for a random variable and recall some important
properties that will be used in the sequel. There exists extensive literature on quantization
methods for random variables and processes. We do not pretend to present here an exhaustive
panorama of these methods. However, the interested reader is referred to, e.g. [1], [7], [10],
and the references therein. Consider X, an Rq -valued random variable such that ‖X‖p < ∞,
where ‖X‖p denotes the Lp-norm of X, i.e. ‖X‖p = (E[|X|p])1/p.

Let K be a fixed integer. The optimal Lp-quantization of the random variable X consists
in finding the best possible Lp-approximation of X by a random vector X̂ taking at most K
values: X̂ ∈ {x1, . . . , xK}. This procedure consists of the following two steps.

1. Find a finite weighted grid � ⊂ Rq with � = {x1, . . . , xK}.
2. Set X̂ = X̂� , where X̂� = proj�(X), a Borel nearest-neighbour projection on �.

The asymptotic properties of theLp-quantization are given by the following result; see, e.g. [10].

Theorem 4.1. If E[|X|p+η] < +∞ for some η > 0 then we have

lim
K→∞K

p/q min|�|≤K ‖X − X̂�‖pp = Jp,q

∫
|h|q/(q+p)(u) du,

where the law of X is PX(du) = h(u)λq(du) + ν with ν ⊥ λq , Jp,q a constant, and λq the
Lebesgue measure in Rq .

Note that X needs to have finite moments up to the order p + η to ensure the above
convergence. There exists a similar procedure for the optimal quantization of a Markov chain
{Xk}k∈N. There are two approaches to provide the quantized approximation of a Markov
chain. The first approach, based on the quantization at each time k of the random variable Xk ,
is called the marginal quantization. The second approach, which enhances the preservation
of the Markov property, is called the Markovian quantization. Note that, for the latter, the
quantized Markov process is not homogeneous. These two methods are described in detail
in [10, Section 3]. In this work, we use the marginal quantization approach for simplicity
reasons.

Our approximation methods are based on the quantization of the underlying discrete-time
Markov chain (�k)k≤N = (Zk, Tk)k≤N . The quantization algorithm provides, for each time
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step 0 ≤ k ≤ N , a finite grid �k of E × R+ as well as the transition matrices (Q̂k)0≤k≤N−1
from �k to �k+1. Let p ≥ 1 such that, for all k ≤ N , Zk and Tk have finite moments at least
up to order p and let proj�k be the nearest-neighbour projection from E × R+ onto �k . The
quantized process (�̂k)k≤N = (Ẑk, T̂k)k≤N with value for each k in the finite grid�k ofE×R+
is then defined by

(Ẑk, T̂k) = proj�k (Zk, Tk).

In practice, we begin with the computation of the quantization grids, which merely requires
us to be able to simulate the process. These grids are computed only once and may be stored
offline. Our schemes are then based on the following simple idea: we replace the process by
its quantized approximation within the different recursions. The results are obtained in a very
simple way since the quantized process has finite state space.

Remark 4.1. In addition, we recall a technical property of the quantization algorithm proved
by Bouton and Pagès in [3]: the quantized process evolves within the convex hull of the support
of the law of the original process. Therefore, and it will be required below, it follows from
Assumption 3.3 that if Zk ∈ U a.s. for some k ∈ {0, . . . , N} then Ẑk ∈ U a.s.

4.2. Approximation scheme of the distribution and proof of convergence

We already noted in Proposition 3.1 that pN(s) = Pµ(τ > s | τ ≤ TN) may be computed
as soon as the sequences (qk)k≤N and (rk)k≤N−1 are known. Therefore, we find expressions
of these sequences depending on the Markov chain (Zk, Tk)k≤N , which we replace by the
quantized process (Ẑk, T̂k)k≤N in order to define their quantized approximations (̂qk)k≤N and
(̂rk)k≤N−1.

First, note that {Tk < τ } = {Zk ∈ U} and {τ ≤ Tk} = {Zk �∈ U} thanks to Assumption 3.5.
Moreover, on {Zk ∈ U, Zk+1 �∈ U}, we have τ = (Tk + u∗(Zk)) ∧ Tk+1 a.s., where u∗(x) is
the deterministic exit time from U starting from the point x (see Definition 3.1), and we have

qk = Eµ[1U c(Zk)], rk(s) = Eµ[1{(Tk+u∗(Zk))∧Tk+1>s} 1U(Zk) 1U c(Zk+1)]. (4.1)

The above equations are crucial in our discussion and, from now on, we will use them without
referring to Assumption 3.5.

Before turning to the approximation scheme itself, let us state some properties of the sequence
(qk)k≤N that will be important in the following proofs. Indeed, the sequence (qk)k increases
since {τ ≤ Tk} ⊂ {τ ≤ Tk+1} for all k ≤ N−1. Moreover, note that q0 = 0 and limn→+∞ qn =
1 thanks to Assumption 3.1. Therefore, there exists an index, denoted by k̃ ≥ 1, such that

• for all k < k̃, we have qk = 0,

• for all k ≥ k̃, we have qk > 0.

We denote by q̃ = q
k̃

the first positive value of the sequence so that qk ≥ q̃ for all k ≥ k̃. Then
we obtain the following definition.

Definition 4.1. Let

k̃ = inf{k ≥ 0 such that qk > 0}, q̃ = q
k̃
,

i.e. q̃ is the first strictly positive value of the sequence (qk)k∈{0,...,N}.

We now naturally define the quantized approximations of the previous sequences.
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Definition 4.2. For all s > 0, define the sequences (̂qk)k∈{0,...,N} and (̂rk)k∈{0,...,N−1} by

q̂k = Eµ[1U c(Ẑk)],
r̂k(s) = Eµ[1{(T̂k+u∗(Ẑk))∧T̂k+1>s} 1U(Ẑk) 1U c(Ẑk+1)].

It is important to note that both q̂k and r̂k(s) may be computed easily from the quantization
algorithm. Indeed, we have

q̂k =
∑

θ=(z,t)∈�k
z �∈U

P(�̂k = θ),

r̂k(s) =
∑

θ=(z,t)∈�k
z∈U

∑
θ ′=(z′,t ′)∈�k+1

z′ �∈U

1{(t+u∗(z))∧t ′>s} P(�̂k = θ)Q̂k(θ; θ ′).

Recall from Proposition 3.1 that the sequence (pk)k≤N satisfies a recursion that depends on
the two parameters (qk)k≤N and (rk)k≤N−1, which we are now able to approximate. Hence,
replacing them by their quantized approximations within the same recursion leads to a new
sequence, denoted by (p̂k)k≤N . The rest of this section is dedicated to the proof of the
convergence of (p̂k)k≤N towards (pk)k≤N . This convergence is far from trivial because, on
the one hand, the definitions of the sequences (qk)k≤N and (rk)k≤N−1 contain many indicator
functions that are not Lipschitz continuous and, on the other hand, the recursive function giving
pk+1 from pk , qk , qk+1, and rk is not Lipschitz continuous either.

Definition 4.3. For all s > 0 and all k ∈ {0, . . . , N − 1}, let p̂0(s) = 0 and

p̂k+1(s) =
⎧⎨⎩
p̂k(s)̂qk + r̂k(s)

q̂k+1
if q̂k+1 �= 0,

0 otherwise.

The two following propositions will be necessary to prove the convergence of the approxi-
mation scheme. They respectively state the convergences of (̂qk)k≤N and (̂rk)k≤N−1 towards
(qk)k≤N and (rk)k≤N−1.

Proposition 4.1. Under Assumptions 3.4 and 3.5, for all k ∈ {0, . . . , N}, q̂k converges towards
qk when the quantization error ‖�k − �̂k‖p goes to 0. More precisely, the error is bounded by

|qk − q̂k| ≤ Cp/(p+β)
((

β

p

)p/(p+β)
+

(
p

β

)β/(p+β))
‖Zk − Ẑk‖pβ/(p+β)

p ,

where C and β are defined in Assumption 3.4.

Proof. For all k ∈ {0, . . . , N}, (4.1) yields

|qk − q̂k| = |Eµ[1U(Zk)− 1U(Ẑk)]|.
The difference between the indicator functions is nonzero if and only if Zk and Ẑk are on either
side of ∂U . Therefore, in this case, for all α > 0, if |Zk − Ẑk| ≤ α then d(Zk, ∂U) ≤ α.
Hence, either |Zk − Ẑk| > α or Zk ∈ Uα . The Markov inequality and Assumption 3.4 yield

Eµ | 1U(Zk)− 1U(Ẑk)| ≤ Pµ(|Zk − Ẑk| > α)+ Pµ(Zk ∈ Uα)

≤ ‖Zk − Ẑk‖pp
αp

+ Cαβ.
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This bound reaches a minimum when

α =
(
p‖Zk − Ẑk‖pp

βC

)1/(p+β)
,

and the result follows.

Proposition 4.2. Under Assumptions 3.2(a), 3.4, and 3.5, for all k ∈ {0, . . . , N−1} and almost
every s > 0 with respect to the Lebesgue measure on R,

r̂k(s) → rk(s)

when the quantization errors ‖�l − �̂l‖p for l ∈ {k, k + 1} go to 0.

Proof. Let k ∈ {0, . . . , N − 1} and s > 0. Equation (4.1) yields

|rk(s)− r̂k(s)| ≤ A+ B,

where
A = |Eµ[(1{(Tk+u∗(Zk))∧Tk+1>s} − 1{(T̂k+u∗(Ẑk))∧T̂k+1>s}) 1U(Zk) 1U c(Zk+1)]|,
B = |Eµ[1{(T̂k+u∗(Ẑk))∧T̂k+1>s}(1U(Zk) 1U c(Zk+1)− 1U(Ẑk) 1U c(Ẑk+1))]|.

In theA term, we crudely bound 1U(Zk) and 1U c(Zk+1) by 1 and turn to the difference between
the two indicator functions. This difference is nonzero if and only if (Tk +u∗(Zk))∧ Tk+1 and
(T̂k + u∗(Ẑk)) ∧ T̂k+1 are on either side of s, implying that they both belong to [s − η; s + η],
where η = |(Tk + u∗(Zk)) ∧ Tk+1 − (T̂k + u∗(Ẑk)) ∧ T̂k+1|. Then we have

|1{(Tk+u∗(Zk))∧Tk+1>s} − 1{(T̂k+u∗(Ẑk))∧T̂k+1>s}| ≤ 1{|(Tk+u∗(Zk))∧Tk+1−s|≤η}

so that
A ≤ Pµ(|(Tk + u∗(Zk)) ∧ Tk+1 − s| ≤ η).

