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Abstract

Let Y be a Ornstein-Uhlenbeck diffusion governed by a stationary and ergodic

Markov jump process X, i.e. dYt = a(Xt)Ytdt + σ(Xt)dWt, Y0 = y0. Ergodicity

conditions for Y have been obtained. Here we investigate the tail property of the

stationary distribution of this model. A characterization of the only two possible

cases is established: light tail or polynomial tail. Our method is based on discretiza-

tions and renewal theory. To cite this article: B. de Saporta, J.F. Yao, C. R. Acad.

Sci. Paris, Ser. I 336 (2003).

Résumé
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Soit Y une diffusion de Ornstein-Uhlenbeck dirigée par un processus Markovien de

saut X stationnaire et ergodique : dYt = a(Xt)Ytdt+σ(Xt)dWt, Y0 = y0. On connâıt

des conditions d’ergodicité pour Y . Ici on s’intéresse à la queue de la loi stationnaire

de ce modèle. Par des méthodes de discrétisation et de renouvellement, on donne

une caractérisation complète des deux seuls cas possibles : queue polynômiale ou

existence de moment à tout ordre. Pour citer cet article : B. de Saporta, J.F. Yao,

C. R. Acad. Sci. Paris, Ser. I 336 (2003).

1 Introduction

The discrete time models Y = (Yn, n ∈ N) governed by a switching process

X = (Xn, n ∈ N) fit well to the situations where an autonomous process X is

responsible for the dynamic (or regime) of Y . These models are parsimonious

with regard to the number of parameters, and extend significantly the case of

a single regime. Among them, the so-called Markov switching ARMA models

are popular in several application fields, e.g. in econometric modeling (see

[4]). More recently continuous-time version of Markov-switching models have

been proposed in [1] and [3], among others where ergodicity conditions are

established. Here we investigate the tail property of the stationary distribution

of this continuous-time process. One of the main results states that this model

can provide heavy tails which is one of the major features required in nonlinear

time series modeling.

Email addresses: benoite.de-saporta@math.univ-nantes.fr (Benôıte de

Saporta), jian-feng.yao@univ-rennes1.fr (Jian-Feng Yao).
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2 Linear diffusion with Markov switching and main Theorems

The diffusion with Markov switching Y is constructed in two steps:

First, the switching process X = (Xt)t≥0 is a Markov jump process defined

on a probability space (Ω,A, Q), with a finite state space E = {1, . . . , N},

N > 1. We assume that the intensity function λ of X is positive and the jump

kernel q(i, j) on E is irreducible and satisfies q(i, i) = 0, for each i ∈ E. The

process X is ergodic and will be taken stationary with an invariant probability

measure denoted by µ.

Secondly, let W = (Wt)t≥0 be a standard Brownian motion defined on a prob-

ability space (Θ,B, Q′), and F = (Ft) the filtration of the motion. We will

consider the product space (Ω × Θ,A × B, (Qx ⊗ Q′)), P = Q ⊗ Q′ and E

the associated expectation. Conditionally to X, Y = (Yt)t≥0 is a real-valued

diffusion process, defined, for each ω ∈ Ω by:

(1) Y0 is a random variable defined on (Θ,B, Q′), F0-measurable;

(2) Y is solution of the linear SDE

dYt = a(Xt)Ytdt + σ(Xt)dWt, t ≥ 0. (1)

Thus (Yt) is a linear diffusion driven by an “exogenous” jump process (Xt).

We say a continuous or discrete time process S = (St)t≥0 is ergodic if there

exists a probability measure m such that when t →∞, the law of St converges

weakly to m independently of the initial condition S0. The distribution m is
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then the limit law of S. When S is a Markov process, m is its unique invariant

law.

In [3], it is proved that the Markov-switching diffusion Y is ergodic under the

condition

α =
∑
i∈E

a(i)µ(i) < 0. (2)

Note that Condition (2) will be assumed to be satisfied throughout the paper

and we denote by ν the stationary (or limit) distribution of Y .

