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Abstract

In this paper, we deal with the real stochastic difference equation Y,y = a, Y, + by, n € Z,
where the sequence (a,) is a finite state space Markov chain. By means of the renewal theory,
we give a precise description of the situation where the tail of its stationary solution exhibits
power law behavior.
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1. Introduction

We study the following stochastic difference equation:
Yn+1 :al1Yn+bna ne Z, (1)

where (a,) is a real, finite state space Markov chain, and (b,) is a sequence of
real i.i.d. random variables. Equations of type (1) have many applications in
stochastic modeling and statistics. Most of previously studied cases deal with i.i.d.
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multiplicative coefficients (a,): see [13,14,16,9]. For more recent work, see also [15].
Here, we study the Markovian case. In statistical literature, Eq. (1) defines a
so-called Markov-switching auto-regression. See [11] for interesting applications
in econometrics. Such stochastic recursions are also a basic tool in queuing theory:
see [3].

We assume throughout this paper that the following conditions are satisfied:

Eloglag| <O,

Elog™ |bg| < o0. )

If in addition (a,, b,) is stationary and ergodic, Brandt [5] proved that Eq. (1) has a
unique stationary solution (Y,), where

00
Yn = E Ap_1dp—2 - anfkbnflfka nelZz.
k=0

In the following, (Y,) will always denote the stationary solution of Eq. (1). We deal
with the tail of Y,: we investigate the asymptotic behavior of P(xY;>1t), when ¢
tends to infinity, and where x € {—1, 1}. Our approach is based on renewal-theoretic
methods as developed in [16,9].

Our main results are the following two theorems, depending on the a, being
positive or not. Let R be the set of real numbers, and R’ the set of positive real
numbers.

Theorem 1. Let (a,) be an irreducible, aperiodic, stationary Markov chain, with state
space E = {ey,...,e,} C R, transition matrix P = (p;) and stationary law v. Let (b,)
be a sequence of non-zero real i.i.d. random variables, and independent of the sequence
(an). If the following conditions are satisfied.

(1) there is a 2> 0 so that the matrix P, = diag(e?)P’ has spectral radius 1 (P denotes
the transpose of P),

(2) the numbers loge; are not integral multiples of the same number,

(3) there is a >0 such that E|by|"° < oo,

then we have for x € {—1,1}
FP(xY,>1) — L(x),
11— 00

where L(1) + L(—1) is positive. If by=0 a.s., then L(—1) = 0, and L(1)>0. If by <0
a.s., then L(1) =0, and L(—1)>0.

Theorem 2. Let (a,) be an irreducible, aperiodic, stationary Markov chain, with state
space E = {ey,...,ey} C Rsuchthatey,...,ee are positive and e;y1, . . ., e, are negative
Jor a 0<t<p—1 (¢ =0 means that all the e; are negative). Let P = (p;) be its
transition matrix and v its stationary law. Let (b,) be a sequence of non-zero real i.i.d.
random variables, and independent of the sequence (a,). If the following conditions
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are satisfied.

(1) there is a 2>0 so that P, = diag(|e;|")P’ has spectral radius 1,
(2) the numbers logle;| are not integral multiples of the same number,
() there is a 6 >0 such that E|by|*™ < o0,

then we have, for x € {—1,1},

FP(xY,>1) — L(),

where L(1) + L(—1) is positive. If in addition P’ is {-irreducible (see Definition 3) then
L(1) = L(—-1)>0.

The last two hypotheses in these theorems are the same as in the ii.d. case. In
particular, Hypothesis (2) ascertains that the distribution of Y is non-lattice, and it is
equivalent to requiring that the subgroup generated by the loge; be dense in R. On the
contrary, Assumption (1) comes from the Markovian dependence considered here.
Indeed, we will prove in Section 4.1 that the spectral radius p(P;) of the matrix P; can be
computed from the formula p(P;) = im(E|a,..., al,n|’1)1/ ", Therefore, this assumption
is a suitable substitute for the classical relation E|ag|* = 1 assumed in the i.i.d. case.

Note that the assumption of independence between the two sequences (a,) and (b,)
can be avoided. Let # _,, be the o-field generated by «y,...,a_, and by, ...,b_,. Then
(b,) 1s only required to be a sequence of random variables such that (a,,b,) is a
stationary process, and b_g1) is independent of & _,. We also need one more
assumption (also assumed in the i.i.d. case): for all i, P(by + apx = x| ag = ¢;) < 1.
The proofs run exactly the same, except that of Lemma 3, where min;<;<, P(|bo +
(e; — 1)mg| >¢) must be replaced by min; <<, P(Ibg + (ao — 1)mo|>¢|ayp = e;). And
thanks to the new assumption, we can again choose a positive ¢ such that the latter
minimum is positive.

As the mapping A—logp(P,) is convex (see Section 4.1), that its right-hand
derivative at 0 is negative and p(Py) = p(P) = 1, only two cases may occur. Either
for all A>0, p(P;)<1, in which case we can prove that E|Y|* < oo for all 4, provided
E|bo|* < oo (see Proposition 3), and therefore P(|Y|>t) = o(r~*) for all A; or there is
a unique 4A>0 so that p(P;) = 1, this is the case we study here.

Similar results have already been proved in the i.i.d. multidimensional case: @, are
matrices and Y, and b,, vectors. Renewal theory is used by Kesten [13] when the a,
either have a density or are non-negative. These results were extended by Le Page [16] to
all i.i.d. random matrices satisfying similar assumptions as in our theorems. Finally
Goldie [9] proved a new specific implicit renewal theorem and derived the same results as
Kesten in the i.i.d. one-dimensional case. He also studies the tails of the stationary
solutions of several other one-dimensional random equations with i.i.d. coefficients.

The paper is organized as follows. In Section 2, we introduce some notation and
state a new renewal theorem. In Section 3 we derive the renewal equations
corresponding to our problem. In Sections 4 and 5, we prove Theorem 1, Section 5
being dedicated to the proof that the sum of the limits is non-zero. And finally in
Section 6 we prove Theorem 2.
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2. A renewal theorem

Our approach is based on a new renewal theorem for systems of renewal
equations. First, we give some notation and conventions that will apply throughout.