The following discussion consists in noting that either η and the probability that (Tk +
u∗(Zk)) ∧ Tk+1 belongs to the interval [s − η; s + η] are small, or η is large, but this happens
with a small probability too when the quantization error goes to 0. For all α > 0, we have

A ≤ Pµ(|(Tk + u∗(Zk)) ∧ Tk+1 − s| ≤ η, η ≤ α)+ Pµ(η > α)

≤ Pµ(|(Tk + u∗(Zk)) ∧ Tk+1 − s| ≤ α)+ Pµ(η > α)

≤ |ϕk(s + α)− ϕk(s − α)| + ‖η‖pp
αp

,

where ϕk denotes the distribution function of (Tk + u∗(Zk)) ∧ Tk+1. Let ε > 0, and assume
that s is not an atom of this distribution, so that there exists α1 > 0 such that |ϕk(s+α1)−ϕk(s−
α1)| ≤ ε. Besides, thanks to Assumption 3.2(a), the Lipschitz continuity condition on u∗, we
have η ≤ |Tk − T̂k| + [u∗]|Zk − Ẑk| + |Tk+1 − T̂k+1|. Moreover, since the quantization error
goes to 0, we may assume that ‖η‖p ≤ α1ε

1/p. Setting α = α1 in the previous computations
yields

A ≤ |ϕk(s + α1)− ϕk(s − α1)| + ‖η‖pp
α
p
1

≤ 2ε.
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Note that the set of atoms of the distribution function of (Tk+u∗(Zk))∧Tk+1 is at most countable,
so the previous discussion is true for almost every s > 0 with respect to the Lebesgue measure.
Let us now bound the B term:

B ≤ Eµ |1U(Zk) 1U c(Zk+1)− 1U(Ẑk) 1U c(Ẑk+1)|
≤ Eµ[1U c(Zk+1)|1U(Zk)− 1U(Ẑk)|] + Eµ[1U(Ẑk)|1U c(Zk+1)− 1U c(Ẑk+1)|]
≤ |qk − q̂k| + |qk+1 − q̂k+1|,

which goes to 0 thanks to Proposition 4.1.

The convergence of the approximation scheme of the distribution of the exit time is now a
straightforward consequence of the following proposition.

Proposition 4.3. We assume that Assumptions 3.1, 3.3, 3.4, and 3.5 hold. Let (σk)k≤N−1 and
(̂σk)k≤N−1 be two sequences of [0, 1]-valued real numbers. Let (πk)0≤k≤N and (π̂k)0≤k≤N be
defined as follows: π0 = π̂0 = 0,

πk+1 =
⎧⎨⎩
πkqk + σk

qk+1
if qk+1 �= 0,

0 otherwise,

π̂k+1 =
⎧⎨⎩
π̂kq̂k + σ̂k

q̂k+1
if q̂k+1 �= 0,

0 otherwise.

For 0 ≤ k ≤ N , if the quantization error is such that, for all l ≤ k,

Cp/(p+β)
((

β

p

)p/(p+β)
+

(
p

β

)β/(p+β))
‖Zl − Ẑl‖pβ/(p+β)

p ≤ 1

2
q̃,

then

|πk − π̂k| ≤ 2

q̃
(π sup|qk−1 − q̂k−1| + |πk−1 − π̂k−1| + |σk−1 − σ̂k−1|)

+ 2(π sup + 1)

q̃2 |qk − q̂k|,

where π sup = max0≤k≤N πk .

Proof. The difficulty with proving this result lies in the fact that the recursive function giving
πk+1 from πk , qk , qk+1, and σk is not Lipschitz continuous because of the division by qk+1. To
overcome this drawback, we will use the strictly positive lower bound for qk described earlier.
Indeed, recall from Definition 4.1 that there exists a step k̃ such that qk ≥ q̃ > 0 for all k ≥ k̃

and qk = 0 for all k < k̃. What is more, a similar bound will be derived for the quantized values
q̂k thanks to the convergence of q̂k towards qk .

We now prove by induction that π̂k converges towards πk . First, we have π̂0 = π0 = 0.
Then, let k ∈ {1, . . . , N}.

If k < k̃ then qk = 0 and Assumption 3.3 yields q̂k = 0 too. Indeed, qk = 0 means that
Zk ∈ U a.s. Since U is a convex set, Remark 4.1 implies that Ẑk ∈ U a.s. too. In other words,
q̂k = 0. Finally, from the definitions, we have πk = π̂k = 0.

If k ≥ k̃ then qk ≥ q̃ > 0. In order to bound the error between πk and π̂k , it is indeed
necessary to have a strictly positive lower bound for qk because of the division by qk within the
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recursion. Now we need to obtain the same kind of bound for q̂k . This can be achieved thanks
to Proposition 4.1, giving the convergence of q̂k towards qk . Indeed, assume from now on that
the number of points in the quantization grids is large enough such that the quantization error
is sufficiently small to ensure that, for all j = k̃, . . . , N , |qj − q̂j | ≤ 1

2 q̃. Hence, the required
lower bound is q̂k ≥ 1

2 q̃ > 0. Therefore,

|πk − π̂k| ≤
∣∣∣∣πk−1qk−1 + σk−1

qk
− π̂k−1q̂k−1 + σ̂k−1

q̂k

∣∣∣∣
≤ πk−1

q̂k
|qk−1 − q̂k−1| + q̂k−1

q̂k
|πk−1 − π̂k−1| + 1

q̂k
|σk−1 − σ̂k−1|

+ |πk−1qk−1 + σk−1| |qk − q̂k|
qkq̂k

≤ π sup

q̂k
|qk−1 − q̂k−1| + 1

q̂k
|πk−1 − π̂k−1| + 1

q̂k
|σk−1 − σ̂k−1|

+ (π sup + 1)
|qk − q̂k|
qkq̂k

≤ 2

q̃
(π sup|qk−1 − q̂k−1| + |πk−1 − π̂k−1| + |σk−1 − σ̂k−1|)

+ 2(π sup + 1)

q̃2 |qk − q̂k|,

where π sup = max0≤k≤N πk .

Remark 4.2. Note that a bound for the rate of convergence of π̂k towards πk may be obtained
as soon as a bound for the rate of convergence of σ̂k towards σk and an upper bound for the
sequence (πk)0≤k≤N are available.

We now state one of our main results, namely the convergence of the approximation scheme
of the distribution of the exit time.

Theorem 4.2. Under Assumptions 3.1, 3.2(a), 3.3, 3.4, and 3.5, for all k ∈ {0, . . . , N} and
almost every s > 0 with respect to the Lebesgue measure on R,

p̂k(s) → pk(s)

when the quantization errors ‖�j − �̂j‖p for j ∈ {0, . . . , k} go to 0.

Proof. Let s > 0 such that (̂rk(s))k converges towards (rk(s))k and apply Proposition 4.3
with (σk)k = (rk(s))k and (̂σk)k = (̂rk(s))k so that (πk)k = (pk(s))k and (π̂k)k = (p̂k(s))k .
Finally, note that (pk(s))k is bounded by 1.

Remark 4.3. It may be useful to note that, although it will be crucial in the moments approxi-
mation scheme, the boundedness condition on u∗ (Assumption 3.2(b)) was unnecessary in this
section. Hence, the distribution approximation can be achieved without this hypothesis.

We now obtain an easily computable approximation for the survival function of the exit time.
Let us now consider its moments. Of course, they can be derived from the distribution, but
we present in the following subsection a method to approximate them directly. An important
advantage of this method will be to provide a bound for the rate of convergence.
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4.3. Approximation scheme of the moments and rate of convergence

Similarly to the distribution, the moments can be approximated thanks to the quantization of
the process (�k)k≤N = (Zk, Tk)k≤N . However, it is important to stress that we will be able to
derive a rate of convergence for our approximation scheme. We note from Proposition 3.2 that,
similarly to the case of the distribution, pN,j = Eµ[τ j | τ ≤ TN ] can be computed as soon
as the sequences (qk)k≤N and (rk,j )k≤N−1 are known. The first sequence has already been
approximated in the previous section, but we still need to find an expression for the second
sequence, dependent on the Markov chain (Zk, Tk)k to define its quantized approximation
(̂rk,j )k≤N−1. Thanks to Assumption 3.5, the same arguments give

rk,j = Eµ[((Tk + u∗(Zk)) ∧ Tk+1)
j 1U(Zk) 1U c(Zk+1)].

Hence, we can now naturally define the quantized approximation of the sequences (rk,j )k≤N−1
and (pk,j )k≤N .

Definition 4.4. For all j ∈ N, define the sequence (̂rk,j )k∈{0,...,N−1} by

r̂k,j = Eµ[((T̂k + u∗(Ẑk)) ∧ T̂k+1)
j 1U(Ẑk) 1U c(Ẑk+1)]

and the sequence (p̂k,j )k∈{0,...,N} by p̂0,j = 0 and

p̂k+1,j =
⎧⎨⎩
p̂k,j q̂k + r̂k,j

q̂k+1
if q̂k+1 �= 0,

0 otherwise.

As for q̂k and r̂k(s) defined in the previous section, r̂k,j may be computed easily from the
quantization algorithm. Indeed, we have

r̂k,j =
∑

θ=(z,t)∈�k
z∈U

∑
θ ′=(z′,t ′)∈�k+1

z′ �∈U

((t + u∗(z)) ∧ t ′)j P(�̂k = θ)Q̂k(θ; θ ′).

The following proposition proves the convergence of r̂k,j towards rk,j .

Proposition 4.4. Under Assumptions 3.2(a), 3.4, 3.5, and 3.6, for all k ∈ {0, . . . , N−1} and all
j ∈ N, r̂k,j converges towards rk,j when the quantization errors ‖�l − �̂l‖p for l ∈ {k, k+ 1}
go to 0. More precisely, the error is bounded by

|rk,j − r̂k,j | ≤ j ((k + 1)Ct∗)
j−1(‖Tk − T̂k‖p + [u∗]‖Zk − Ẑk‖p + ‖Tk+1 − T̂k+1‖p)

+ ((k + 1)Ct∗)
j (|qk − q̂k| + |qk+1 − q̂k+1|).

Proof. Let k ∈ {0, . . . , N − 1} and j ∈ N. We have

|rk,j − r̂k,j | ≤ A+ B,

where

A = |Eµ[(((Tk + u∗(Zk)) ∧ Tk+1)
j − ((T̂k + u∗(Ẑk)) ∧ T̂k+1)

j ) 1U(Zk) 1U c(Zk+1)]|,
B = |Eµ[((T̂k + u∗(Ẑk)) ∧ T̂k+1)

j (1U(Zk) 1U c(Zk+1)− 1U(Ẑk) 1U c(Ẑk+1))]|.
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It follows fromAssumption 3.6 that the inter-jump timesSi are a.s. bounded byCt∗ , soTi ≤ iCt∗
a.s. and (Ti + u∗(Zi)) ∧ Ti+1 ≤ (i + 1)Ct∗ a.s. By Remark 4.1, these bounds are equally true
for the quantized process T̂i ≤ iCt∗ and (T̂i + u∗(Ẑi)) ∧ T̂i+1 ≤ T̂i+1 ≤ (i + 1)Ct∗ a.s.

