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Abbreviated title: Tail of Markov-switching diffusions

ABSTRACT: Let Y be a Ornstein-Uhlenbeck diffusion governed by a
stationary and ergodic Markov jump process X: dY; = a(X;)Yidt +
o(X)dWy, Yo = yo. Ergodicity conditions for Y have been obtained.
Here we investigate the tail propriety of the stationary distribution
of this model. A characterization of both heavy or light tail case is
established. The method is based on a renewal theorem for systems
of equations with distributions on R.

1 Introduction

The discrete time models Y = (Y,,,n € N) governed by a switching process
X = (Xn,n € N) fit well to the situations where an autonomous process X
is responsible for the dynamic (or regime) of Y. These models are parsimo-
nious with regard to the number of parameters, and extend significantly the
case of a single regime. Among them, the so-called Markov switching ARMA
models are popular in several application fields, e.g. in econometric mod-

eling (see [ , ). More recently continuous-time
version of Markov-switching models have been proposed in [ ]
and | ] where ergodicity conditions are established. In this

paper we investigate the tail property of the stationary distribution of this
continuous-time process. One of the main results (Theorem 2) states that
this model can provide heavy tails which is one of major features required
in nonlinear time series modeling. Note that heavy tails may also be ob-
tained by using a Lévy-driven O.U. process (without Markov switching): see
[ ] and |

The considered process Y, called as diffusion with Markov switching is con-
structed in two steps:

First, the switching process X = (X;)i>0 is a Markov jump process (see
[ ]), defined on a probability space (2, A, @), with a finite state space
E ={1,...,N}, N > 1. We assume that the intensity function A\ of X is
positive and the jump kernel (i, j) on E is irreducible and satisfies ¢(i,¢) = 0,
for each ¢ € E. The process X is ergodic and will be taken stationary with an
invariant probability measure denoted by pu.

Secondly, let W = (W;)i>0 be a standard Brownian motion defined on a
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probability space (©,85,Q’), and F = (F;) the filtration of the motion. We
will consider the product space (2 x 0,4 x B,(Q, ®Q")),P=0Q ® Q" and E
the associated expectation. Conditionally to X, Y = (¥});>0 is a real-valued
diffusion process, defined, for each w € € by:

1. Y} is a random variable defined on (0, B, Q’), Fo-measurable;

2. Y is solution of the linear SDE

dY; = a(X,)Yidt + o(X,)dW,, ¢ > 0. (1)

Thus (Y%) is a linear diffusion driven by an “exogenous” jump process (X3).

We say a continuous or discrete time process S = (S;)¢>0 is ergodic if there
exists a probability measure m such that when ¢ — oo, the law of S; converges
weakly to m independently of the initial condition Sy. The distribution m is
then the limit law of S. When S is a Markov process, m is its unique invariant
law.

In | ], it is proved that the Markov-switching diffusion Y
is ergodic under the condition

o= Za(i),u(i) < 0. (2)
i€E
The main result of the present paper is the following theorems. Note that

Condition 2 will be assumed satisfied throughout the paper and we denote by
v the stationary (or limit) distribution of Y.

Theorem 1 (light tail case) If for all i, a(i) <0, then the stationary dis-
tribution v of the process Y has moments of all order, i.e. for all s > 0 we
have:

/Rmsu(dx) < 00.

Theorem 2 (heavy tail case) If there is a i such that a(i) > 0, one can
find an exponent k > 0 and a constant L > 0 such that the stationary distribu-
tion v of the process Y satisfies

t"v(Jt, +o0[) T L,
t"v(] — oo, —t[) —— L.
Note that the two situations from Theorems 1 and 2 form a dichotomy.

Moreover the characteristic exponent x in the heavy tail case is completely
determined as following. Let

s1 = min{i\g; | afz’) > 0},
M, = (q(i’j))\(i))\_(ia(i)>i,jeE for0<s < s

Then & is the unique s €]0, s1[ such that the spectral radius of My equals to 1.



The proof of Theorem 1 is a consequence of a results of | 1,
and the proof of Theorem 2 is based on a recent renewal theorem for systems of
equations reported in [ ] and on an AR(1) recurrence equation
satisfied by the discretization of Y that we will defined in Section 2. In section
3, we study an operator related to our problem and prove Theorem 1. Sections
4-7 are devoted to the proof of Theorem 2. First we state two renewal theorems
for systems of equations. Then in section 5 we derive the renewal equations
associated to our problem. In sections 6 and 7 we prove Theorem 2, the latter
section being dedicated to the proof that the constant L is non-zero. Finally, in
section 8 we give further details on the computation of the exponent «.