Let F = (Fj),<;;<, be a matrix of distributions: non-decreasing, right-continuous
functions from R to R, with limit 0 at —oo.

Definition 1. For all r>1 and all p x r vector or matrix H of Borel measurable, real
valued functions H; on R that are bounded on compact intervals, we define the
convolution product F x H by

P 00
ey =" [ Hy-wFua.
k=1 v =X

where it exists.

We study the renewal equation Z = F xZ 4+ G, where G = (Gl,...,Gp)/ 1S a
vector of Borel measurable, real valued functions, bounded on compact intervals,
and Z = (Z,,...,Z,) is a vector of functions. The renewal theorem will give the
limit of Z at +o0.

For all real ¢, set:

® B = (bj)<,;j<, Where b; = [uF;(du) if it exists, the expectation of F,

® O = (05(D)1<ij<p Where 0;(f) =1;50 if i=j and 0 otherwise, so that
FO « H = H for all H as in the definition above,

® F(t) = F x F"V(¢), the n-fold convolution of F,

o U(t) =% F"(t), the renewal function associated with F.

Assume that all the measures F; are finite:
Fij(c0) = lim Fy(f)<oo,
[— 00
and that F(oo) is an irreducible matrix (see e.g. [12] for a definition and Perron—
Frobenius theory). By Perron—-Frobenius theorem, the spectral radius p(F(c0)) of

F(o0) is a simple eigenvalue with right and left positive eigenvectors. Assume that
p(F(00)) = 1, and let m and u be two positive eigenvectors such that:

P p
Flooym=m, u'F(oo)=u, Zm,-:l, Zu,-m,-:l.
=1 =1

Assume also that the sequence (||F(oc0)"||) is bounded (for instance if F(oo) is
aperiodic, this is true). We recall the following definition:

Definition 2. The matrix of distributions F is lattice if the following conditions are
satisfied:

e For all i#j, Fy; is concentrated on a set of the form b + 4;Z.
e For all i, F;; is concentrated on a set of the form A;Z.
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e Each 4; is an integral multiple of the same number.
We take 4 to be the largest such number.

e Forall a;, aj, ay points of increase of Fy, Fj, Fi, respectively, a; + aj — aj is
an integral multiple of 4.

Our basic tool is the following renewal theorem from [17]. It extends a previous
result of Crump [7] and Athreya and Rama Murthy [4] which deals with the case
where each distribution F; has support on Ry.

Renewal Theorem A. Assume that F is a matrix of distributions satisfying the
assumptions above, that it is non-lattice, and that

(1) its expectation B exists,
(2) for all t € R, U(¢) is finite.

If in addition G is directly Riemann integrable (see [8]), and Z = U * G exists, then for
all i, we have:

P [}
lim Z(f) = cm; [u/ G-(y)dy],
Jim 2] G
where m and u are the eigenvectors defined above and ¢ = (' Bm)~" (under these
assumptions, u' Bm#0).

We also recall Theorem 2.3 of [4] that will be used in Section 5.

Renewal Theorem B. Let F be a non-lattice matrix of distributions with support on the
positive half-line, such that

(1) p(F(0)) <1,
(2) F(o0) is finite, irreducible and aperiodic.

Assume also that there is a >0 such that p(Fy) = 1, where (F,); = fooo e~ Fy(du).
Then for all h>0, and all i,j, we have
t+h

lim e Uy(dy) = emush,

=00 i
where m and u are right and left eigenvectors of F,, with the same normalization as
above, ¢ = (W'Bm)~", and B = (by) with by = f(;)o ue~™F;(du), ¢ being interpreted as
zero if some by; is equal to infinity.

Note that this theorem can now be seen as a corollary of Theorem A. Indeed, the
first assumption ascertains that U(?) is finite for all ¢. In the positive case, the
expectation B and the convolution product U # G are always defined (possibly
infinite). Applying Theorem A with F = F, and G = 1j;,4, (which is obviously
directly Riemann integrable) yields Theorem B.
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3. The renewal equations

Let
el
z2(x, 1) = e_’/ WP(x Y >u)du.
0

For all (x,7) € {—1,1} x R, we have: z(x,1) = Y ©_, Z,(x, ), where

Zix,))=¢"' /Oe WP(xY | >u, a9 = e¢;)du.
Besides, Y| = ayg Yy + by, thus for all (x,u) € {—1,1} x R, and for all i we have
P(xY1>u,a0 = e;) = P(xagYo>u,ay = e;) + Y ,(x, u),
where
Vi(x, 1) = P(t —xbo<xapYo<t,ap = e;)) — P(t<xap Yo <t — xbo,ap = e;).
Let Gi(x, 1) = e~ [ uh;(x, u) du. We get

t

P e
z(x, 1) = Z le“/o wPxagYo>u, a9 = e;))du+ Gi(x,1)|.

i=1

Now we need to distinguish two cases. Indeed, we make a change of variable that
involves the sign of ay. We start with the easier special case when all the states of our
Markov chain are positive, therefore the sign of gy is non-random.

3.1. Positive case

Suppose all the states of our Markov chain are positive. Then for all (x,¢) in
{—1,1} x R, and all i, we have, thanks to a simple change of variable,

t el—loge;

€
e’ / WP(xayYo>u,ay = e;)du = e’“""*‘“f)e;1 / u'P(xYo>u, a9 = ;) du.
0 0

3)
The Markov property and the stationarity of (Y,) yield

NS

PxYo>u,a) =e;) = PxYo>u,a9 = e;,a_1 = e;)

1

~.
Il

Il
M=

P(xYo>ula_; = ej)V(ej)Pﬁ
1

~.
Il

Il
NS

P(xY1>ulay = ej)v(e))p;-
1

~.
Il
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Thus, we get the following formula for Z;:

er—logei

»
Zi(x,t) = E [e(”"ge’)ef'/ wWP(xY1>u,a0 = e))p; du| + Gi(x, 1)
J=1 0

P
= Y [ppZi(x.1 —loge)] + Gi(x, ).
=1
We can rewrite this system of equations as follows:

)4
VISi<p, Zix.0)=Y Fiy*Zix.0)+ Gix. 1),
j=1

where F(f) = efpjilglogef are distribution functions. Let Z = (Zl,...,Zp)/, G=
(G1,...,Gy) and F be the matrix F = (Fj). With the notations of Section 2 we have
the following system of renewal equations for fixed x:

Z(x,t) = F % Z(x, 1) + G(x, 1). 4

3.2. General case

Now we study the general case. In order to determine the sign of ay, we classify our
states according to their sign: assume there is a 0<¢{<p — 1 so thatey,...,e,;>0 and
€41, ...,e,<0. Then Eq. (3) becomes

’

(S
e’ / w'P(xayYo>u,ay = e;))du
0
t—log|e;|

oi-log
= e’(tflog‘“"‘)|e,'|)'/ WP(x - e;Yo>u,ap = e;)du,
0

where x - ¢; denotes the sign of xe;. To get similar equations as in the positive case,
we introduce 2p new functions:

7

€
VI<i<p, Zf(t)=Z(1,1)= e_’/ WP(Y|>u,a0 = e¢;)du,
0
e[
Vii<p, Z;(t)=Zi(-1,1)= e_'/ WP(=Y>u,ay = e;)du.
0
Following the same steps as in the positive case, we get

P
VI<i<l, Zf@ =lel" ) piZf (1 —loglel) + Gi(l,1),
=1

P
Vi+1<i<p, Zf@)=lel"Y  piZ; (1 —logle) + Gi(l, 1),
j=1
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y4
vi<i<l, Z7(H)= |e,»|AZ piZ; (t —loglei]) + Gi(—1,1),
Jj=1

P
j=1
that we can also rewrite as a system of renewal equations: set
Z=(Z{,....2},Z7,....Z;) and G=(G{,....G},Gy,....G,),
where G (1) = Gi(1,1) and G7 (f) = Gi(—1, ). Define the 2p x 2p matrix F = (F;;) by:

Fi(t) = el togley if 1<i<land 1<j<p,
orp+I1+1<i<2pand 1<j<p,
or [+ 1<i<p+/land p+1<j<2p,
F (=0 otherwise,

where i = imodp (see Eq. (19) for an explicit matrix form of F). Now Eq. (5)
becomes

Z(t) = F x Z(1) + G(0).

4. Part I of the proof of Theorem 1

Throughout this section, we assume that the hypotheses of Theorem 1 are
satisfied. In order to apply Renewal Theorem A, we have to check that F and G
satisfy its hypotheses. Note first that F;(co) = ef-'pi,»<oo and that B the expectation
of Fis well defined. Indeed, b;; = eﬁpﬁ log e; <oo. The assumption that the loge; are
not integral multiples of the same number implies that F is non-lattice. The other
points are proved in the following sections.

4.1. Finiteness of U

Remember that U = Y52 F®. We have to check that U()<oo for all real .
First, we study the spectral radius of the matrices P, = diag(e})P’, i.e. (Py); = €/pj;,
for o> 0. ' '

Proposition 1. For all «>0, we have

p(Py) = lim(Ela, .. Sa i)Yk,

Proof. We have

Elapa_i,....a "= > Plag=ei,....a = e e, ..., "

ey i1
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| o

E pizila“"pil\,+1[,(v(eik+])|ei]5' . '9ei1(+]

lyenslfet 1
y
=) (P)v(e)e],
i
where P! is the kth power of the matrix P,. Rewrite this equation as
k
Elag,a-1,...,a—|" = 1P, Dy, (6)

where 1 denotes the constant row vector with all coordinates equal to 1, and D,
is the column vector with coordinates v(ej)e}. As P, and thus P,, is aperiodic,
Theorem 8.5.1 of [12] yields

Pk
2 — A4, 7
(P i @

where 4, is a constant positive matrix. Thus (1P§D“)1/k k—) p(Py). O
—00

The following corollary is obvious.
Corollary 1. The mapping a—>log(p(P,)) is convex on R,.
Proposition 2. The right-hand derivative of a—>log(p(P,)) at zero is negative.

To prove this proposition, we need another expression for p(P,). We set E.[-] =
E[-|ap =e¢] for all e € E.

Lemma 1. Set hy(0) = maxecr E[(a_1, ..., a_p)"]. Then we have p(P,) = inf,(h,())'/".

Proof. We first prove that the sequence (%,) is sub-multiplicative. Indeed, set ¢ € E.
We have

Eel(a-t,...,anap1,...,a p-m)] = Ee[(a—1,...,a )" [(a—1,...,am)"]]
<hm(a)[Ee[(a71 P afn)a]
<) (),
as E, [(a_1, . .., d_m)*"]<hm(@). Thus lim,(h,())"/" = inf,,(h,(2))'/". Besides, we have

Elapa_i,....a " = Y Eela_i,...,a_,|"¢"v(e)
ecE

<hu(@) ) ee).

ecE

As Y, g €"v(e)>0, Proposition 1 yields
P(P,) < Tim(y(@)' ",

On the other hand, set e, such that A,(a) = E, [(a—1,...,a_,)"]. The equation above
then yields

[E|a0a_1, cees a—n|a >hn(“)eiv(en)
= Chy(0),
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where C = min,cg ¢*v(e)>0. Hence we also have
p(Py) = im(hy ()",
As limn(h,,(oc))l/ "= infn(h,,(oc))l/ " the lemma is proved. [

Proof of Proposition 2. For any fixed n, set e, € E such that £,(x) = E,, [(a_1,. ..,
a_p)*]. As the product a_y,...,a_, is bounded for a fixed n, we have

0
o ) = Euf(ar,.az) log(aor,. . a-))
o

hence

0

1 1
— —log hy(x) = - E,, [log(a—y, . ..,a_,)].
Ou|,_on n

For all e € E, the Ergodic Theorem for stationary Markov chains yields
1
p E[log(a_1,...,a_,)] — Elogay = y<0. ®)

As the state space E is finite, this convergence is also uniform on E. Thus, for any
sequence (e,) in E we have

1

—E,,[log(a_i,...,a_,)] — y<O0.

n n—o0
Hence, there is an integer N such that

0 1 o
—| —logh <z <0.
52| o)< <0

In particular, the mapping ou—>% logix() is negative on an interval of the form
10, ¢[, with e>0. The preceding lemma then yields

1
log p(Py) = inf - log hu(x)
n

1
< oy loghn (),

which is negative for all o €]0,¢[. But the mapping a——log p(P,) is convex and
continuous on R, , and takes the value 0 at 0. The result above implies that its right-
hand derivative at 0 is negative (possibly —oo). [

We have p(Py) = 1, and in addition, in the case we study here, p(P,;) = 1, thus
Proposition 2 and Corollary 1 easily yield the following corollary:

Corollary 2. For all 0 <o <1, we have p(P,)<1.