Let us first consider the term A. We crudely bound the indicator functions by 1. Moreover,
define η = |(Tk + u∗(Zk)) ∧ Tk+1 − (T̂k + u∗(Ẑk)) ∧ T̂k+1| and note that the function x → xj

is Lipschitz continuous on any set [0,M] with Lipschitz constant jMj−1. Then

A ≤ Eµ[j ((k + 1)Ct∗)
j−1η] ≤ j ((k + 1)Ct∗)

j−1‖η‖p,
and thanks to Assumption 3.2(a), the Lipschitz continuity condition on u∗, we have

A ≤ j ((k + 1)Ct∗)
j−1(‖Tk − T̂k‖p + [u∗]‖Zk − Ẑk‖p + ‖Tk+1 − T̂k+1‖p).

Moreover, the term B is bounded by

B ≤ ((k + 1)Ct∗)
j Eµ |1U(Zk) 1U c(Zk+1)− 1U(Ẑk) 1U c(Ẑk+1)|

≤ ((k + 1)Ct∗)
j (|qk − q̂k| + |qk+1 − q̂k+1|).

Using Proposition 4.1 completes the proof.

We may now state the other important results of our paper, namely the convergence of the
approximation scheme of the moments of the exit time with a bound for the rate of convergence.

Theorem 4.3. Under Assumptions 3.1, 3.2(a), 3.3, 3.4, 3.5, and 3.6, for all k ∈ {0, . . . , N}
and all j ∈ N, p̂k,j converges towards pk,j when the quantization errors ‖�j − �̂j‖p for
j ∈ {0, . . . , k} go to 0.

More precisely, if the quantization error is such that, for all l ≤ k,

Cp/(p+q)
((

q

p

)p/(p+q)
+

(
p

q

)q/(p+q))
‖Zl − Ẑl‖pq/(p+q)

p ≤ 1

2
q̃,

then

|pk,j − p̂k,j | ≤ 2

q̃
((NCt∗)

j |qk−1 − q̂k−1| + |pk−1,j − p̂k−1,j | + |rk−1,j − r̂k−1,j |)

+ 2((NCt∗)j + 1)

q̃2 |qk − q̂k|.

Remark 4.4. The rate of convergence depends on the quantity q̃ whose exact value might be
unknown in some complex applications. In that case, it may still be approximated through
Monte Carlo simulations (see the examples in Section 5). Nevertheless, Theorems 4.2 and 4.3
prove the convergence of our approximation schemes regardless of the value of q̃.

Proof of Theorem 4.3. Let j ∈ N, and apply Proposition 4.3 with (σk)k = (rk,j )k and
(̂σk)k = (̂rk,j )k such that (πk)k = (pk,j )k and (π̂k)k = (p̂k,j )k . Finally, according to
Remark 4.2, a bound for the rate of convergence is obtained since the sequence (pk,j )0≤k≤N is
bounded by

pk,j = Eµ[τ j | τ ≤ Tk] ≤ Eµ[T jk | τ ≤ Tk] ≤ Eµ[(kCt∗)j | τ ≤ Tk] ≤ (kCt∗)
j ≤ (NCt∗)

j .

This completes the proof.
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5. Examples and numerical results

5.1. A Poisson process example

Let Nt be a Poisson process with parameter λ = 1, and let Yt = t + Nt . Here (Yt )t≥0
is a PDMP with state space E = R; the inter-jump times Sk have independent exponential
distribution with parameter λ = 1; the flow is defined on (R+)2 by �(x, t) = x + t ; and,
finally, the post-jump locations satisfy, for all x ∈ E, Q({x + 1}, x) = 1. An example of a
trajectory of the process is represented in Figure 1. We are interested in the exit time problem
for the process (Yt )t≥0. The study of this process is especially interesting because it is possible
to compute the exact value of its distribution function in order to compare it with the numerical
value given by our approximation scheme.

Let us turn now to the numerical simulations. Let b = 10, i.e. U = (−∞, 10). We
may choose N = 10 since YTN = TN +NTN = TN +N ≥ N . Besides, it is clear that, for
all y ∈ (−∞, 10), u∗(y) = 10 − y. Assumptions 3.2 and 3.3 are clearly satisfied and so is
Assumption 3.4 thanks to the following lemma.

Lemma 5.1. For all α > 0 and all k ∈ {0, . . . , N},
Pµ(Zk ∈ Uα) ≤ 2α.

Proof. SinceZ0 = 0 a.s., Pµ(Z0 ∈ Uα) = Pµ(Z0 ∈ [10 − α, 10 + α]) = 1{α≥10} ≤ 1
10α ≤

2α.
Now let k ∈ {1, . . . , N}. Denote by fγ (k,1) the density of the distribution γ (k, 1), and let

its bound be denoted by

Ck = 1

(k − 1)!
(
k − 1

e

)k−1

.

Since Tk has distribution γ (k, 1), Zk = k + Tk has density fZk (·) = fγ (k,1)(· − k), which is
also bounded by Ck . Eventually, we have

Pµ(Zk ∈ Uα) = Pµ(Zk ∈ [10 − α, 10 + α]) ≤ 2Ckα ≤ 2α.

Indeed, the sequence (Ck)k decreases so that, for all k ∈ {1, . . . , N}, Ck ≤ C1 = 1.

20
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Figure 1: A trajectory of the process (Yt ) drawn until the 10th jump time.
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Table 1: Simulation results for the mean exit time.

Number of points in the Relative error to 5.125
quantization grids p̂N,1 (%)

20 5.050 1.46
50 5.096 0.56

100 5.095 0.58
200 5.118 0.13
300 5.128 0.06
500 5.123 0.03

Table 2: Simulation results for the second moment.

Number of points in the Relative error to 27.5
quantization grids p̂N,2 (%)

20 26.66 3.05
50 27.20 1.11

100 27.21 1.05
200 27.43 0.25
300 27.54 0.13
500 27.49 0.03

Moreover, Assumption 3.5 is satisfied since the process increases but Assumption 3.6 is not,
because t∗(x) = +∞ for all x ∈ E. However, as pointed out in Section 3, this can be solved
by considering the process killed at time τ .

The mean exit time. Table 1 displays the simulation results for the approximation of the
mean exit time. For different numbers of points in the quantization grids, the value of p̂N,1
which approximates the mean exit time is given. A reference value is obtained thanks to the
Monte Carlo method (106 simulations): E[τ10]Monte Carlo = 5.125.

The second moment. We present the results of the approximation of the second moment in
Table 2. Our Monte Carlo reference value (106 simulations) is E[τ 2

10]Monte Carlo = 27.5.
For the first and second moments, the empirical convergence rates are presented in Figure 2.

Through a regression model the empirical convergence is estimated as −1.23 for the first
moment and −1.39 for the second moment. Note that they are roughly of the same order as the
rate of convergence of the optimal quantizer (see Theorem 4.1), as here the dimension is 1.

The exit time distribution. As mentioned earlier, we can obtain the exact value of the survival
function of the exit time.

Proposition 5.1. Denote by fl(·) the floor function. For all s, b ∈ R+, we have

P(τb ≥ s) =
{

P(Tfl(b−s)+1 > s) for all s ≤ b,

0 otherwise.

Remark 5.1. Note that Tk has distribution γ (k, 1), so the right-hand side term in the above
proposition can be computed easily.



Exit time of a PDMP 215

First moment
Second moment
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Figure 2: Logarithm of the error with respect to the logarithm of the number of points in the quantization
grids for the first and second moments of the Poisson process.
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Figure 3: Survival function of τ10 and its quantized approximation with 500 points in the quantization
grids. The functions appear indistinguishable.

Proof of Proposition 5.1. Let s > 0. Note that Ys ≥ s; thus, τb < s a.s. when s > b.
Assume now that s ≤ b. We have

P(τb ≥ s) = P(Ys ≤ b) = P(Ns ≤ b − s) = P(Ns ≤ fl(b − s)) = P(Tfl(b−s)+1 ≥ s).

This completes the proof.

Figure 3 shows both the exact survival function of the exit time and its quantized approx-
imation. Table 3 contains the empirical error between the two functions. For the survival
function, the empirical convergence rate is presented in Figure 4. Through a regression model
the convergence rate is estimated as −1.05. Note that it is roughly of the same order as the rate
of convergence of the optimal quantizer (see Theorem 4.1), as here the dimension is 1.
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Table 3: Simulation results for the distribution.

Number of points in the
quantization grids maxs |pN(s)− p̂N (s)|

20 0.090
50 0.077

100 0.057
200 0.011
300 0.007
500 0.005

103102101
10–3

10–2

10–1

100

Figure 4: Logarithm of the error with respect to the logarithm of the number of points in the quantization
grids for the survival function of the Poisson process.

Remark 5.2. We already insisted on the fact that our approach is flexible with respect to U .
In this example we could very quickly obtain the mean exit time or the exit time distribution
for a different set U ′ = (−∞, b′] for any 0 < b′ ≤ b = 10. Indeed, P(τb′ > T10) = 0, so it is
not necessary to compute new quantization grids.

Remark 5.3. Recall that the value of Tk may be obtained from Zk since Tk = Zk − k, so
it is sufficient to quantize the process (Zk)k≤N instead of (Zk, Tk)k≤N . The reduction of the
dimension of the process that has to be quantized results in an improvement of the convergence
rate and it appears that the approximations presented in the previous tables indeed converge
very quickly.

Convergence rate for the exit time distribution. We note from the proof of Proposition 4.2
that a bound for the rate of convergence for the exit time distribution can be obtained as soon as,
for all k ∈ {0, . . . , N−1}, the survival function of (Tk+u∗(Zk))∧Tk+1 denoted ϕk is piecewise
Lipschitz continuous. Although it is difficult to state general assumptions under which this is
true, the following proposition proves that the condition is fulfilled in our example.

Proposition 5.2. For all k ∈ {0, . . . , N − 1}, the survival function ϕk of (Tk +u∗(Zk))∧Tk+1
is Lipschitz continuous on (−∞; b− k) and on (b− k; +∞) with Lipschitz constant [ϕk] ≤ 1.
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Proof. Let k = 0 and s > 0. We have

ϕ0(s) = Pµ((T0 + u∗(Z0)) ∧ T1 > s)

= Pµ(b ∧ T1 > s)

= 1{b>s} Pµ(T1 > s)

= 1{b>s} e−s (since T1 has exponential distribution with parameter 1).

Therefore, the function ϕ0 is equal to 0 on [b; +∞) and is Lipschitz continuous with Lipschitz
constant 1 on (0; b).