2 Discretization of the process and an AR(1)
equation

First we give an explicit formula for the diffusion process. For 0 < s <, let

t
D(s,t) = Dy 4(w) = exp/ a(X,)du.
S
The process Y has the representation (see | E
¢
i = Yi(w) = 0(0.1)[%; +/ 0(0.u) o(X,)d0,].
0
and for 0 < s <, Y satisfies the recursion equation:

Y, = @(s,t){Ys+/t<1>(s7u)—1g(Xu)qu]

t t
O(s,t)Ys + / [exp/ a(X,U)dv} o(Xy)dW,.

It is useful to rewrite this recursion as:

Yi(w) = @y (@)Ya(w) + V. (@), (3)

where s, is a standard Gaussian variable, function of (W,,, s <u <t), and

Ver(w) = / t exp [2 /u t a(Xv)dv} o2(X,)du.

For § > 0, we will call discretization at step size § of Y the discrete time
process Y () = (Y;,5),, where n € N. Our study of Y is based on the investiga-
tions of these discretization Y(®) as in [ .

More precisely, for a fixed § > 0, the discretization Y'(®) follows an AR(1)
equation with random coefficients:

Yot 105 (@) = Pt (0) Yas (@) + VL3 ()éns, (4)
with

Dpi(@) = Dua(O)w) = exp | [5T (X, (w)dul,



Vi) = 5 exp [2 [0 (X, (w))dv| o2 (Xu(w))du,

where (,) is a standard Gaussian i.i.d. sequence defined on (0, B,Q’). Note
that under Condition 2, all these discretization are ergodic with the same limit
distribution v (see [ D.

3 Study of a related operator

We now introduce a related operator A and investigate its properties. Fix s > 0
and 0 > 0. We define the operator A, ) by

As,5)(1) = Ei[@7(8)p(X5)],

for every function ¢ : £ — R and every ¢ in E. It has the following semi-group
property:

Proposition 1 Fiz s > 0. Then for all 6,7 > 0 we have:
As,6)A(sn) = Al 549)-
Proof Set ¢: E — R and 7 in E. We have:

A5 A () = Eif®7(6) A ) 9(Xs)]
= E;[®5(6)Ex,[®F(7)0(X,)]]

= E, [exp (s /OZ(Xu)du) Ex, [exp (s /();(Xu)du) go(X.y)]].

Then the Markov property yields:

o+
Awohunel) = Eifew(s [ alX)du) o(Xs)]

E;[@7(0 +7)o(Xs4+)]
= Ay (i) .

Note that A 5 ¢(i) = ZJ 1 Ei[®71x,—5]0(j), and therefore A 5 can be
rewritten as the matrix ((A(ss))ij)1<ij<n With (Agss))i = Es[®71x,—;]. Note
also that it is a positive operator.

3.1 Spectral radius

Now we investigate the properties of the spectral radius of A. First, we recall a
result from | ]

Proposition 2 Fiz s >0 and § > 0. Then A, s is irreducible, aperiodic and
satisfies:

E,[(® =Y A1 = pAG, 51 (5)

i€ER

where 1 is the constant function equal to 1 on E.

We denote by p(X) the spectral radius of a matrix X. Proposition 2 yields
the following corollaries.



Corollary 1 We have:

p(Ass) = lim (E,[(@1 - 24))"".

Proof As A(, ) is a (component-wise) positive, irreducible and aperiodic ma-
trix, Theorem 8.5.1 of | ] gives the existence of a matrix
B(s,5) with positive coefficients such that:

(Ags,0)"
(p(A(s,5))) oo

Bs.s)- (6)

This result and Eq. (5) yield the expected result. O

Corollary 2 For all fized 6 > 0, the mapping s — log p(A(s s5)) is conver on
R,.

Note that for all fixed § > 0 and ¢ in I/, we have A 5)1(i) = E;(1) = 1. Thus,
as A(o,s) is a positive operator, it is also a stochastic matrix and p(A,s)) = 1.

Proposition 3 For all fixed 6 > 0, the right-hand derivative of the mapping
s+ log p(A(s,5)) at 0 is negative.

Proof As all the functions considered are convex, we have:

B 01 .
55 108 (P(A)) = lim = —log B, [(P1--- &n)"]
= lim LTE,[(®1---20)" > iy log @]
n—oo N E/L[(©1 R (bn)ﬁ} ’

The sequence (P,,) is stationary, thus the ergodic Theorem yields:

n
- Z log @, —— E,[log ®;] P,-almost surely. (7)
k=1

But E,[log ®;] < 0 because of Condition 2. Indeed, we have:

E,llog®] =E, [/06 a(Xu)du} = /06 E,[a(X,)]du = da < 0.

Thus we get, as expected:

0 o n
3sls=0 log (p(As,5)) = nhjrgo nE“[; log <I>1}
= E,llog®,] <0. 0

Corollary 3 Fiz 6 > 0. We have the following dichotomy:

i— either for all s >0, p(Ae,5) <1,

11— or there exists a unique k > 0 such that p(A(,i’(;)) =1, and in this case
P(A(s,s)) > 1 for all s > K and p(A(s5)) <1 for all 0 < s < k.