Now we can study U. By definition, F(co) = P, is irreducible as P is and all e¢; are
non-zero. We have chosen 4 so that p(P;) = p(F(co0)) = 1. For all « € 10, A[ , we have
P,_,= (ef*"‘pjl-) = ([ e ™F;(du)). Corollary 2 yields p(P;,—,)<1, so that the series
>omeo(Pi_,); is convergent for all 7,j. As for all n, (P}_,); = fe’“”Fg’)(du) holds,
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then we have

t t
(P > / e ™ F(du) > e / FP(du) = e F{(0).
oo

Thus, for all 7,/ and ¢, we have Uj(t) = ZFE;”(Z)S ey (P )y, <oo.

4.2. Proofof Z=U=xG

Iterating Eq. (4) yields:

n—1
Z=> [FYxG)+F"xZ.
k=0

It is thus sufficient to prove that F® x Z — 0. As seen in Section 3 we have

Y el—loge;
(Fx2Z)(x,1)= Z [e_(’_loge") / efp/iu)*ﬂj’(x Yi>u,ay =e)du
j=1 0

!

€
= e*’/ WP(xayg Yo >u,ay = e;)du.
0

Similarly, we get for all n

t

€
(F" % Z)(x,1) = e"/ WP(xaq, ..., a1_n Y 1_p>u,ay = e;)du.
0

And thus we have
)4 e’ ;
Z(F(") * 2)(x, 1) = e_’/ w'P(xag, ..., a1—n Y1—n>u)du.
0

i=1

But ag,...,a1_, = exp(}_;_,loga;_x), thus Eq. (8) and Assumption (2) yield
ao, . ..,aj—, — 0. Hence for all >0, the bounded convergence theorem yields:

IP’(xal,,,, a0 Y, > u) — 0,
n—oo
because Y <oo a.s. and is stationary. Thus Zle(F(”) * Z);(x,1) - 0 holds a.s.
As all the terms in the sum are non-negative, each one tends to zero and we have
Z = U % G as required.

4.3. G is directly Riemann integrable

We first consider the moments of Y.

Proposition 3. For all 0<s</, E| Y|’ <o0.
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Proof. If s< min{1, A}, then convexity and independence yield:

o0
FIY11'< ) Elag,ai,..., a1« "Elb I,
k=0

and if 1 <s< A, Holder inequality yields:

oo
ENY <Y (Elag,a i, ... ar i) PED_])".
k=0
But we have [E|b,k|“'<([E|b0|”5)‘v/()*+5) <00, with ¢ given by Theorem 1. Besides, the
series > (Elag,a—i, . .. ,al_k|x)l/‘Y converges thanks to Proposition 1 and Corollary 2.
Hence E| Y |°<oco. O

Proposition 4. For all i and x, the mappings t+——G(x,t) are directly Riemann
integrable on R.

Proof. As G; are clearly continuous in ¢, it is sufficient to prove that

o0
sup |Gi(x, )] < oo,
I=—00 I<t<I+1
(see [8]). For all i, x, ¢, we have G;(x,t) = G} (x,1)— Gf(x, t), where

el

G; (x,0) = e”/ u*lP(u — xbog<xYoap<u,ay = ¢;)du=0,
0

[
G?(x, 1) = e_'/ u'Pu<xYoay<u — xby,ay = ¢;)du>=0.
0

For all real ¢, we have Gi(x,1)<G}(x,t)<e™ fg’t w* du = e(J + 1)"'. In particular,
G; is directly Riemann integrable on R_. We still have to study G} and G? on R,.
These two functions being of the same kind, we only study G} here.

The rest of the proof is adapted from [16]. Set ¢ € ]0,1[ so that —1<A—
(44 0)e<0, with 6>0 given by Theorem 1. We have

ef
0<e'Gl(x, t)</ W' P(xby>u’,ay = e;)du
0

!

€
+ / wWPu—u*<xYoag<u,ay = e;)du. 9)
0

We are going to give an upper bound for each one of these two terms.

o First term:
As P(xby>uf, ay = e;) <P(xby>u’) we have, as in [16]

!

el . et(l+/1—z;(/l+(5))
/ W P(xby>ut, ag = e;) du<E|b|+°
0

1+4i—e(A+6) (10)
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® Second term: ,
For all u>0 we have P(xYoag>u,ag = ¢;) < [m;—““ which is finite by Proposition 3.
With this slight change in [16], we get

!

€
/ WP — u* <xayYo<u,ay = e;) du< Ce’*+#=9), (1)
0

where C is a positive constant, and s € ]0, A[ is chosen such that —1 <1+ ¢ —1 — s<0.

Now let o = max{A+¢—s; 1 + 41— (A4 d)e} €]0,1[. Egs. (9)~(11) yield etG}(x, <
Ce™ for all positive 7, C being another positive constant. Thus G!(x, 7)< Ce ™D is
directly Riemann integrable on Ry. [

4.4. Tail of the stationary distribution

We have proved that F and G satisfy the conditions of Theorem A. Hence for all
i, x,t, we have, with the notation of this theorem,

4 oo
Zi(x, I)H—go cm; j:zl {uj [w Gi(x,y) dy] . (12)
Summing up these terms, we get
4 0
z(x, 1) = cjzzl [uj [m Gi(x,y) dy] , (13)

as Y m; = 1. This limit is also the limit of #*P(x Y >¢) by Lemma 9.3 of [9] which is
valid under our assumptions (see also Lemma 3.7 of [16] for a similar result). Now it
remains to prove that the sum of the two limits for x € {—1, 1} is non-zero.