Let k ≥ 1 and s > 0, and recall that the random variables (Sj )j≥0 are independent and have
exponential distributions with parameter 1 so that, in particular, Tk and Sk+1 are independent
and Tk has distribution γ (k, 1). Moreover, recall that Zk = k + Tk and that u∗(x) = b − x.
Then

ϕk(s) = Pµ((Tk + u∗(Zk)) ∧ Tk+1 > s)

=
∫
(R+)2

1{(t+(b−k−t))∧u>s} fγ (k,1)(t)fγ (k+1,1)(u) dt du,

where fγ (j,1) denotes the density function of the distribution γ (j, 1) for j ∈ {k, k + 1}.
Let s′ > s > 0. We have

|ϕk(s′)− ϕk(s)| ≤
∫
(R+)2

| 1{(b−k)∧u>s′} − 1{(b−k)∧u>s} |fγ (k,1)(t)fγ (k+1,1)(u) dt du

≤
∫
(R+)2

1{(b−k)∧u∈(s;s′]} fγ (k,1)(t)fγ (k+1,1)(u) dt du

≤
∫
(R+)2

(1{b−k∈(s;s′]} + 1{u∈(s;s′]})fγ (k,1)(t)fγ (k+1,1)(u) dt du

≤ 1{b−k∈[s;s′]} + Cfγ(k+1,1) |s′ − s|

≤ 1{b−k∈[s;s′]} + |s′ − s|
(

since Cfγ(k+1,1) = 1

(k)!
(
k

e

)k
≤ 1

)
.

If s and s′ both belong to (0; b − k) or if they both belong to (b − k; +∞), we have |ϕk(s′)−
ϕk(s)| ≤ |s′ − s|. The completes the proof.

Consequently, in this example, we are now able to state a bound for the rate of convergence
of the exit time distribution approximation scheme. The following proposition is therefore an
improvement over Proposition 4.2 and Theorem 4.2.

Proposition 5.3. For all k ∈ {0, . . . , N − 1}, let s > 0 and assume that the quantization error
is small enough to ensure that(

p

2

)1/(p+1)

(‖Tk − T̂k‖p + ‖Zk − Ẑk‖p + ‖Tk+1 − T̂k+1‖p)p/(p+1) < |b − k − s|.

Then we have

|rk(s)− r̂k(s)| ≤ 2

(
p

2

)1/(p+1)( 1

p
+ 1

)
× (‖Tk − T̂k‖p + ‖Zk − Ẑk‖p + ‖Tk+1 − T̂k+1‖p)p/(p+1)

+ |qk − q̂k| + |qk+1 − q̂k+1|.
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Moreover, for all k ∈ {0, . . . , N}, if the quantization error is such that, for all l ≤ k,

2

(
p

2

)1/(p+1)( 1

p
+ 1

)
‖Zl − Ẑl‖p/(p+1)

p ≤ 1

2
q̃,

then we have

|pk(s)− p̂k(s)| ≤ 2

q̃
(|qk−1 − q̂k−1| + |pk−1(s)− p̂k−1(s)| + |rk−1(s)− r̂k−1(s)|)

+ 4

q̃2 |qk − q̂k|.

Proof. The proof follows directly from the proofs of Proposition 4.2 and Theorem 4.2.
Simply note that the A term may be bounded thanks to the piecewise Lipschitz continuity of
the functions ϕk on (−∞; b − k) and on (b − k; +∞). Let s > 0, s �= b − k, and let α > 0
such that b − k �∈ [s − α; s + α], i.e. α < |b − k − s|. Then

A ≤ |ϕk(s + α)− ϕk(s − α)| + ‖η‖pp
αp

(from the proof of Proposition 4.2)

≤ 2[ϕk]α + ‖η‖pp
αp

,

which reaches a minimum when α = (p‖η‖pp/2[ϕk])1/(p+1). Note that [ϕk] = 1 and [u∗] = 1.

Remark 5.4. We can calculate the exact value of q̃ that is the first nonnegative value of the
sequence (Pµ(Zk �∈ U))k . We have q̃ = Pµ(Z1 �∈ (−∞; 10)) = Pµ(T1 ≥ 9) = e−9 because
T1 has an exponential distribution with parameter 1.

5.2. A corrosion model example

Let us consider the structure of aluminium corroded successively in three different environ-
ments. Corrosion is prevented by some protection until a random time γ when corrosion starts.
Then, in each environment i ∈ {1; 2; 3}, the loss of thickness satisfies

di(t) = ρi(t − γ + ηi(e
−(t−γ )/ηi − 1)) 1{t≥γ },

where ρi is the corrosion rate (ρi has a uniform distribution on an interval that depends on the
environment i) and ηi is a constant transition time. The structure goes from environment 1 to
environment 2, then from 2 to 3, from 3 to 1, and so on. It remains in environment i for a
time Ti , which has an exponential distribution with parameter λi . When the loss of thickness
reaches 0.2 mm, the piece is said to be unusable; this will be the exit criterion. Table 4 gives
the values of the different parameters.

The loss of thickness will be represented by a PDMP whose modes are the different envi-
ronments. Let M = {(i, j) : i ∈ {1, 2, 3}, j ∈ {0, 1}}. For m = (i, j) ∈ M , i represents
the environment and j is worth 1 if the protection γ is still active and 0 otherwise. For each
m ∈ M , let Em = R4 and, for ξ ∈ Em, ξ represents the family (d, s, ρ, γ ), where d is the
corroded thickness and s is the time since the last jump. The set Um will therefore be, for all
m ∈ M , Um = (−∞; 0.2]×R3. This set is convex, so Assumption 3.3 is satisfied. Finally, the
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Table 4: Numerical values of the parameters of the corrosion model.

Environment

1 2 3

λi (h−1) (17 520)−1 (131 400)−1 (8760)−1

ηi (h) 30 000 200 000 40 000
ρi (mm/h) [10−6, 10−5] [10−7, 10−6] [10−6, 10−5]
γ (h) Weibull distribution with α = 2.5 and β = 11 800

flow in mode m = (i, j) is

�(i,0)

⎛⎜⎜⎝
⎛⎜⎜⎝
d

s

ρ

0

⎞⎟⎟⎠ , t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
d + dm(t + s)− dm(s)

t + s

ρ

0

⎞⎟⎟⎠ ,

�(i,1)

⎛⎜⎜⎝
⎛⎜⎜⎝

0
s

ρ

γ

⎞⎟⎟⎠ , t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0

t + s

ρ

(γ − t) 1{γ≥t}

⎞⎟⎟⎠ .

The parameters d and γ evolve continuously between the jumps, but ρ is chosen independently
after each jump and is constant along the flow.

Let us consider the approximation of the distribution and of the mean exit time. Consider
the first moment. We note that Eµ[τ ] = Eµ[γ ] + Eµ[τ ′], where γ has Weibull distribution and
τ ′ represents the exit time in the case of a process without initial protection against corrosion
(i.e. γ = 0). Therefore, it is sufficient to check whether τ ′ satisfies the required assumptions.
Hence, let γ = 0 and note that u∗ is then bounded since ρ ≥ 10−7 and η ≤ 200 000, so
dm(t) ≥ 10−7(t − 200 000) and eventually u∗ ≤ 0.2 × 107 + 200 000 = 2.2 × 106 h. Denote
this bound by Cu∗ . Consider the distribution. Assumption 3.2(b) (the boundedness condition
on u∗) is not required according to Remark 4.3. Moreover, from the proofs of Propositions 4.2
and 4.4, it follows that Assumption 3.2(a) (the Lipschitz continuity condition on u∗) becomes
useless in this example thanks to Lemma 5.3. Assumption 3.4 follows from Lemma 5.2 below.
Eventually, Assumption 3.5 is satisfied, but Assumption 3.6 is not. However, considering the
process killed at time τ solves this issue.

Lemma 5.2. For all α > 0 and all k ∈ {0, . . . , N},
Pµ(Zk ∈ Uα) ≤ 5α.

Proof. For notational convenience, let Mk , Dk , Rk , and Gk denote the values of m, d, ρ,
and γ after the kth jump, so Zk = (Mk,Dk, Rk,Gk). Note now that

Pµ(Zk ∈ Uα) = Pµ(|Dk − 0.2| ≤ α).

We therefore study more precisely the law of Dk . Let K = inf{k ≥ 0 such that Gk = 0};
K is the jump that occurs at the end of the protection period against corrosion. Define F(s) =
s + η(e−s/η − 1). Then we have

Dk =
{

0 for k ≤ K ,

Dk−1 + RkF(Sk) for k > K .
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Let us now prove that, for all k, the random variable RkF(Sk) has a bounded density. Recall
that Rk has a uniform distribution on [ak; bk] ⊂ [10−7; 10−5] and that Sk has an exponential
distribution with parameter λk . Now let h be a real, bounded, measurable function. Then

Eµ[h(RkF (Sk))] =
∫ +∞

0

∫ bk

ak

h(ρF (s))
1

bk − ak
λke

−λks dρ ds.

Introduce the transformation
u = ρ, v = ρF(s),

whose Jacobian is worth (1/u)(F−1)′(v/u), so

Eµ[h(RkF (Sk))] =
∫ +∞

0
h(v)

(∫ bk

ak

λke−λkF−1(v/u)(F−1)′(v/u)
(bk − ak)u

du

)
dv.

Hence, we obtain the density of the random variable RkF(Sk) and integration by parts yields∫ bk

ak

λke−λkF−1(v/u)(F−1)′(v/u)
(bk − ak)u

du = 1

bk − ak

∫ bk

ak

u
λke−λkF−1(v/u)(F−1)′(v/u)

u2 du

= 1

bk − ak

(
[ue−λkF−1(v/u)]bkak −

∫ bk

ak

e−λkF−1(v/u) du

)
.

Finally, the density of the random variable RkF(Sk) is bounded by∣∣∣∣∫ bk

ak

λke−λkF−1(v/u)(F−1)′(v/u)
(bk − ak)u

du

∣∣∣∣ ≤ ak + bk

bk − ak
+ 1 ≤ 2bk

bk − ak
≤ 2.

Let j ∈ N. We now study the distribution of the random variables (Dk)k∈N conditionally on
the event {K = j}. An induction argument shows that, conditionally on the event {K = j}, the
random variableDk has distribution δ0 for k ≤ j and has a density ψk bounded by 2 for k > j .
Indeed, in the second case, the density of Dk may be obtained by convolution since Dk−1 and
RkF(Sk) are independent random variables. Therefore, for k ≤ j ,

Pµ(|Dk − 0.2| ≤ α | K = j) = 1{α≥0.2} ≤ 5α

since Dk = 0 for k ≤ j and, for k > j ,

Pµ(|Dk − 0.2| ≤ α | K = j) =
∫ 0.2+α

0.2−α
ψk(v) dv ≤ 4α

since ψk ≤ 2. Eventually,

Pµ(Zk ∈ Uα) = Pµ(|Dk − 0.2| ≤ α) =
∑
j∈N

Pµ(|Dk − 0.2| ≤ α | K = j)Pµ(K = j) ≤ 5α.

This completes the proof.

Lemma 5.3. For all k ∈ N, let

ηk = |((Tk + u∗(Zk)) ∧ Tk+1)− ((T̂k + u∗(Ẑk)) ∧ T̂k+1)|.
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We have, for all α > 0,

‖ηk‖p ≤ ‖Tk − T̂k‖p + 2‖Tk+1 − T̂k+1‖p +
(

[u∗]α/2 + 4Cu∗

α

)
‖Zk − Ẑk‖p + 10Cu∗α1/p,

where [u∗]α = (1 + Cu∗ + 4 × 105)/(10−7(1 − e−α/2)).