3.2 Choice of §

Now we are going to prove that the preceding dichotomy is in fact independent
of the value of 4.

Proposition 4 Fiz s > 0. The following propositions are equivalent:
i— there exists § > 0 such that p(A(s.s)) < 1,
ii— for all 6 > 0 we have p(A(s5)) < 1.

The same equivalence is true if we replace “<1” by “> 1" or “=1".

Proof Set > 0 such that p(A(,5) < 1, and v > 0. For all integer n > 1 we
define m,, € N* and 0 < §8,, < § by ny = m,0+ B, (m,, the integer part of ny/§
and [, its fractional part multiplied by ¢). Thus Proposition 1 yields:

A?Sv’Y) = A(S’n'Y) = AZ?&)A(Svﬁn)

But for all n we have

Al < maxEf@;(5,)]
< exp(sB, max(a;))
<

exp(sd mzax(a,-)).

This upper bound is independent of n. Thus we have:

log [[A7, ., || < log [ AT,

|+,

where c is a positive constant. We get:

o1
log p(A(SW)) = 1171?1 o log ||A?s,7) [

IN

1
li —1 AT
HnnSUP n 0og || (5,9) ||

v
= 3 log p(A(s,5),
as my, ~ nyd~1. Hence p(A(s,)) < p(Ags5)/° < 1.
For the case “= 17, fix dg and a corresponding k such that p(A(,i’(;o)) =1.
The mapping s —— p(A(s,s,)) is log-convex hence continuous. Thus we have:

P(A(ks)) = sup P(As,50))-

Set 6 > 0. We want to prove that p(A( s) = 1. According to Corollary 3, for
all s < k we have p(A(,s,)) < 1. Thus the preceding study yields that for all
5 <k we also have p(A(,5)) < 1. Hence we have:

P(Ak,s5)) = sup p(Aess)) < 1.

Suppose that p(A(, s)) < 1, then the first case implies again that p(A(, s,)) < 1
which is impossible. Thus we have p(A(,,s)) = 1 as expected.
The case “> 17 is a consequence of these two cases and Corollary 3. O

In the following we will write A, instead of A ;) each time it is non-
ambiguous. We have an easy criterion to know in which case we are.



Proposition 5 The following properties are equivalent:
i— for alli in E, a(i) <0,
it— for all s > 0, p(A,) < 1.

Proof Suppose that for all ¢ in E we have a(i) < 0. Fix § > 0. Then for all
s > 0, we have ®; < 1. Thus for all 4, A;1() = E;[®5] < 1, and component-wise
we have A;1 < 1, which implies that p(As) <1 for all s > 0. Corollary 3 then
yields that for all s, we have actually p(A4s) < 1.

Now suppose there exists a ig such that a(ig) > 0. Fix s > 2 (ig)a(ig)~*. It
is proved in | ] that for all function ¢ from FE into R and all ¢
in E we have for small §,

Asp(i) = [1+ 8(sali) = A@))]p(@) +6A@) Y _la(i, 5)e(i)] +0(6).  (8)
iz

Let ¢ be the function from E into R such that 9(ig) = 1 and (i) = 0 for all
i # i9. Then for all i # iy we have A;¢ (i) = E;[®]1x,=;,] > 0 and for i = iy
we have:

Aglio) = 1+ 8(salio) — A(i)) + o(8) > 1+ 5@ +0(5)

as we have chosen s > 2)\(i)a(ip)~'. Thus component-wise, for small enough 4,
we have:

sa(ip)

Agp > (146 5 T 0(0))v
> (145°00)),
Thus p(Ag) > 1 +5% > 1. )

This proposition ends the proof of Theorem 1 since we have the following
result from | ] that relates the spectral radius of Ay to the
moments of the stationary law v:

Proposition 6 Set s > 0. If p(As) < 1, then the stationary law v of Y has a
moment of order s.

The proof of Theorem 1 is now complete.

4 Renewal theory for systems

Now we proceed to prove Theorem 2. From now on, we will assume that there
is a 4 such that a(i) > 0. Our approach is based on a new renewal theorem for
systems of renewal equations. First we introduce some notation and conventions
that we will apply throughout.

Let F' = (Fj;)1<i,j<p be a matrix of distributions: non-decreasing, right-con-
tinuous functions on R into R4 with limit 0 at —oco. For all p x r matrix H of



Borel measurable, real valued functions H;; on R that are bounded on compact
intervals, we define the convolution product F x H by:

(F«H);(t) = Z/Oo Hyj(t — u)Fi(du)
k=1v7°

where it exists.