Theorem 2.1 (light tail case) If for all i, a(i) ≤ 0, then the stationary

distribution ν of the process Y has moments of all order, i.e. for all s > 0 we

have: ∫
R
|x|sν(dx) < ∞.

Theorem 2.2 (heavy tail case) If there is a i such that a(i) > 0, one

can find an exponent s0 > 0 and a constant L > 0 such that the stationary

distribution ν of the process Y satisfies

ts0ν(]t, +∞[)−−−−→
t→+∞

L,

ts0ν(]−∞,−t[)−−−−→
t→+∞

L.

Note that the two situations from Theorems 2.1 and 2.2 form a dichotomy.

Moreover the characteristic exponent s0 in the heavy tail case is completely

determined as follows. Let

4



s1 = min
{

λ(i)

a(i)
| a(i) > 0

}
,

Ms =
(
q(i, j)

λ(i)

λ(i)− sa(i)

)
i,j∈E

for 0 ≤ s < s1.

Then s0 is the unique s ∈]0, s1[ such that the spectral radius of Ms equals to 1.

3 Discretization of the process

Our study of Y is based on the investigations of its discretization Y (δ) as in

[3]. First we give an explicit formula for the diffusion process. For 0 ≤ s ≤ t,

let

Φ(s, t) = Φs,t(ω) = exp
∫ t

s
a(Xu)du.

The process Y has the representation:

Yt = Yt(ω) = Φ(0, t)
[
Y0 +

∫ t

0
Φ(0, u)−1σ(Xu)dWu

]
,

and for 0 ≤ s ≤ t, Y satisfies the recursion equation:

Yt = Φ(s, t)
[
Ys +

∫ t

s
Φ(s, u)−1σ(Xu)dWu

]
= Φ(s, t)Ys +

∫ t

s

[
exp

∫ t

u
a(Xv)dv

]
σ(Xu)dWu.

It is useful to rewrite this recursion as:

Yt(ω) = Φs,t(ω)Ys(ω) + V
1/2
s,t (ω)ξs,t, (3)

where ξs,t is a standard Gaussian variable, function of (Wu, s ≤ u ≤ t), and

Vs,t(ω) =
∫ t

s
exp

[
2

∫ t

u
a(Xv)dv

]
σ2(Xu)du.
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For δ > 0, we will call discretization at step size δ of Y the discrete time

process Y (δ) = (Ynδ)n, where n ∈ N. For a fixed δ > 0, the discretization Y (δ)

follows an AR(1) equation with random coefficients:

Y(n+1)δ(ω) = Φn+1(ω)Ynδ(ω) + V
1/2
n+1(ω)ξn+1, (4)

with

Φn+1(ω) = Φn+1(δ)(ω) = exp
[ ∫ (n+1)δ

nδ a(Xu(ω))du
]
,

Vn+1(ω) =
∫ (n+1)δ
nδ exp

[
2

∫ (n+1)δ
u a(Xv(ω))dv

]
σ2(Xu(ω))du,

where (ξn) is a standard Gaussian i.i.d. sequence defined on (Θ,B, Q′). Note

that under Condition (2), all these discretizations are ergodic with the same

limit distribution ν (see [3]).

4 Sketch of the proof

The limit distribution ν is also the law of the stationary solution of Eq. (4).

To investigate the behaviour of its tail, we use the same renewal-theoretic

methods as [5], [7] and [2]. In these works, the coefficients (Φn) form an i.i.d.

sequence. Here the sequence (Φn) is neither i.i.d nor a Markov chain. Indeed

we know only the conditional independence between Φn and Φn+1 given Xnδ.

We thus need to adapt the mentioned methods to this special situation. Our

problem leads to a system of renewal equations, and we use a new renewal

theorem for systems of equations reported in [8].
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Liste des modifications

Conformément à la demande du rapporteur, les deux abstracts en français et

en anglais ont été précisés: il y a deux cas, queue polynomiale ou moments à
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tout ordre. Nous n’avons pas de preuve que dans ce dernier cas la queue est

exponentielle.

Les diverse fautes de frappe et de syntaxes signalées ont également été cor-

rigées.
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