Proof. Let α > 0. Let Ũα = [0, 0.2 − α] × {0} × [10−7; 10−5] × {0}. We will prove that
the function u∗(d, 0, ρ, 0) is Lipschitz continuous on this set. The function u∗(d, 0, ρ, 0)
satisfies the following equivalent equations:

d + dm(u
∗) = 0.2 ⇐⇒ d + ρ(u∗ + η(e−u∗/η − 1)) = 0.2.

The implicit equation satisfied by u∗ yields, on the set Ũα , u∗ ≥ α/ρmax = 105α. This
lower bound will be crucial to prove the Lipschitz continuity. Let d, d ′ ≤ 0.2 − α, and define
u = u∗(d, 0, ρ, 0) and u′ = u∗(d ′, 0, ρ, 0). Note that d + dm(u) = d ′ + dm(u

′) because they
are both equal to 0.2. Consequently, |dm(u)− dm(u′)| = |d ′ − d| and, noting that η ≤ 2 × 105,
we have

|d − d ′| = ρ|u− u′ + η(e−u/η − e−u′/η)|
≥ ρ(1 − e−u∧u′/η)|u− u′|
≥ 10−7(1 − e−α/2)|u− u′|,

which proves the Lipschitz continuity of u∗ with respect to d on Ũα .
Similarly, let ρ, ρ′ ∈ [10−7; 10−5], and define u = u∗(d, 0, ρ, 0) and u′ = u∗(d, 0, ρ′, 0).

Note that d + ρ(u+ η(e−u/η − 1)) = d + ρ′(u′ + η(e−u′/η − 1)) because they are both equal
to 0.2. Subtracting d + ρ(u′ + η(e−u′/η − 1)) from both terms yields

ρ|u− u′ + η(e−u/η − e−u′/η)| = |ρ − ρ′||u′ + η(e−u′/η − 1)|.
A lower bound for the left-hand side term has already been computed, while the right hand-side
is easily bounded by (Cu∗ + 4 × 105)|ρ − ρ′|, since η ≤ 2 × 105, so we have

(Cu∗ + 4 × 105)|ρ − ρ′| ≥ 10−7(1 − e−α/2)|u− u′|,
which proves the Lipschitz continuity of u∗ with respect to ρ on Ũα . Eventually, for all
α > 0, the function u∗ is Lipschitz continuous on Ũα with Lipschitz constant [u∗]α =
(1 + Cu∗ + 4 × 105)/10−7(1 − e−α/2).

Let k ∈ N. We now intend to bound ‖ηk‖p. Define, as in the proof of Lemma 5.2, the
random variableK = inf{k ≥ 0 such that Gk = 0}; K is the jump that occurs at the end of the
protection period against corrosion.

First, note that, on the event {k ≤ K} (i.e. when protection against corrosion is still active),
we have Zk ∈ E(i,1) for some i ∈ {1, 2, 3} and, since the projection defining Ẑk from Zk
ensures that they are in the same mode, we also have Ẑk ∈ E(i,1). Moreover, u∗(x) = +∞ for
all x ∈ E(i,1), so

‖ηk 1{k≤K}‖p = ‖(Tk+1 − T̂k+1) 1{k≤K}‖p ≤ ‖Tk+1 − T̂k+1‖p.
Furthermore, if Zk = �, where � denotes the cemetery state, then Ẑk = proj�k (Zk) = �

too and we have ηk = 0, so

‖ηk 1{k>K}‖p ≤ ‖ηk 1{k>K} 1{Zk �=�}‖p
≤ ‖Tk − T̂k‖p + ‖Tk+1 − T̂k+1‖p + ‖(u∗(Zk)− u∗(Ẑk)) 1{k>K} 1{Zk �=�}‖p.
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Eventually, we intend to bound the last term of the previous sum; therefore, we consider the
event {k > K} ∩ {Zk �= �}. On the one hand, the random variables Zk and Ẑk both belong to
E(i,0) for some i ∈ {1, 2, 3}. On the other hand, althoughUm = (−∞; 0.2]×R3 for allm ∈ M ,
we actually have Zk ∈ [0; 0.2] × {0} × [10−7; 10−5] × R+ a.s. and, according to Remark 4.1,
Ẑk ∈ [0; 0.2] × {0} × [10−7; 10−5] × R+ a.s. too. Combining the two previous remarks, we
have Zk ∈ Ũ and Ẑk ∈ Ũ , where Ũ = [0; 0.2] × {0} × [10−7; 10−5] × {0}. Finally, let α > 0
and note that Ũ ⊂ Ũα ∪Uα . We have

‖(u∗(Zk)− u∗(Ẑk)) 1{k≥K} 1{Zk �=�}‖p ≤ A+ B,

where

A = ‖(u∗(Zk)− u∗(Ẑk)) 1{Zk∈Ũα} 1{k≥K}‖p, B = ‖(u∗(Zk)− u∗(Ẑk)) 1{Zk∈Uα} 1{k≥K}‖p.

The termB is easily bounded thanks to Lemma 5.2: B ≤ 2Cu∗ Pµ(Zk ∈ Uα)1/p ≤ 10Cu∗α1/p.
We now turn to the term A and use the Lipschitz continuity of u∗ on Ũβ for any β > 0. We
have

A ≤ ‖(u∗(Zk)− u∗(Ẑk)) 1{Zk∈Ũα} 1{Ẑk∈Ũα/2} 1{k≥K}‖p
+ ‖(u∗(Zk)− u∗(Ẑk)) 1{Zk∈Ũα} 1{Ẑk �∈Ũα/2} 1{k≥K}‖p

≤ [u∗]α/2‖Zk − Ẑk‖p + 2Cu∗‖1{Zk∈Ũα} 1{Ẑk �∈Ũα/2}‖p.

Note now that 1{Zk∈Ũα} 1{Ẑk �∈Ũα/2} ≤ 1{|Zk−Ẑk |≥α/2}, so, finally,

A ≤ [u∗]α/2‖Zk − Ẑk‖p + 2Cu∗
(

Pµ

(
|Zk − Ẑk| ≥ α

2

))1/p

≤ [u∗]α/2‖Zk − Ẑk‖p + 4Cu∗
‖Zk − Ẑk‖p

α
,

completing the proof.

The mean exit time. Simulation results for the approximation of the mean exit time are given
in Table 5. In order to have a value of reference, a Monte Carlo method (106 simulations) yields
the value E[τ ]Monte Carlo = 526×103 h. For the first moment, the empirical convergence rate is
presented in Figure 5. Through a regression model the empirical convergence rate is estimated
as −0.38. Note that it is roughly of the same order as the rate of convergence of the optimal
quantizer (see Theorem 4.1), as here the dimension is 4.

Table 5: Simulation results for the mean exit time.

Number of points in the Relative error to 526 × 103 h
quantization grids p̂N,1 (×103 h) (%)

20 572 8.7
50 569 8.2

100 557 5.9
200 551 4.8
500 539 2.5
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Figure 5: Logarithm of the error with respect to the logarithm of the number of points in the quantization
grids for the first moment of the corrosion process.
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Figure 6: Survival function of τ obtained using Monte Carlo simulations (dashed line) and the quantized
approximation (solid line), and the error with 500 points in the quantization grids.

The exit time distribution. Considering the approximation scheme for the exit time distri-
bution, we note that the quantized value p̂N (s) is not necessarily smaller than 1. Therefore, it
appears natural to replace p̂N (s) by p̂N (s) ∧ 1. This does not change the convergence theorem
and can only improve the approximation error. It is equally possible, and this is done in the
results below, to replace p̂N (s) by p̂N (s)/p̂N(0) since p̂N (0) goes to 1.

Figure 6 presents the survival function of τ obtained using Monte Carlo simulations (dashed
line) and our approximation scheme (solid line), and the error. Table 6 contains the empirical
error for different numbers of points in the quantization grids. For the survival function, the
empirical convergence rate is presented in Figure 7. Through a regression model the empirical
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Table 6: Simulation results for the distribution.

Number of points in the
quantization grids maxs |pN(s)− p̂N (s)|

20 0.145
50 0.119

100 0.040
200 0.039
500 0.020

103102101
10–2

10–1

100

Figure 7: Logarithm of the error with respect to the logarithm of the number of points in the quantization
grids for the survival of the corrosion process.

convergence rate is estimated as −0.63. Note that it is roughly of the same order as the rate of
convergence of the optimal quantizer (see Theorem 4.1), as here the dimension is 4.

The convergence of the approximation scheme in the corrosion model appears to be slightly
slower than in the previous example. This is due to the higher dimension of the process that has
to be quantized, which is 4 in the case of the corrosion model and 1 in the case of the Poisson
process.

Remark 5.5. Using Monte Carlo simulations, we can approximate the value of q̃. We have
q̃ � 0.0187 for 107 histories.

6. Advantages and practical interest of our approach

Let us describe the practical interest of our approach.

• The quantization grids only have to be computed once and can be used for several
purposes. Moreover, once they are obtained, the procedures leading to p̂N (s) and to
p̂N,j can be achieved very simply since we only have to compute finite sums.

• Concerning the distribution, since p̂N (s) can be computed almost instantly for any value
of s, the whole survival function can be obtained very quickly. Similarly, concerning
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the moments, p̂N,j can be computed very quickly for any j , so any moment is almost
instantly available.

• Furthermore, in both cases, one may decide to change the setU and consider the exit time
τ ′ from a new set U ′. This will yield new sequences (̂qk)k , (̂rk,j )k , and (p̂k,j )k in the
case of the j th moment approximation or new sequences (̂qk)k , (̂rk(s))k , and (p̂k(s))k
if we are interested in the distribution. These new sequences are obtained quickly and
easily since the quantized process remains the same and we only have to compute finite
sums. Of course, the set U ′ must be such that Assumptions 3.2–3.5 remain true and such
that Pµ(TN < τ ′) remains small without changing the computation horizon N . This last
condition is fulfilled if, for instance, U ′ ⊂ U . This flexibility is an important advantage
of our method over, for instance, a Monte Carlo method.
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Abstract— This paper1 describes an original approach based
on dynamic programming theory (discrete-time finite horizon
Markov control) to address the difficult problem of computing
optimal trajectories with respect to some criteria for any vehicle
evolving in a given environment (in a probabilistic point of
view) to accomplish some tasks (defined in a complex Lipschitz
criteria). After a brief remind about dynamic programming
The whole control process is detailled and applied in this paper
for a submarine equipped with a sonar system which wants to
detect targets as well as possible. Promising result about the
optimal depth control for a submarine are presented with one
and then two targets showing that the chosen approach is a good
candidate.
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1. INTRODUCTION

Optimal control is a wide and interesting theory that appears
in many fields such as, for instance, engineering, computer
science, economics, operation research . . . . This paper aims
to explain how to compute optimal trajectories for underwater
vehicles evolving in a given environment to accomplish some
tasks. This is an optimal control problem. Nevertheless, in
real context, available inputs are not perfectly known. Hence
a stochastic approach seems to be needed.