The transpose of a vector or matrix X will always be denoted X’. We study
the renewal equation Z = F %« Z + G, where G = (G1,...,G,)" is a vector
of Borel measurable, real valued functions, bounded on compact intervals, and
Z = (Z1,...,Zp) is a vector of functions. The renewal theorem will give the
limit of Z at +o0.

For all real t, we set:
e B =(b;j)i<ij<p where b;; = [uF;;(du) if it exists, the expectation of F,
o FO(t) = (6;(t))1<i j<p where §;;(t) = 1450 if i = j and 0 otherwise, so that
FO « H = H for all H as in the definition above,
o FM(t) = F+ F(»=1(t), the n-fold convolution of F,
o U(t)=3"2"  F™(t), the renewal function associated with F.

We will also assume that all the measures Fj; are finite:
Fz(OO) = lim F”<t) < 00,
t—o0

and that F'(co) is an irreducible matrix. F'(co) being an irreducible non-negative
matrix, we can use Perron Frobenius Theorem: its spectral radius p(F(c0)) is a
simple eigenvalue with right and left positive eigenvectors. We will also assume
that p(F(c0)) = 1, and we choose two positive eigenvectors m and u so that:

P
F(o)m=m, u'F(c0)=1/, Zmi =1, Zuimi =1
i=1

i=1

We also assume that the sequence (||F(00)™||) is bounded (for instance if
F(o0) is aperiodic, this is true). We recall the following definition: F is lattice
if the following conditions are satisfied:

e For all i # j, Fj; is concentrated on a set of the form b;; + A Z.

e For all 4, Fj}; is concentrated on a set of the form \;;Z.

e Each \;; is an integral multiple of the same number.

We take A to be the largest such number.

e For all a;;, ajk, a;; points of increase of Fi;, Fj, Fj; respectively,

ai; + aji — a; is an integral multiple of A.

We can now state the renewal theorem. It extends a previous result of
[ ] and | | which deals with the pos-
itive case: each distribution Fj; has support on R;. The proof of this theorem
is given in | ].

Renewal Theorem A Assume that F' is as above and that, in addition, it is a
non-lattice matriz, that its expectation B exists, and that for all t € R, U(t) is



finite. If G is directly Riemann integrable (see [ ]), and Z = U x G
exists, then for all i, we have:

lim Z;(t) = em; Ep: [uj /°° Gj(y)dil/]a
=1 —o°

t—oo

where m and u are the eigenvectors defined above and ¢ = (u/Bm)~' (under
these assumptions, u'Bm #0).

We also recall Theorem 2.3 of | ] that will
be used in section 7. Note that this theorem can now be seen as a corollary of
Theorem A.

Renewal Theorem B Let F' be a non-lattice matriz of distributions with sup-
port on the positive half-line, such that

e (F(0)) < 1,

e F(00) is finite, irreducible and aperiodic,

o there exist i and j such that F;;(0) < Fj;(0c0).
Assume also that there is a a > 0 such that p(F,) = 1, where (Fy);j; =

fooo e~ F;;i(du). Then for all h > 0, and all i, j, we have

t+h
lim e~ YU, (dy) = emju;h,
t—oo t
where m and u are right and left eigenvectors of F,, with the same normalization
as above, ¢ = (W'Bm)~!, and B = b;; with bj; = [ ue™*"F;;(du), ¢ being
interpreted as zero if some b;; is equal to infinity.

5 The renewal equations

Now we are going to derive the renewal equations associated to our problem. In
the following, we will suppose that the assumptions of Theorem 2 are satisfied.
We set 6 = 1, and « will denote the unique positive solution of p(A;) = 1. We
are going to study the discretization Y (1),

5.1 Notation

As X is a stationary process, we can exetnd it to negative t and define the
coefficients ®,,,V,, and &, for negative values of n. Let b, = ﬁ/an and

Rn - Z CI)nq:)nfl ce ©n7k+1bn7k7
k=0

(instead of Y,) be the unique stationary solution of Equation (4): Ry,4i =
D, 11Ry, + bpy1. The limit law v of Y is also the law of Ry. Thus we are going
to study the random variable R;.

The tail of the stationary solution of such recursive equations has already
been studied in various cases. In the i.i.d. multidimensional case: ®,, are ma-
trices and R,, and b,, vectors, renewal theory is used in | ] to prove



a heavy tail property when the ®,, either have a density or are non-negative.
These results were extended in | ] to a wider class of i.i.d. random
matrices. Finally in | ] a new specific implicit renewal theorem is
proved and the same results are derived in the i.i.d. one-dimensional case. This
theorem also applies to the study of the tail of several other random recurrences
implying i.i.d. random variables. Recently Goldie’s results were extended in
[ ] to the case where (®,,) is a finite state space Markov chain.
Here, (®,,) is not a Markov chain, but conditionally to X,,, ®, and ®,,1 are
independent. Our proof is thus very similar to that of | ], but
we will repeat all the details for completeness.