5. Part II of the proof of Theorem 1
5.1. Special case: by has a constant sign

In Section 3, we have defined the functions
Vix,t) = P(t — xbp<xagYo<t,ap = e;) — P(t<xay Yo <t — xby,ap = e;).

If hp=0 a.s. and x =1, or by<0 a.s. and x = —1, we have xby =0 a.s. and for all i
and 7,
e
Gi(x, 1) = e”/ W (x, u) du
0

€
:e_’/ w'P(u— xby<xagYo<u,ap = e;)du=0.
0
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Similarly, if xby <0 a.s. we have for all i and

!

[
Gi(x, 1) = —e’t/ WPu<xayYo<u — xby,ay = ¢;) du<0.
0

Thus, if by has constant sign, for fixed x all G;(x, -) have constant sign, and have the
same sign. Now assume that lim z(x, r) = 0. Then Eq. (13) yields

P 00
5 [“j |Gt dy} —0.
=L oo

As c and all u; are positive, this yields G;(x, t) = 0 for all j and 7 € R. Thus, Z(x, ?) =
U % G(x,t) =0 for all ¢, and z(x,) = 0. Hence P(xY;>1) =0 a.s.

e If hy=0, we have Y| >0, which contradicts the statement above if x = 1. Thus
lim z(1,7)>0. And obviously limz(—1,7) = 0.

e If <0, we have Y <0, which contradicts the statement above if x = —1. Thus
lim z(—1, #)>0. And obviously limz(1,¢) = 0.

5.2. Lower bound for P(|Y|>1)

Now we study the general case where b is allowed to change sign. We want to
prove that there is a positive constant C such that #*P(|Y|>#)> C>0 when ¢ tends
to infinity. In the author’s opinion, this lower bound is far from obvious. Here we
adapt a method proposed by Goldie [9].

Proposition 5. There is a positive ¢ and a corresponding positive constant C such that
for all large enough t, we have

2t
P(Y|>0)= Cﬂj’(sup|a0,...,a1_n|> —).
n €

As explained by Goldie [9] for the i.i.d. case, the key for such a lower bound is an
inequality established by Grincevicius [10] corresponding to an extension of Lévy’s
symmetrization inequality: see [6]. We first extend Grincevicius’ inequality to the
Markovian case.

Recall that Y| =) - ao,...,a1—xb_x and set for n>1,

n—1
Y'f:g ag,...,a1—kb_x and II,=ay,...,a1_,.
k=0

Let #; be the o-field generated by (a_j,a_j_1,...), and X a 7 -measurable
random variable. Let med;(X) be a median of X conditionally to a_; =e;,
so that P(med(X)<X |a_; =¢)>3, and P(medi(X)>X|a_;=e)=1 Set also
med_(X) = min; ¢;<p{med;(X)}.
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Lemma 2. For all t>0 and n>=1, we have

4 Y — Y
P| max { Y| + II;med_ | ———1] t >1 | <2P(Y7>0).
1<j<n HJ

Proof. Set T = inf{j<n s.t. Y’i + Iymed_((Y] — Y’ DI ">¢} if this set is not
empty, n+ 1 otherwise, and B; = {med_(( Y” Y’ )H h<(Y" - Y DI ). The
event (T =) is in the o-field generated by «y, . . Cll_j,bg, b, dnd B is in the
o-field generated by a_j,...,a1_,,b_j,.. .,bl_,,. Therefore they are independent
conditionally to a_;. Moreover, for all i and j we have

Y"— Y Y"— Y/ 1
P(Bj|aj:ei)>ﬂ3><medi< IH./ 1>< 11‘1, 1)22.

Thus, as I1; is positive, we have

P(Y>n=P( | JI1BN(T =j)]>
=1

P
i=

=Y Y PBila;=e)P(T =jla_;=e)ve)
j=1

1
: Yi—Y)
P(max{Y’l+Hjmed<¥>}>t>. O
I<j<n II;

Under our assumptions, when » tends to 1nﬁmty, Y7 tends to Y, and for fixed j,

I(Y” Y 1) tends to a random variable Y that has the same distribution as Y.
Set my = med (Y1) =med_ (Y) and letting n tend to infinity in Lemma 2, yields, for
all 1>0,

\%

\

=2
~
7
2

N — N =

P(sup{ Y/ + Ijmo} > 1) <2P(Y, > 1).
j
Replacing Y| by — Y yields a similar formula for all £ <0, hence for all >0, we have
[F"(snplY’i + imy| > 1) <2P(| Y| > 7). (14)
J
Furthermore, as proved in Goldie [9, p. 157], we have for all > |my,
P(sup{ Y + ,mo} > 1) =P@n s.t. [(YIT + I, 1mg) — (Y7 + Img)| > 21),
n
where Y! = 0 and ITy = | by convention. Now notice that:

(Y1 + Hyimg) — (Y7 + Hymg) = a, . ..., ay—pb_y + (T — I,)myg
=I,(b_, + (a—, — D)my).
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Thus Eq. (14) yields, for all ¢>0,
1
P Y |>0)= 3 P@En s.t. |H,(b_, + (a—, — 1)mg)| > 21)

1 2t
> 3 P(Eln s.t. |[II,|>— and |b_, + (a_, — 1)m0|>3>. (15)
&

Now we extend Feller—Chung inequality (see [6]).