Markov decision processes (MDPs) constitute a general fam-
ily of controlled stochastic processes suitable for the mod-
eling of sequential decision-making problems. A significant
list of references on discrete-time MDPs may be found in the
survey [1] and the books [2], [3], [4], [5], [6], [7], [8]. The
analysis of MDPs leads to mathematical and computational
problems. The corresponding theory has reached a rather
high degree of maturity, although the classical tools (such
as value iteration, policy iteration, linear programming, and
their various extensions) are generally hardly applicable in
practice. This is mainly because MDPs are generally very
large due to their inherent structure and, for instance, solving
the associated dynamic programming equation leads to the

978-1-4577-0557-1/12/$26.00 c©2012 IEEE.
1Proc. 2012 IEEE/AIAA Aerospace Conf. Big Sky, MT, March 2012

well known curse of dimensionality. Hence, solving MDPs
numerically is an awkward and important problem.

The method is applied to control a submarine which wants to
well detect one or several targets. Why? A smart operator, if
provided information about target’s position and velocity and
a sound propagation code can find a good trajectory. If we
now consider a submarine surrounded by several targets, it is
clear that a human operator will have great difficulty to find
the best route.

Section 2 states the problem in a general context (required
inputs, hypothesis . . . ). Section 3 briefly outlines the
dynamic programming theory and the algorithms used to
solve this problem (quantization, backward dynamic pro-
gramming,. . . ). Section 4 presents some promising results
obtained on simple cases with one and two targets.

2. PROBLEM STATEMENT

Let us consider a general situation with a submarine of
interest S (blue in Fig.1) surrounded by several targets (other
submarines or surface ships). This submarine carries one or
several sensors such as Cylindrical Array (CA), Flank Array
(FA) or towed Array (TA).

Figure 1. General situation.

The submarine S trajectory has to be controlled in order to
satisfy the mission’s objectives. These can be optimizing
the different targets’ detection range, minimizing its own
detection range perceived by the other targets, reaching a
way-point with minimum fuel consumption, and so on.

This objective is represented in a mathematical standpoint by
the objective cost function J which is to be minimized by the
control algorithm. It is supposed that we have the following
inputs:

1



(1) S position and velocity,

(2) Targets’ position, course and speed, estimated by the
Target Motion Analysis (TMA) function, see for instance [9].

(3) Information about the environment (sound speed, sea
floor depth,...),

(4) A sound propagation code.

In complex situations, the submarine must fulfill several
conflicting missions against multiple targets. For example,
the submarine may have the objective of simultaneously
increase the detection range of one target while keeping
its own detection range as low as possible versus another
target. In this case, the objective function J is a multi criteria
aggregation function whose minimization will be a trade-off
between these conflicting objectives.

Underwater sound propagation must be estimated on line.
Sound propagation in the sea depends on a lot of environment
parameters such as temperature, local pressure and salinity.
Indeed, small variation of these parameters greatly modify
sound propagation. The two figures Fig.2 and Fig.3 give
examples of a sound velocity profile (sound speed versus
depth) and a sound propagation diagram of an emitter source
at a 300m depth (the third dimension, the color, being the
signal level in dB.

Figure 2. Sound velocity profile (depth vs velocity).

According to the objectives of S and previously described
given inputs, the aim is to compute an optimal trajectory by
applying a command u(t) to S’s future states (see Fig.4).

This is an optimal control problem which aims to find a
command u(t) in order to minimize the cost function J .

3. STOCHASTIC OPTIMAL CONTROL

As seen in part 2, the problem is quite complex because there
are uncertain inputs and we use a sound propagation code as a
black box (with possible numerical problems, . . . ). Hence no
strong assumptions (derivability,. . . ) can be made about this
latter one. Due to these particularities, a discrete stochastic
optimal control framework seems to be the best candidate to
solve this problem. More precisely, we use a discrete-time
finite horizon dynamic programming approach.

Figure 3. Sound propagation (depth distance signal level).

Figure 4. Optimal trajectory example.

Brief review of dynamic programing

In this section, we briefly introduce the discrete-time finite
horizon Markov control model we are concerned with. Let us
consider the following model :

(X , A, {A(x)|x ∈ X} , Q, c, CN ) (1)

with

. X : a Borel space, namely the state space

. A : a Borel space representing the control or action set

. {A(x)|x ∈ X} : a family of non empty subsets of A,
where A(x) is the set of feasible controls or actions when
the system is in state x ∈ X . We suppose that K =
{(x, a) ∈ X ×A|a ∈ A(x)} is a measurable subset ofX×A.

. Q : a stochastic kernel on X given K which stands for the
transition probability function.

. c : K → R : is a measurable function representing the
cost per stage.

. CN : X → R : is a measurable function representing the
terminal cost.

Next, we define our Markov control model. Suppose that
a finite horizon N ≥ 1 and an initial state x ∈ X

2



are given. The total expected cost of a policy π =
{at|t = 0, 1, . . . , N − 1} ∈ Π (Π represents all possible
policies) is defined as:

J(x, π) = Eπ
x

[
N−1∑

t=0

c (xt, at) + CN (xN )

]
(2)

, E

[
N−1∑

t=0

c (xt, at) + CN (xN ) |π, x0 = x

]
(3)

The optimal total expected cost function is then defined as :

J∗ = inf
π∈Π

J (x, π) , ∀x ∈ X (4)

And we say that π∗ ∈ Π is an optimal policy if J (x, π∗) =
J∗(x) for every initial state x ∈ X .

Hypothesis for our problem

In our application, we consider that the state spaceX is finite.
Hence the stochastic kernel Q is

P t
xy(a) = P (xt+1 = y|xt = x, a) (5)

Which is the probability that the system is in state y at time
t + 1 given that it was in state x at time t for a given control
a.

Now consider {CN , ∀x ∈ X} the final cost function and
c(x, a, y) the cost per stage function from state x to state y
with a command a. The cost function (3) is then

J(π, x) = E

[
N−1∑

t=0

c (xt, at, xt+1) + CN (xN )|π, x0 = x

]

(6)
The goal is to find an optimal policy that minimizes this cost.
The main idea of the dynamic programming principle is the
following algorithm

. J∗N (x) = CN (x), ∀x ∈ X

. for t ∈ {N − 1, . . . , 0} and ∀x ∈ X

J∗t = min
a∈A(x)

∑

y∈X
P t

xy(a)
[
c(x, a, y) + J∗t+1(y)

]
(7)

J∗0 (x) is the solution. Indeed, the optimal policy π∗ =
{a∗0, a∗1, . . . , a∗N} with

a∗t = arg min
a∈A(x)

∑

y∈X

P t
xy(a)

[
c(x, a, y) + J∗t+1(y)

]
(8)

is recursively constructed.

Submarine S

Suppose we have a submarine that can only control its depth.
The state model is then:

zt+1 = zt + at (9)

At each time step, available controls are

at ∈ A(z) = {−L∆z, (−L + 1)∆z, . . . ,−∆z, 0, . . . , L∆z}
(10)

Where L is the possible number of depth steps from a state
to another state and ∆z the size of this step. zt has discrete
values and evolves in a growing finite grid Zt

∀t, zt ∈ {z0 + n∆z} = Zt, (11)
n ∈ {−tL,−tL + 1, . . . ,−1, 0, 1, . . . , tL} (12)

Target

We also suppose that the target evolves with a constant
depth and its behavior is independent of S. The target is
represented by a state vector composed by the submarine to
target distance and the target speed Xt = (dt, st). The target
position and speed are given by the TMA algorithms and the
sate evolution is described by the stochastic model

Xt+1 = FXt + vt (13)

where X0 ; N (µ0, Σ0), F =
(

1 ∆t
0 1

)
, vt =

(
ǫ1t , ǫ

2
t

)
; N (0, Σǫ). µ0, Σ0 and Σǫ are known.

Solving a stochastic optimal control problem in a real context
is challenging. In order to apply dynamic programming
described in part 1, it is necessary to approximate X with
a finite space by using relevant methods.

Various methods already exist for this approximation(Kushner
[10], Quantization [11], . . . ). We use a quantization method
in the sequel because this method is powerful and also be-
cause convergence results are available.

Quantization

In our case, the process Xt ∈ R2. We approximate this
process by a finite Markov chain thanks to the quantization
method [11] :

. X̂t is the quantization of Xt and Γ̂t is the M points grid at

time t which represent Xt

(
X̂t =

(
d̂t, ŝt

)
∈ Γ̂t

)

. P ij
t is the transition matrix, P ij

t ≈ P
(
X̂t+1 = j|X̂t = i

)
,

∀(i, j) ∈ Γ̂t × Γ̂t+1.

The system at time t is xt :=
(
zt, X̂t

)
∈ R3. Component

zt is deterministic and X̂t is stochastic. Thanks to this
quantization, we have a MDP with finite number of states.
We have hence constructed the finite X space described at
the beginning of this section.

As the target and the submarine are supposed independent,
the quantization of Xt can be done “off-line”. The dynamic
programming equation then becomes

J∗t (x) = min
a∈A(x)

∑

y∈Zt×Γ̂t

P xy
t (a)

[
c(x, a, y) + J∗t+1(y)

]

(14)
The process Xt is not controlled hence the transition matrix
P xy

t (a) can be approximated by P ij
t . ∀x = (l, i) ∈ Zt × Γ̂t

and ∀y = (m, j) ∈ Zt+1 × Γ̂t+1

P xy
t (a) ≈ P

(
zt+1 = l, X̂t+1 = j| (15)
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zt = m, X̂t = i, at = a
)

(16)

= P ij
t I{m=l+a} (17)

That is why ∀x = (l, i) ∈ Zt × Γ̂t

J∗t (l, i) = min
a∈A(x)

∑

(m,l)∈Zt+1×Γ̂t+1

P ij
t I{m=l+a}

[
c ((l, i), a, (m, j)) + J∗t+1(m, j)

]

= min
a∈A(x)

∑

j∈Γ̂t+1

P ij
t [c ((l, i), a, (l + a, j))

+ J∗t+1(m, j)
]

c ((l, i), a, (m, j)) is the transition cost function from state
(l, i) to state (m, j) given a control a. In our application,
this function only depends on the sound propagation code
which is “geometric” (values only depend on submarine and
targets’s relative positions). Hence c ((l, i), a, (m, j)) =
c (m, j)

We finally obtain the following dynamic programming equa-
tion

J∗t (l, i) = min
a∈A(x)

∑

j∈Γ̂t+1

P ij
t

[
c(l + a, j) + J∗t+1(l + a, j)

]

(18)
∀x = (l, i) ∈ Zt× Γ̂t. This final equation can be numerically
solved because states are finite.

Numerical resolution

This problem is solved by a stochastic optimal control
method. Our stochastic optimal control process is divided
in three steps. The first step is an optimal quantization in
order to approximate the target state by a finite Monte Carlo
Markov chain state. The second step is a backward dynamic
programming algorithm for evaluating the best policy from
each possible system state. The last step is an in-line overall
optimal control process which evaluates the best control
sequence for our problem.