Note that &, are standard Gaussian random variables, thus they are sym-
metric, and they are also independent from the sequences (®,,) and (V;,). Hence
we have

NE

o0
PM(Z‘I’l‘I’o e ®o_pby_g > t) = P, D1Pg - - ‘%—k‘ﬁ%ifl—k > t)
k=0

£
Il

0

O, Pg--- ‘szlel,/i(—fkk) > t)

=~
Il

|

:'ﬁ
A~~~
o 17

PPy Py by > t) .

=

(e}

Thus we have v(]t, +oo[) = v(] — oo, —t[) for all ¢, hence if one of the limits
stated in Theorem 2 exists, the other exists too and equals to the same value.
Therefore we need study only one limit.

To study the tail of Ry, we introduce a new function. For all ¢ in R, we set:

t

z(t) = e_t/ u"P(Ry > u)du.
0

Lemma 9.3 of | | ascertains that if z(¢) has a limit when ¢ tends to
infinity, then ¢"P(R; > t) also has the same limit.

For all 7 in F and t in R, we also set:

Zi(t) = e_t/ u"P(Ry > u, X7 = 1)du,
0

so that z(t) = vazl Zi(t). We are now going to prove that Z = *(Z1,...,Zx)
satisfies a system of renewal equations.

5.2 The renewal equations

As R, satisfies Eq. (4), we have Ry = ®1 Ry + by, thus for all ¢ in R, we have:
P.(Ri > u, X1 =1i) =P, (®1Ry > u, X1 = 1) + ¢;(u),

where

’(/Jl(t) = ]P)M(t —b <P 1Ry <t, X = Z) —]P)H(t <O Ry <t—0b,X1 = Z)

10



We set G;(t) = et foet u®1;(u)du, and G = *(G1,...,GN). Then we have:

N t

z(t) = Z {e*t /06 uP, (P21 Ry > u, X1 =i)du+ G;(t)|.

=1

We have ®; > 0 and conditionally to X, ®; and Ry are independent. Thus, a
simple change of variable and stationarity yield:

e_t/ uP,(P1Ry > u, X1 =1)du
0

t

N e
= Ze_t/ uFP,(®1Ry > u, X1 =i | Xo = 7)p(j)du
Jj=1 0

N et

= Zeit/ u"Pj (@1 Ry > u, X1 = i)u(j)du
=170
N

et—log ®1

= ZEj {@'flxlzie_(t_log%) /u“IP’j(RO > u)du} w(g)
j=1 0
N etflogi)l
= > B[ e ) B (R > | Xo = )du]ui)
j=1 0
N et—log @1
- Y E [q>§1x1:ie*<t*bgq’1> /UH]P#(Rl > u, X, :j)du]
j=1 0

Thus we get the following system of equations: for all ¢ in F, we have:

WE

Z(t) = [Ej [@’flxlziZj(tflogfI)l)H +Gi(t)
J;l
_ Z [Fij*zj(t)} +Gy(t), (9)

where Fjj(t) = E;[®71x,=i1li>105 ®,]. Thus F' = (F};); jcr is a matrix of distri-
butions in the sense of section 4, and System (9) is a system of renewal equations
that can be rewritten as Z = F x Z + G. To apply Theorem A, we now have to
prove that F' and G satisfy its assumptions.

6 Proof of Theorem 2, part I

As FE is a finite set, ®; is bounded. Therefore, for all 4,7 in E, the measures
F;; are finite and Fj;(00) = E;[®71x,=;]. Note that F'(co) = A).. As A, is
irreducible and aperiodic by Proposition 2, so is F(c0), and its spectral radius
also equals to 1. Besides, we have b;; = E;[®§1x,=;log ®;] thus the F}; have
finite expectation.

We are going to prove that the other assumptions of Theorem A are valid
here in the following sections.

11



6.1 F' is non-lattice

Set a,, = min;eg{a(i)}, apr = max;ep{a(i)} and ig, jo in E such that a(ig) =
am and a(jo) = ap.

Proposition 7 Foralli,j in E, x € |am,ap| and small enough € > 0, we have

1
IP1</ a(Xy,)du €z —¢gx+ ¢, X1:j) >0,
0

i.e. x is a point of increase of log ®1 conditionally to Xg =1 and X1 = j.