Lemma 3. We have, for all t>|my| and ¢>0
2t
Pl 3n s.t. |I1,]> " and |b_, + (a_, — Dmy| >¢
. 2t
> min P(|by + (e; — Dmgo|>e)P | In s.t. |11,|>— |.
I1<i<p &

Proof. Set Ay =0, A, = {|II,|>2%} and B, = {|b_, + (a—, — 1)mo| >¢}. Condition-

ally to a_,, B, is independent from Ay, ..., A,. Therefore, we have
o0 00 n—1
P U[Ant,,] - P BnﬁAnﬂ[BjﬁAj]C
n=1 n=1 j=0

n—1
P (B,l N A, ﬂ A})

J=0

W
[M]e

1

3
Il

I
gL
™~

n—1
P(B, |a_y = e;)P <An ()4 la,= ei> v(er).
j=0

3
Il
-

where A° denotes the complementary set of 4. But the stationarity of (a,, b,), and the
independence of these two sequences yield P(B, |a_, = ¢;) = P(|by + (e; — 1)my| > ¢).
Thus, we have

P (G [A4, N Bn]> > min P(lb + (e; = Dol > )P (G An>. O

n=1 n=1
Proof of Proposition 5. Eq. (15) and Lemma 3 yield, for all > |my| and for all ¢>0,

1 2t
P( Y |>6)= = min P(|by + (e; — 1)mg| >¢)P (Eln s.t. |[I,_|> —).
2 1<i<p I

If by is not constant (otherwise we get a special case studied in Section 5.1), we can
find a ¢>0 such that min;<;<,{P(lbg + (e; — 1)mg| >¢)} >0. Thus, as expected,
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there is a positive constant C such that for all > |myg|, we have

2t
|]3’(|Y1|>t)>C[P’<sup|H,,|>8>. O

5.3. Study of the product ay, . ..,a1_y,

To estimate the probability P(sup, |II,|>1¢), we use the method of Arjas and
Speed [1], and Renewal Theorem B. First, we introduce some notation. Let Sy = 0
and for all positive n,

n

S, = Z log(a;_x) = log(ay, . ..,a1—,) = logIl,.
k=1

The process (a1_p,Sy) is called a Markov-modulated random walk: see [3,2], or a
Markov renewal process: see [1], with semi-Markov matrix Q = (g;), where:

_ _ o v(ej)

q;(1) = Pla—, = ej,loga_,<tlaj-, = &;) = 1,>1Ogej.Tpﬁ.
e;)

The first ladder epoch of the random walk (S,) is T = 7 = inf{rn>1 s.t. S,,>0}, and
the first ladder height is S;. Let H(t) be the semi-Markov matrix of this ladder
process:

Hy(t) = P(t<o0,S:<t,a1_. = ¢j|a; = ¢;).

As S.>0, H is distributed on the positive half-line.

We have S;_; <0 and S, >0, which implies that log(a;_.) >0, i.e. a;_.>1. Let us
rearrange the ¢; such thatey,...,e,>1and e41,...,e,<1 (they cannot be all smaller
than or equal to one, for otherwise P, would be a sub-stochastic matrix for all «
which is impossible as p(P,) > 1 for all o> 1 thanks to the convexity property). Thus,
for all j> g, we have H;;(r) = 0 for all 7. Let H be the sub-matrix (Hj), <ij<q- Besides,
S cannot be greater than max;log(e;), thus H (and H) have finite support.

We define also the nth ladder epoch by 1, = inf{k>1,_; s.t. Sy >S;,_,}, and S, is
the corresponding ladder height. We check that

Hf-;')(t) = P(1,<00, S, <t,a1_., = ¢j | a1 = ¢;),

where H® is the n-fold convolution of H. We also have H" = H" , with obvious
notation. Let ¥ = 3" H™ be the renewal function associated with H and ¥ the
one associated with H. Finally, let M = sup, S, = sup,, S;, be the maximum of our
random walk. We have, for all 1<i<p:
P P
P(M<tlai=e)=>_ |P1) (1 -3 H_/k(OO))],
=1 k=1
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and if i<gq it reduces to

q
P(M<t|lai=e)=

J=1

q
Py(1) <1 -y ﬁ_,k(oo)ﬂ : (16)
k=1

Now, we are going to apply renewal Theorem B, with F = H and o = A (here it is
easier to apply Theorem B than to check the four assumptions of Arjas and Speed
[1]). As H(0) = (0), we have p(H(0))<1, and as all H; are probabilities, H(c0) is
finite. In addition, B, the expectation of H(co) = [;~ e *H(du) is finite as H has
finite support. The assumption that the loge; are not integral multiples of the same

number also implies that H is non-lattice.
We have

Hjj(00) = P(t<o00,a1_; = ¢j|a; =€)
2Pt =1,a1.=¢jla; =e¢)
v(ej)
=Play=¢jlag =¢) = pjiTeji)'
As all v(e;) are positive, and P is irreducible and aperiodic, this implies that H(oco)
also is irreducible and aperiodic.

Note that H(oco) and H(oo) have the same spectral radius. Indeed, H(oo) is a
block-triangular matrix with first diagonal block H(oco) and second diagonal block
(0). Therefore p(H(c0)) = p(H(0c0)). R

To compute the spectral radius of H;(oo), we introduce O(s) = (g;(5)), the
moment generating function of Q, as in [1]:

~ _ t _ v(e)) —_ 41

050 = [ a0 =58 py = a7 Pt
where 4 = diag(ejv(e;)). Thus P andAQ(s) have the same spectral radius, and in
particular p(Q(2)) = 1. In addition, Q(1) is a non-negative irreducible matrix, as
P; is, therefore, by Perron—Frobenius Theorem it possesses a right eigenvector
¢ = (e1,...,&,) with positive coordinates. Set E = diag(e;). Then

0,()=E"' ( / e“‘Q(du))E

is a semi-Markov matrix, and let (*a,_,,”S,) be its associated Markov renewal
process. As proved in [1], EH;(co)E~" is the semi-Markov matrix of the ascending
ladder process of (;“Sn), and the mean of log“a, _,, is the derivative of s—log p(P;) at
A. But we have log p(Py) = log p(P,) = 0, its right-hand derivative at zero is negative
(Proposition 2) and this function is convex (Corollary 1). Thus its derivative

at / is positive, and ]'Sn drifts to 4+o00. Proposition 4.2 of [2] then implies that
p(EH j(00)E™") = 1 = p(H ;(0)).
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We have proved that all assumptions of Theorem B are valid. Thus Eq. (16) yields,
when ¢ tends to infinity
<1 -
1