Step 1 : quantization

The goal is to approximate Xt by a finite Markov chain X̂t.
We obtain for each time t = 0, . . . , N a grid Γ̂t and the
corresponding transition matrices P ij

t . Grids and transition
matrices are stored.

Step 2 : dynamic programming

We compute in this part the optimal control that minimizes
(18) for each element (l, i) ∈ Zt × Γ̂t in the state space.

. Compute ∀(l, i) ∈ Zt × Γ̂N thanks to CN (l, i) the final
cost

{
J∗N (l, i) = CN (l, i)
a∗N (l, i) = 0 (19)

. Compute for t = N − 1, . . . , 0 and ∀(l, i) ∈ Zt × Γ̂t





J∗t (l, i) = mina∈A(x)

∑
j∈Γ̂t+1

P ij
t [c(l + a, j)

+J∗t+1(l + a, j)
]
.

a∗t (l, i) = arg mina∈A(x)

∑
j∈Γ̂t+1

P ij
t [c(l + a, j)

+J∗t+1(l + a, j)
]

(20)
For each time and each state space point, following informa-
tion are stored: J∗t (l, i) and a∗t (l, i). a∗t (l, i) is the best control
starting from (l, i) at time t and J∗t (l, i) is the best cost at time
t starting from (l, i).

Step 3 : optimal control

This part is very simple. It is supposed that the trajectory of
the target is known, say that the sequence of the target states
is {X0, . . . , XN}. Then we can deduce the optimal control
sequence from the optimal policy {a∗t , t = 0, . . .N}.

The single target case has been presented in detail is this
section. The multitarget case is obtained in a similar way
with a state vector containing two or more targets.

4. RESULTS

Single target case

We consider here a very simple scenario : the submarine
is equipped with one sensor and there is a single target in
the environment. The submarine wants to best detect the
target regardless of its own detection range with respect to
the other target. The initial geometry is depicted by the
following Fig.5. The submarine S (blue) and the target

Figure 5. First scenario.

(red) have uniform motions hence the problem is to find an
optimal depth for S (so, S motion is uniform only in the
horizontal plane). The relative target’s speed is 10 m.s−1.
The environment (inputs of the sound propagation code) is
described as follow:

. depth of the sea floor: 1000m. floor type : sand. sea state: 3. sound velocity profile: see (Fig.2). frequency: 1000Hz

Results are illustrated2 in Fig.6: The trajectory of the sub-
marine S, in the depth-relative range plane, is plotted with
a solid white line. The third dimension is the loss signal
level seens from S. Results are in accordance withe the

2Depth (m) versus distance (km)
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Figure 6. Results (initial depth: 300m).

good sens because the trajectory is always at depths where the
target loss signal is minimum. Nevertheless, simple cases like
this are interesting for a preliminary validation of complex
algorithms.

Figures Fig.7 and Fig.8 are examples in the same conditions
but with different initial depths for the submarine (100m and
600m).

Figure 7. Results (initial depth: 100m).

The control seems to put the submarine at the right place
where the loss of signal is minimum.

Figure 8. Results (initial depth: 600m).

Multitarget case

Let us consider a more complex scenario with now two targets
at different depth. The first target is still at 500m depth
whereas the second target has an initial depth of 100m (see
Fig.9).

Figure 9. Second scenario.

The multitarget cost function is defined in order to keep a
good detection range of each target. We obtain the following
results illustrated on Fig.10 and Fig.11. Results are very
promising because the trajectory of the submarine remains
at a compromise depth where each target loss level is in a
minimum area, though there is a little incursion in the blue
with respect to target 1, but it corresponds to the edge of the
best area with respect to target 2.

5. CONCLUSION

In this paper we have presented a stochastic optimal control
framework which solves the difficult task of finding optimal
trajectories for a submarine taking into account its mission
ojectives and the environment. First results obtained on
simple scenarios show that the proposed framework is a very
promising approach. Nevertheless, additional developments
and further evaluations are needed.
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Figure 10. Results plotted on target 1 loss diagram.

Figure 11. Results plotted on target 2 loss diagram.
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ABSTRACT 

In the reliability modeling of complex control systems, classical methodologies such as even-
trees/fault-trees or Petri nets may not represent adequately the dynamic interactions existing 
between the physical processes (modeled by continuous variables) and the functional and 
dysfunctional behavior of its components (modeled by discrete variables). This paper proposes a 
framework for modeling and simulation of a water level control system in the Steam Generator 
(SG) of the secondary circuit of a nuclear power plant. We have developed a complete benchmark 
case. The behavioral model of SG is obtained from a linearized model published in 2000 by EDF 
[1,2]. Four physical variables (steam flow rate, water flow rate, steam-water level, water level) are 
modeled; they follow a system of linear differential equations with piecewise constant 
coefficients, coupled with a PID controller that regulates the water level in the SG. Detailed 
description of the components, failure modes and control laws of the principal components is 
presented. For modeling the system, we use the Piecewise Deterministic Markov Processes 
(PDMP) framework and for implementation we chose Simulink associated with Stateflow. PDMP 
offer a very general modeling framework to deal with dynamic reliability problems; Simulink is 
an appropriate tool to simulate non linear differential equations and their controller, while 
Stateflow implementation is appropriate for finite state machine descriptions of different 
components.   

Key Words: Dynamic PRA/PSA, Piecewise Deterministic Markov Processes 

1 INTRODUCTION 

Hybrids systems are described by continuous variables, deterministic events and stochastic events (e.g. control logic 
and mechanical parts failures, unplanned variations of operational profile…). For a large class of industrial 
processes, the layout of operational or accidental sequences generally comes from the occurrence of two types of 
events: 

• the first type is directly linked to a deterministic evolution of the physical parameters of the process, 

• the second type of events is purely stochastic. It usually corresponds to random demands or failures of 
system components. 

Unfortunately, the static methods used for systems reliability modeling, such as combinatory approaches (fault trees, 
event trees, reliability diagrams) are not relevant to model hybrid systems. This is a current challenge in reliability 
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analysis, and requires the development of so-called “Integrated Deterministic-Probabilistic Safety Analysis 
(IDPSA). The need of IDPSA methods comes from the observation that static methods applied in PSA are limited to 
find time dependent interactions and unknown vulnerable sequences regarding physical phenomena, control logic, 
operator actions, equipment failures [8]. 

The benchmark system that we study is a Feedwater Control System (FCS) for the Steam Generator (SG) in the 
secondary circuit of a nuclear plant. The mission of the system is to maintain the water level in the steam generator 
around a reference position. The mission fails if the water level rises above or falls beyond threshold limits. This test 
case has the advantage of being representative of a real system and to cover most of the situations encountered in the 
dynamic reliability literature. A similar benchmark system was described by the U.S. Nuclear Regulatory 
Commission [4] where two approaches for dynamic reliability were compared: DFM (Dynamic Flowgraph 
Methodology) and Markov/CCMT (Cell-to-Cell Mapping Technique). But the date released by the NRC report did 
not permit us  to reconstruct the model.  
 
The work presented here is a continuation of a series of works already realized within the INRIA team CQFD. They 
are intended to illustrate the efficiency of a method combining the modeling power of Piecewise Deterministic 
Markov processes (PDMP) and the Monte Carlo computational implementation, to treat certain dynamic reliability 
problems. We have in the past modeled and simulated systems of "academic" size [6] and "industrial" size [5], 
where implementations were done in C++ or Matlab. But to model the Feedwater Control System, we chose the 
software Simulink/Stateflow of Mathworks. This paper is organized as follows. Section 2 briefly presents the 
Piecewise Deterministic Markov processes (PDMP). Section 3 gives the functional description of our benchmark. 
Section 4 then presents the implementation by Simulink/Stateflow. Section 5 shows some numerical results. Finally, 
section 6 presents our conclusions. 

2 PIECEWISE DETERMINISTIC MARKOV PROCESSES 

PDMP provide a very general modeling framework to deal with dynamic reliability problems. Let M be the finite set 
of the possible regimes of the system. For all m in M, let Em be an open set of Rd. A Piecewise deterministic Markov 
process is defined from the three local characteristics (Φ, λ, Q) where 
 

• the flow Φ : M×Rd×R→ Rd is continuous and for all s,t ≥0, Φ(•,t+s)= Φ(Φ(•,s),t). It describes the trajectory 
of the deterministic process between jumps. For all (m,x) in M×Em , we set 

t*(m,x)=inf { t>0 : Φ(m,x,t) ∈ ∂Em } 
                the time to reach the boundary of the domain. 

• the jump intensity λ characterizes the frequency of jumps. For all (m, x) in M × Em, and t ≤ t*(m, x), we set 

 
• the Markov kernel Q represents the transition measure of the processes that allows to select the new 

position after each jump. 
 
The trajectory Xt=(mt, xt) of the process can be defined iteratively. We start from an initial point X0=(k0, y0) with 
k0∈M and y0∈ Ek. The first jump time T1 is determined by the distribution 

 

On the interval [0, T1), the process follows the deterministic trajectory mt=k0 and xt =Φ(k0, y0,t). At the random time 
T1, the process has a jump. The regime changes and the process is then reset at XT1, a random variable that follows 
the law given by Qk0(Φ(k0, y0, T1),•). We then similarly draw a new jump time T2 -T1, and on the interval [T1, T2) the 
process follows the trajectory mt=k1 et xt=Φ(k1, y1,t - T1). This builds iteratively the PDP. 
 
A particularity of the steam generator system is that it is regulated. The flow Φ is thus the solution of a differential 
equation controlled by a PID controller. It admits no analytical solution and will be numerically approximated at 
each time step. The reason why we choose the PDP model is twofold. First, it provides a modeling framework that is 
both general and accurate. Second, this model offers the perspective in the future to perform optimal control: 
optimal stopping, predictive maintenance [7], etc.  
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3 FUNCTIONAL DESCRIPTION 

We have modeled a part of the secondary circuit of a pressurized water reactor. It is composed of seven components:  
one passive system representing the whole steam transport system (VVP), three extraction pumps (CEX), two 
feeding turbo pumps (TPA), and one water flow regulation valve (ARE). The rest of the secondary circuit does not 
interest us for the test case as it has no direct influence on the reliability and safety of the circuit.  The reliability 
diagram we modeled is given in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1 Description of the system 

The VVP barrel maintains the steam flow to the turbo pumps and dryers. A breakdown in the barrel VVP is a critical 
point of failure and represents a minimum level of system reliability. The three pumps CEX maintain the vacuum in 
the condenser (upstream of VVP) and ensure a flow of feeding water. They are redundant in 2/3. The third pump is 
stopped, in standby. It is started when one of the other pumps fails. A failed pump, once repaired, remains in 
standby. The two turbo pumps TPA work together, they provide the common pressure to the SG, discharged 
into a common cylinder integrated in the VVP.  In the case of failure of a TPA, the second one switches over 
speed and provides some of the charge. We consider in this model that the power of the 
installation decreases automatically to 60% when only a single TPA works. Finally, the actuator (ARE) is used to 
command the feed water flow rate in the SG. It consists of a main valve and a bypass valve. A logic sequence 
determines the openings and closing of the individual valves as a function of the power of the installation.  
 