Proof Set x € |ay, an| and 0 < ¢ < 1 such that z = ta,, + (1 —t)ap. Fix i and
jin E. As ¢ is an irreducible matrix, we can find integers 0 < [ < m < n and
ki,...,k, in E such that ¢; k, Gk, ko = Qhivio > 05 Gio ki Thiyikign Qo ,jo > 0
and Do kmr19kmr1bmao " kg = 0. Set also Yy = G(Z) + a(kl) +eeet a(kl) - (l +
Dam + alkiyr) + -+ alkn) — (n =1+ Dap + a(kmsr) + - - + alky) + a(j),
and z = min {e|y|~*,¢t(+ 1), (1 —t)(n — I+ 1)~'}. Then we have:

IF’i(/Ol a(Xy)du €l —e;xz+el, Xy :j)

> Pi(Xu =ion [0;n], Xy, =k on [m;2n],..., Xy =k on [in;(I+ 1)y,
Xy =idgon [(l+1)n,t], Xy =ki1 on [t;t+n[, X, = k42 on
t+mt+2n),..., Xy =kmon[t+(m—1—1)n;t+ (m—10)n|,
Xo=jJoon[t+(m—-0Dnl—(m—m+1)n), X, =Fknt1 on
N—(mn-m+my;l—(mn-—mn,..., Xy =Fk,on[l—2n1-—n]

Xy =jon[L-n1]; neloss ). (10)

Indeed, on this event we have:

/0 a(Xy)du = mna(i) +nalky) + - +nalk) + (t— (4 1)n)am + nalkis1)
+- 4 nalky) + (1 —t) — (n— L+ n)am + na(kpi1)
+ -+ naks) + na(j)
= tam+ (1 —t)apm +ny

= T+ny,
thus if n < ely|~! then we have fol a(Xy)du € Jx — ¢;x + ¢[. Probability (10)
can be computed (see e.g. | D:
(10) = :U’(i)quﬁ Qk1,ko """ QkyyioQio ks * " " Qkmydo Qjo,kmyr * " " Qhn,g X

A@AKL) - Akn)Aio) (I = DAGo) (n — 1+ 1) /0 [e—w)n »

oAk e*A(kn)ne*A(io)(t*(lfl)n)e*/\(jo)(1*t*(nfl+1)ne*/\(j)n} dn.

Thus our choice of kq,...,k, and z ascertains that this probability is positive,
which proves the proposition. O

12



Therefore none of the F;(-) = E;[®71x,—;1.>105 %, | can be concentrated on
a lattice set, and in particular F' is non-lattice.

6.2 Finiteness of U

We are going to prove that for all 4,5 in F and ¢ in R, U;;(t) is finite. We start
with computing the n-fold convolution of F.

Lemma 1 For all n,t,j,t we have:
FO(t) = Ej[@F - @ Liog ay0, > 1x,—1]-

Proof For n = 1, it is the definition of F. Suppose the formula is true for a
fixed n. Then the Markov property and stationarity yield:

(n+1)

Fy ()

— ZFZ,C*F,SJ / ST E(t — u) Fig(du)

= Z/ e Pn Lo @@y, >t —ulx, =k Er[P70u (log ®1)1x, =]

= Z/E#[@’f""I’ﬁllog<I>1~~-<I>nzt7u1Xn:k1Xo:j] X
k=1

1
Et q’z 5u log (I’n 1Xn :ian:k — <
ulPn10ul +1)1x00 ]u(k)u(J)

= ) Eu[®F B Liogd, @, >t—log ®is Lxo=s | 1x,=k] X
=1

p(k)
Epul®rn1lx, =i | 1X7ﬁk]m
= ZE [@F - PR ®y 1 Liogdy @, >t —log @pyy LXo=j 1 X0 =i | 1x,, _k]':jij))
= E,[®7- q’iq’iﬂ1log<I>1»--<1>n<1>n+1ztlxo:j1Xn+1:i]ﬁ
= Ej[®T - Op®n . 1 lioga, @,y >t 1 X000 =i)-
Thus the formula is also true for n + 1 and the lemma is proved. O

We have seen that F'(co) = Al.. Proposition 1 and the preceding lemma also
imply that for all n we have F(")(c0) = (A")" = F(c0)". We can prove a more
general result.

Lemma 2 For alln and 0 < r < k we have:

/ e T FM (du) = (A7)

oo

13



Proof For all 7,5 in E, Proposition 1 and the preceding lemma yield

/ eTTUE (du) = / eTTUR[DF - 86, (log Dy -+ D)1, —i]

E]‘ [qyf - cpflefrlog @y, ]-Xn:i]
= Ej[@7" - & "1y, -]
(AL_)ji- O

Now fix 0 < r < kappa. We have:

Ui(t) = ZF““

t [eS)

< 6rt/ e U Z F(") (du)
n=0

< rt Z / —ruF )

= rtZA” jir (11)

n=0

according to the preceding lemma. But Corollary 3 says that p(A.—,) < 1.
Thus the series in (11) converges. Hence U;;(t) < oo for all 4,5 in E and ¢ in R.

6.3 Proofof Z=UxG
Iterating the renewal equation (9) yields, for all n,

n—1
Z=F"x7+> F®xqG. (12)
k=0

The same change of variable as in section 5.2 yields:

N et
Z(F(”) x Z)i(t) = e_t/o u Py (P1®2 - @, Ry > u)du.

i=1

But we have seen at (7) that we have ®;---®,, — 0 when n tends to infinity.
Thus the bounded convergence Theorem yields Zij\il(F(") x Z)i(x,t) > 0asn
tends to infinity. Each term of this sum is non-negative, thus each term tends
to 0. Letting n tend to infinity in Equation (12) we thus get Z = U * G.