(1_
(-

where 7 and u are right and left positive eigenvectors of H;(oco), with the same
normalization as in Section 2, and ¢= (@Bm) '>0. Proposition 4.2 of [2]
implies that p(H(oo)) = p(H(c0))<1 as E log|ag| <0 (Assumption (2)). Therefore
H(oo) is strictly sub-stochastic and there is a j<g such that 1 — 1 H jj(00)>0.
Hence the right-hand side term of Eq. (17) is positive, thus we have, when ¢ tends to
infinity,

-

1 —P(M<1) = H/k(oo)) / T e du)
ﬁjk(OO)) / ) e et du

jk(oo)> T e, (17)

J

0
M-

M I I

Il
.MQ
T

=~
Il

1

J

q
HPM>0= Y HP(M>1]ay = e)v(e)=>C>0. (18)

i=1
Now Eq. (18) and Proposition 5 yield, for large enough #:
FP(Y >0 =C >0

and thus with the notation of Theorem 1 we have L(—1) + L(1)>0.

6. Proof of Theorem 2

Assume that the hypotheses of Theorem 2 are satisfied. Our aim is to apply
Theorem A to the distribution matrix F and the vector G defined in Section 3.2. As
in the positive case, notice that F;j(co0) <oco and that the expectation B of F is well
defined. The assumption that the logle;| are not integral multiples of the same
number implies again that F' is non-lattice.

For the other points, we use the previous results obtained in the positive case. For
all real ¢, set F(¢) = (|e,~|ipﬂ»1t>10g|ei\)1<iJ<p. It is non-negative, and

(F)i<i<e 1<j<p ©)
5 (0) (Fei<icp. 1<j<p . (19)
(0) (Fi<i<e 1<j<p

(Fevi<i<p, 1<j<p (0)

5
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6.1. Irreducibility
We have seen in the positive case that F(co) is irreducible. Unfortunately, this does

not always imply that F(co) is also irreducible.

Definition 3. Let 4 = (a;),<;;<, be a positive matrix, and 0<{<p — | an integer.
A is {-reducible if there is (Z,J) a (possibly trivial) partition of {I,...,p} such that
For all 1<i<?

ifiel, thena;=0VjeJ,
ifieJ, thena; =0Vjel
For all £+ 1<i<p
ifiel,thena; =0Vjel,
ifieJ,thena; =0VjelJ.

If A4 is not ¢-reducible, we say that A is {-irreducible.
We gave this definition in order to have the following proposition.

Proposition 6. Let A = (ay),<;;<, be a positive irreducible matrix, and 0<{<p —1
an integer. Then, the matrix B defined as follows:

(@i <i<e 1<j<p 0)

() (@i)es1<i<p, 1<j<p

N 0) (@i <i<e, 1<j<p
(@)er1<i<p. 1<j<p 0)

is irreducible if and only if A is t-irreducible.

Proof. Suppose A is {-reducible for a partition (I,J). Set I =I1U(J +p) and
J=JU( +p), so that (I,J) is a non-trivial partition of {1,...,2p}. Then for all
(i,j) € I x J we can prove that b; = 0 and b; = 0. Thus B is reducible.

Suppose that B is reducible for the non trivial partition (/,J). Set:

L=In{l,....p}), I, = In{p+1,...,2p},
Ji=Jn{l,....,p}, J» = JN{p+1,...,2p}.

We can prove that I, = J, — p and I, = J; + p, and we check that 4 is ¢-reducible
for the partition (/;,J;). O

Now we distinguish two cases according to whether P’ is {-reducible or not.
6.2. First case: P’ is {-irreducible

In this case F(oo) is also ¢-irreducible for 4 given by Theorem 2 and F (00) is
irreducible. In addition, we have || F(c0)"|| < || F(00)”|| for all n. As F(oco) is aperiodic,
this sequence is bounded. We know that F(oo) has spectral radius 1. The same also
holds for F(oco) thanks to the following lemma:
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Lemma 4. If the matrix A= (ay);<;;<, is non-negative, then the matrix B of
Proposition 6 has the same spectral radius as A.

Proof. Let us compute 2(X) = det(B — XI,,) the characteristic polynomial of B.
Adding the last p columns of B — X1, to the first p columns, then subtracting the
first p rows to the last p rows, we get det(B — X1,,) = det(4 — XI,)det(4, — XI,),
where A; is the following matrix:

(aii<i<i, 1<j<p
A = ( ! .

(=4 i1<i<p, 1<j<p

5

Thus the spectral radius of B is the maximum of that of 4 and that of A;. But 4 is
non-negative, and component-wise |A4;| = A, so Theorem 8.1.18 of [12] yields
p(A1)<p(A). Thus p(B) = p(4). U

Note that if 4 is an eigenvalue of A4 with eigenvector X, then we have
BX', XY =(4X),(4X)) = MX',X’), thus (X’,X’) is an eigenvector of B for
the same eigenvalue. Let m and u be positive right and left eigenvectors of F for the
eigenvalue 1, so that >.m; =3 mu; =1. Then m=2""(m',m') is a right
eigenvector of F for the eigenvalue 1, and satisfies S 7 = 1. And & = (u/,u/) is a

left eigenvector so that Z%ﬁ Jimi = Y0 um; = 1.

~ ~(k) ~
Let U=} 2 F . As F;<Fy, Ic
U=>7 F® then U(f)<oo as in the positive case, and thus U(f) <oo.

6.2.1. Properties ofFv and G
= the same holds for their k-fold convolution. Set

To prove that Z = U x G, it is sufficient to prove that f(n) x Z —> 0. But we have

n— 00

seen in Section 3 that

)4 el~loglejl
(FxZ)(0)= e rloeled / leil’pit P(EY 1> u, a0 = ¢) du
j=1 0

1

[
=e! / w'P(£ayYo>u,ay = e;)du.
0

Similarly, we get

ef

(f(”) * Z)[(t) = e_’/ WP(a)_p, ... a0 Y _n>u,ao = ¢;)du.
0

And thus, as in the positive case, we have

!