In our benchmark system, four physical processes are considered: the feed water flow rate (

€ 

Qe ), the steam flow rate 
( ), the narrow range water level (

€ 

Nge ) and the wide range water level (

€ 

Ngl ). A PID controller is used to 
maintain the water level within limits of reference-points. The behavioral model of the SG is obtained from a non-
linear model published in 2000 by EDF [1, 2].  The general control strategy consists in maintaining the narrow range 
and wide range water levels within limits of their set points. This can be accomplished by concentrating the control 
effort on the single controlled variable: the narrow range water level . Figure 2 shows the basic PID feedback 
control structure.  
 
 
 
 
 
 
 

 
Figure 2. Basic feedback structure of the PID controller 

 

 
Figure 1. Reliability diagram for the mechanical and 

electromechanical systems of FCS. 
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3.2 Steam generator level control model 

The model used in this study for the purpose of controller design, is a somewhat simplified version of the Irving 
model [1]. It was developed by the Research and Development division of EDF. The detailed model for the Steam 
Generator can be found in [2]. Such theoretical models use fundamental conservation equations for mass, energy, 
momentum, volume and basic thermodynamic principles.  It is a simple fourth-order model. We will give a brief 
description. The relationship among ,  and  can be modeled by the following transfer functions: 

    (1) 

The parameters  are functions of the operating power and are summarized in Table I. Note that 
 and  are constants.  The term  is incorporated to account for the modeling of the 

two-phase swell and shrink effects. Due to proprietary reasons, the model discussed in this paper is a scaled and 
modified version of the model used by EDF. 

 

 

 

 

 

 

 

 

Denoting the water levels by and  and the steam and feed-water flow-rates by  and 
, we have following equivalent state-space form: 
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3.3 Reliability data and state graphs 

Reliability data and state graphs have been defined for each component. We provide in Table II and Figure 3 the 
details for the simplest case, the VVP. The necessary data for the other sub systems are much more numerous and 
will not be presented in this paper due to obvious reasons of clarity. The worst case is that of the ARE with 
four graphs and more than a dozen states and thirty parameters.   
 

Table I. Parameters variation over the power range 

 3.2 4.1 9.5 24.2 30 50 100 

 5.14 8.00 9.00 6.29 5.71 5.71 5.71 

 13.0 18.00 10.00 4.00 4.00 4.00 4.00 
 24.29 8.00 4.29 1.43 1.14 0.71 0.71 

 1.43 1.43 1.43 4.29 4.29 4.29 4.29 

Table II. Reliability data example (VVP) (Failure rate=2.17e-5/h) 

Mesh Contribution to 
the failure rate Pfd MTTR Effect Mode of 

failure 

Outflow 89% na 12 Automatic reactor trip  Mode I 

Break 11% na 168 Automatic reactor trip  Mode II 
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3.4 Test scenario   

We consider the following scenario, illustrated in Figure 4. After a piecewise linear rise lasting 24 hours, the system 
reaches its stationary state, 100%  and remains there for 18 months, followed by a descent of 24 hours. The 
objective is to simulate the behavior of the system subject to random failures. The simulation is stopped when an 
automatic reactor trip (RT) occurs. In this scenario, we suppose that the control law of the two ARE valves satisfies 
the following logic: when the operation power is in [0%, 2%], a supplement system (ASG) is applied to control the 
feed water rate, between [2% 15%], the bypass valve is used, and if  is above 15%, the bypass valve is turned off 
and the main valve comes into operation. 
 
 

 

 

 

 

 

4 SIMULINK/STATEFLOW IMPLEMENTATION 

The global scheme of the simulator is presented in Figure 5. The Ramp block is parameterized to generate a 
constantly increasing or decreasing signal ( ). The range of the ramp is restricted to [0,100] by the 
saturation block. Four output signals , ,  and RT (automatic reactor trip) are computed, the last one 
stopping the simulation when an RT occurs.  
 
 
 
 
 
 
 

 

 

 

 
Figure 4. Test case scenario 

 

 
Figure 5. Global scheme of simulator 

 

 
Figure 3. State graph of barrel VVP 
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The Steam generator is fully modeled by the subsystem SG, presented in Figure 6. It consists of 
• a Stateflow chart named installation, which includes the seven components VVP, CEX, TPA and ARE 

described above. This block is activated at each time step, and also whenever the power Pn crosses one of 
the thresholds 2%, 15%. 

• the Steam Generator modeled by the  gv block  with two inputs ( ) and two outputs ( ). This 
system obeys a system of differential equations which coefficients depend on . Here the operation 
power  and steam rate  share the same signal, because they are supposed to be proportional. 

• a PID controller, which input is the difference between the set point  and , and which output is 
, the flow rate of feed water injected into the SG. The variable Q represents the disturbances from ARE. 

 
  
 

 

 

 

 

 

 

 

 

 

 

 
A main advantage of Simulink/Stateflow modeling is that it takes the form of an interactive graph, which makes 
easy the understanding of the model.  If the system works in nominal mode, when no component is down, the water 
level is controlled by the PID controller. If a component fails, it can either cause an AAR or a minor fault. In the 
former case the simulation is stopped, in the letter case the simulation goes on, the component is under repair, 
a decreasing followed by an increasing ramp is scheduled if necessary. 
 
The Stateflow chart installation models the discrete behavior of the SG. It includes all the seven discrete 
components ARE, VVP, 3 CEX and 2 TPA, see Figure 7.  We will present in detail here only two components: VVP 
and CEX.  
 
 
 
 
 
 
 
 

 

 

 

 

 

 
Figure 6. SG subsystem  

 

 
Figure 7. Stateflow chart for installation 
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4.1 VVP Modeling 

This component has three possible states (OK, Outflow, Break), see Figure 8. The time spent in each state is 
exponentially distributed. When this component is active, its default state is OK. Two random variables are then 
drawn, x=E (2.17e-5/h) represents an exponential distribution with parameter =2.17e-5/h, and p=B(0.89) is a 
Bernoulli draw. When the time spent in this state exceeds x, the transition after(x, sec) occurs. The state of the 
component switches to Outflow if p=1 or to Break if p=0. In this latter case, an RT signal is send to stop the 
simulation. The codes 301 and 302 can record the failed component and the cause of the failure, for future Monte 
Carlo analysis.  
 
 

 

 

 

 

 

 

 

 

 

 

 

4.2 CEX Modeling 

The principle of operation of the CEX is similar, but much more complex. Figure 9 illustrates the implementation 
of a CEX, this is indeed the details of CEX1 found in Figure 7. The other two CEX are almost identical (copy-
paste), only the initial conditions are different. In the initial state, two CEX are in operation, the third is in standby.  
 

 
Figure 8. VVP Model 

 

 
Figure 9. CEX implementation 
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5 NUMERICAL RESULTS 

The total duration of the scenario is 18 months. There are two types of regimes: transient and steady. When the 
system is in the transient regime, the water level  and power  vary rapidly. To follow this command, 
one must choose a discretization time step small enough (0.6 seconds), otherwise the PID controller loses its 
stability. In the steady state, all physical variables remain constant, only the component failures affect the system 
state. As the system is very reliable, the nominal duration is often very long and a small time step is not pertinent 
because it dramatically slows down the simulator. We propose a specific technique to solve this problem by using 
inhomogeneous time steps. Two distinct Simulink models were created, the first one with the PID, and the second 
one without PID. This allows setting two different time steps. During the transient period, we use a time step of 
0.6 seconds, and during the stationary period, a time step of 60 minutes is sufficient to simulate component failure.  
 
To illustrate the results, we simulated a history without failure, and we set steady period to be 3 days (instead of 18 
months, for illustrative reason). Figure 10 shows that the  (red) coincides well with the reference point (blue). 
 
 
 
 
 

 

 

 

 

 

 
On a total of 4000 simulated histories, 2190 Reactor Trips (RT) occurred, representing a probability of 54.75%. That 
is to say that in this scenario the system has about one chance over two to suffer a RT, for a period of 18 
months. Table III summarizes the number of RT caused by each component. It also gives the percentage of 
occurrence among the 2190 RT. 
 

 

  

 

 

 

 

 

 

 

We found no RT caused by the bypass valve ARE. This can be explained by the fact that the stay in the transitional 
regime is too short (48 hours) compared to the total duration (18 months) of the scenario. This failure is a rare 
event. We also note that many RT are caused by the barrel VVP (36%). Its failure rate (2.17e-5/h) is comparable 
to those of the CEX (4.35 e-5) and TPA (5.9 e-4), but these components are redundant unlike the VVP, 
which minimizes the RT. 

Table III. Number of RT over 4000 histories 

Sub system Number of RT Percentage 

VVP 792 36% 

ARE 1301 59% 

CEX 50 2.28% 

TPA 47 2.1% 

Total 2190 100% 

 
Figure 10. Reference point and level 
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Figure 11 illustrates the cumulative probability of Reactor Trips over time. 
 

6 CONCLUSION 

The modeling by PDMP applies very well to this problem of dynamic reliability. The approach combined with 
Simulink/Stateflow allows building an interactive simulator. It therefore offers interesting perspectives in several 
points of view.  

• Graphical programming. The source code looks like a reliability diagram. In debugger mode, users can 
view the states and transitions step by step. 

• Upgrade maintenance of the simulator. Components VVP, CEX, TPA, ARE can be modeled and tested 
separately  (assuming that the other components are 100% reliable) and then combined by simple copy and 
paste. We can easily add in the future other components. Similarly, one can handle the problem of 
redundant components in pre-building a component library.  

• Limiting the number of components. One of the main difficulties in hybrid system modelling, is the number 
of possible modes. By using this approach, there is no problem of combinatorial explosion. Indeed, the 
state machine of Stateflow is component oriented, that is to say that, at each time step and for each 
component, the simulator calculates the component state separately.  It is not necessary to know a priori the 
number of possible states.   

 
The main disadvantage of this approach is execution time. For the test case that we handled, a story is simulated in 
about 30 seconds (on a laptop), so 33 hours are necessary to run 4000 Monte Carlo runs. Experience shows that a 
C++ simulator dedicated to a problem of this size can probably run ten times or hundred times faster, but at the cost 
of a heavy investment in programming and the generated code is hardly evolutionary [5,6]. We have partially 
solved the problem by using the parallel computing toolbox of Mathworks. A computer equipped with 12-cores, 
reduced the computation time to 3 hours. 
 
Others perspectives can also be explored.  Representing the positive feedback between system trips and reliability or 
of mechanical systems or sensors drift will be a step towards dynamic reliability representation. Also, from the basis 
of this model, simulations may be used to simulate fault inside the control logic, incl. measurement logic. Moreover, 
the INRIA CQFD team proposes numerical algorithms for optimal control: optimal stopping, impulse control, etc 
[7], that permit to study various inspection and maintenance strategies for the FCS, taking into account hybrid and 

 
Figure 11. Cumulative probability of RT 
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dynamic aspects. In all these methods, the Monte Carlo simulator is the key step necessary to perform the 
optimization. 
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