6.4 G is directly Riemann integrable

As the G; are clearly continuous in ¢, it is sufficient to prove that :

o0

Z sup |G;(t)] < oo,

e IS t<I41

14



(see | ]). But for all i,¢, we have G;(t) = G1(t) — G%(t), where
GHt) = eft/ u'Pu(u—0b < PRy <u, Xy =i)du > 0,
0

Gf(t) = eft/ UHPH(U <P 1Ry <u-— bl,Xl = Z)d’u > 0.
0

For all real ¢, we have G;(t) < Gl(t) < e™? foet uw du = et (k + 1)1 In
particular, G is directly Riemann integrable on R_. We still have to study G}
and G? on R;. These two functions being of the same kind we only give the
detailed study of the first one.

The proof is adapted from | ]. Set € € ]0;1[ such that —1 <
k — (1 —¢) < 0. Thus we have:

et
0 <e'Gi(t) < / uP, (b > v, X1 = i)du+
0

t

foe P, (u—u® < 1Ry < u, X1 = i)du. (13)

We are going to give an upper bound for each one of these two terms.

o First term:
Chebychev inequality yields:

¢ et(1+r(1—¢))

P (b Xy =0)du <E,|b|f ———.
| > X0 = i < Bl
Note that b; has moments of all order. Indeed, we have, by independence,
E,lbi|" = E#(VIH/Q)E#|§1|", and & is a standard Gaussian variable and V; is
bounded.

(14)

e Second term:
We have:

t

/ u"Pu(u—u® < PRy <u, Xs =1)du
0

et et _ete
= / wP, (L1 Ry > u—u®, X5 =i)du — / u P, (P1 Ry > u, X5 = 1)du
0 0

t

IN

€
/ w1 — Ly>1(u —u) (1 —eu NP, (@1 Ry > u — uf, X5 = i)du.
0

Set 0 < r < k. As ®;7 is bounded, there exists a positive constant ¢ such that
for all u > 0 we have:

E,|Ro|"
¢ u| 0|

ur

Pu(q)lRO >u, X1 = Z) <

which is bounded by Proposition 6. Thus we get:

t

€
/ uP,(u—uf < By Ry < u, Xy = i)du < Cetlnmrte=) (15)
0

15



where C' is a positive constant. Now set § = max{k +ec—r; 1 + Kk — ke} €
]0;1[. Then Eq. (13), (14) and (15) yield e!G}(t) < ce” for all t > 0. Thus
GL(t) < ce!®1) is directly Riemann integrable on R .

6.5 Tail of the distribution

We have now proved that F' and G satisfy the assumptions of Theorem A. Thus
we get, for all 7, t:

N S
Zi(t) —— emi Y _u; / G;(y)dy. (16)
j=1 7=
Summing up these terms, we get:
N )
2(t) o e ) G;(y)dy, (17)
j=1 /=

as >, m; = 1. We still have to prove that this limit is non-zero.

7 Proof of Theorem 2, part 11

Now we are going to prove that there exists a positive constant C such that
t*P,(|R1| > t) > C > 0 when ¢ tends to infinity. First, we give a lower bound
of this probability involving the products ®;---®,,, and then we study the
asymptotic behavior of such products.

7.1 Lower bound for v{x: |x| >t}
The following proof is adapted from [ ] and | ]

Proposition 8 There exist € > 0 and a corresponding positive constant C' such

that for large enough t we have:
2t
€

).

For the i.i.d. case, the key to such a lower bound is an inequality estab-
lished in [ ] that extends Lévy’s symmetrization inequality (see
[ ]). Here we need first to extend this inequality.

P.(|Ri| >t) > C Py(sup (®1---Pp) >

Recall that R, = ZZC:O PPy - Py _pby_p. For all n > 1, we set:
n—1

711 = Z‘I)I(I)O"'(DZ—kbl—k and Hn :‘1)1(1)0'--@2_”.
k=0

If x is a o(X;, Wi,a < t < b)-measurable random variable, let med;(x) be a
median of z conditionally to X}, =i and med_(x) = min;{med;(x)}.