Py~ e
Z(F( '« Z)(0) = e—'/ WP(£ay_p, ... a0 Y _p>u)du.
i=1 0

But Eq. (8) implies aj_,...,ap — 0. Thus for all #>0, the bounded convergence
theorem yields P(%a_,,...,a0Y_,>u) — 0, because Y <oo a.s. and is stationary.
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Thus 7, (f & * Z)i(t) — 0, and as all the terms in the sum are non-negative, each
one tends to 0 and we have, as expected Z=UxG.

We have Gj(f) = G{(=x1,¢) which is directly Riemann integrable under the
assumptions of Theorem 2 as seen for the positive case.

6.2.2. Tail of the distribution _
We have proved that F and G satisfy the assumptions of Theorem A. Hence for all
i, t, we have, with obvious notations,

_ 2p oo
Zi(1) 2 i /:Zl {”j /_Oo Gi(») dy} : (20)
Notice that ¢ = ¢. Indeed, we have
(bu)1<z<€, I<j<p 0
. ( ) 0 (bl])é’+1<t<p, 1<j<p m
=5 W,u 0 bi<i<e, 1<j<p m)
(bieri<i<p, 1<j<p 0

Hence ¢ = 1/ Bm + u'Bm) = ¢~!, where B is the expectation of F. Thus summing

up the term in Eq. (20), we get
p 0
2= X[ [ G0+ s
L e

And we use again Lemma 9.3 of [9] to conclude that #*P(xY| > ¢) has the same limit.
Note that here this limit does not depend on x, therefore both #P(Y,>¢) and
t*P(Y | < — ) have the same limit.

6.3. Second case: P is l-reducible

As seen in the proof of Proposition 6, there is (1,J) a_non-trivial partition of
{1,...,2p} such that for all (4, /) in I x J we have F;(c0) = Fji(co) = 0. Suppose that
1 belongs to 1. Then System (5) splits into two independent systems of size p, one
with the components (Z;),.; and the other with (Z,),.,. Each of these systems has
associated matrix F that satisfies the hypothesis of Renewal Theorem A, as seen in
the positive case. For all i, G; is also directly Riemann integrable as seen in the
preceding section. Thus Theorem A yields

Viel, Z—(Z)H—gO cms Z u;/ Gi(y)dy,
—00

1</j<2p
jel
~ o -~
Vield, Z(t)— cm; E u]-/ G]()/) dy,
1—00 - i
1<j<2p -

jeJ
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where 7 denotes i if i<p and i — p if i<p. Summing up these equalities, we get
)4 o)
022 3 | 06059+ 1061 dy
and
p 0
Y | OGN+ 1061 d.

Again, #*P(x Y| > {) has the same limit as z(x, ) for x € {—1, 1}. Note that here these
two limits are possibly different.

6.4. The sum of the limits is non-zero

The proof is the same for both cases. The results of Section 5 can be extended to
the present case. The result of Section 5.1 about the special case when by has constant
sign is valid here. Thus if both limits are zero then Y, = 0 almost surely which is
impossible as 0 is not a solution of Eq. (1).

If X is a random variable, set med, (X) = max;¢;<,{med;(X)}. The analogous of

Lemma 2 is as follows:
) Y" — Y/
Y| + II;med_ <;> }>l>
<j<n H/

j Yi -]
+ P max<1g <o|Y, +Ijmed, | ——— >t
1<j<n / 1 / +

1;
Proof. As II; is not always positive, we introduce new events, depending on the sign of
j: set Ty = inf{j<n st [;>0 and Y} + Imed (Y} — Y)IT;")>1} if this set is
not empty, n+ 1 otherwise, T_ = inf{j<n s.t. II;<0 and Yj + I;med (Y] — Y]i)
I1;7")> 1} if it is not empty, 7 + 1 otherwise, B = {med _((Y" — Y/ DITTH<(Y] — Y)
H 1, and B = {med, ((Y} - Y/ I 1)>(Y” Y DIT "\, The events (7T, =) and
(T =j) on the one hand .':mdB+ and B;on the other hand are independent

Lemma 5. For all t>0 and n>=1, we have
2P(Y 1 >0)=P <lmax {111,>0

conditionally to a_;. Moreover, for all i,j we have

yn _ Yj Y" — Yj 1
+ _ 1 1 1 1
P(Bj |a7j = ei)? P (medi< H_/ ) < Hj > = E

_ Yi—¥V)\_Yi—-Y\_1
P(B] |a__,» = ei)? P (medi< Hj = H]‘ = E

and
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Thus we get, as in the proof of Lemma 2:
P(Y{>0)=P (U (T4 =) NBJULT- =j)N B;]])
=1

> L(B(T, <)+ BT <n)

1 . Y" — Y]
_ L Jj ‘ 1 1
=3 [P (gj&g&n{lnpo Y| + I1;med_ (,« )1 }>t>]
4 Y'Y
+ P(lrgjaé(n{lnj@ Y| + II;med (7_/ >t|]. O

The rest of the proof runs the same as in the positive case for each of these two terms.
Set m_ =med_(Y;) and m, = med,(Y). For all e>0 and ¢> max{|my|,|m_|},
we get

2t
P(Hn s.t. I, > " and |b_, + (a_, — D)m_]| >a)

. 2t
> min P(|by + (e; — l)m_|>c)[P><EIn s.t. I, > ?),

I1<i<p

and

2t
P(Ein s.t. IT, < — " and |b_, + (a_, — 1)m+|>e)

. 2t
> min P(|lby + (e; — 1)m+|>8)|]3>(EIn s.t. I, < ——).
I1<i<p &

If by is not constant, we can again find >0 such that min;<;<, {P(|by + (e; — D)m_]|
>¢)} >0 and min; <;<p{P(|bo + (e; — 1)my|>¢)} >0. Thus, we get the analogous of
Proposition 5: there is a constant C >0 and ¢>0 such that for all large enough ¢:

2t
P(Y|>6)=CP (sup |IT,| > ?>
. :

Define the new random walk S, = log|ay,...,a;_,|. With this slight change in Section
5.3, the proof is the same.
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