Lemma 3 For allt >0 and n > 1, we have

p ( {Rj+H» d (M)}>t><2ﬂl’ (R > t)
n 2AX M jmea— 0, = 2tpiih :
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Proof Set T' = inf {j <nt.q R]+Tmed_ (Hj_l(R? - R{)) > t} if this set is
not empty, n+1 otherwise, and B; = {med, (Hj_l(R?ijl‘)) < Hj_l(R?fR{)}.
The event (T = j) is in the o-field generated by (X;, Wi, (1 —j) <t < 1), and

Bj is in the o-field generated by (X;, Wi, (1 —n) <t < (1—j)). Therefore these
events are independent conditionally to X(;_j). Besides, for all i and j we have

P.(B; | Xq_j =1i) > Pu(medi(ﬂjfl(R’f —R})) <IG' Ry —R]) | Xa_j) =

z) > 1/2. Thus, as the products II; are positive or zero, we have:

P.(RY >t) > Pu(

-

[B; N (T =j)))

=1

I
M:
] =

]P’;L(Bj \ X(l—j) =i)P(T =7 | X(l—j) = 1) (i)
14

.
I
I
-

P

G

W <n)

: Ry — R]
- J . it S O
5 H(lr%agxn {Rl —|—H]med< i7 )} > t).

| = DN =

Under our assumptions, R} tends to R; when n tends to infinity, and for fixed
7, Hj_1 (R} —R}) converges to a random variable R that has the same distribution

~

as Ry. Set mg = med_(Ry) = min;{med(R; | X1 = i)} = med_(R), and letting
n tend to infinity in Lemma 3, we get, for all ¢ > 0,

]P’M(sup{R{ +1IIme} > t) <2P,(Ry > t).
J
Replacing Ry by —R; yields a similar formula, thus, for all ¢ > 0 we get:
Pu<sup|R{ + Imo| > t) <P, (|Ry| > 1). (18)
J
Furthermore, as proved in [ |, p-157, for all t > |mg| we have:
P, ( sup{ R} +II,mo} > t)
> P, (an st [(RUHY 4 Ty 1mo) — (BT + umo)| > Zt),

where R{ = 0 and Iy = 1. But we have:

(RYT + 1mo) — (RY +1L,mg) = @1®0 -+ Po_pbi—p + (g1 — IL)mo
= Hn(blfn + (q)lfn - 1)m0)
Thus Eq. (18) yields, for all e > 0
1
Pu(Bi>1) > 3P, (an st [T (b1 + (B4 — 1)mo) | > 2t)
1 2t
> §PM (Hn s.t. ‘Hn’ > - and
b1+ (®1_ — 1)mo| > 5). (19)
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Now we give an extension of Feller-Chung’s inequality adapted to the present
case (see | D:

Lemma 4 For all t > |mg| and € > 0, we have:

P, (Hn s.t. |Hn| > % and ’blfn +(P1-p — 1)m0‘ > E)
2t

> 1gll‘lgnNPi(|b0 + (@9 — 1)mo| > €)Pu(3In s.t. [, > 7)

Proof Set Ag =0, A, = {|I1,,| > 2te '} and B,, = {|b1_pn+(®1_p,—1)mg| > €}.
Conditionnally to X(1_y)1, By is independent of Ag, ..., A,. Thus we have:

P, ( | J[An N By))
n=1

e’} n—1

= Y Pu(B.nA, [[BjNA]%)
n=1 3=0
e’} n—1

> ) Pu(BanA, () A5)
n—1 =0
co N n—1
n=11:=1 j=0

where A° denotes the complementary set of A. But, by stationnarity we have
P (B | X(1—ny1 = 1) = Pi(|bo + (®o — 1)mg| > €). Thus we get:

P.(|J[An N B.]) > _min_ P;(|bo + (@0 — 1)mo| > €)P U O
n=1 -

Now we can give the proof of Proposition 8.
Proof of Proposition 8 Eq. (19) and Lemma 4 yield, for all ¢ > |mg| and
e >0,

1 2t
P.(|Ri| >t) > = m1<n Pi(|bo + (Do — 1)mg| > )P, (In s.t. [II—q] > —)

As we have by = Vol/ 250, Vo and @y are bounded, but £ is not bounded as it is
a Gaussian variable equality by + (@9 — 1)mo = 0 can not hold P;-almost surely.
Thus we can find € > 0 such that minj<;<nP;(|bo + ($o — 1)mo| > ) > 0.
Hence, as expected there is a constant C' > 0 such that for all ¢ > |my|, we
have:

2t
(|R1|>t)>C]P’(sup |H|>—) O

7.2 Asymptotic behaviour of the products ®;--- ¥,

To estimate the probability P, (sup,, [II,| > t), we use the ladder height method
given by | ] for the study of the maximum of random walks.

18



7.2.1 Notation

First we introduce some notation. Set So = 0 and for all positive n, we set:

1-n)

n 1
S, = Zlog(q)g,k) = logll,, = / a(Xy,)du.
k=1 (

The first ladder epoch of this random walk is 7 = 7, = inf{n > 1 s.t. S, > 0},
and the first ladder height is S;. We denote by H (t) the matrix of distributions
of S; with the following coordinates:

Hl(t) = PH(T < 00,8, < t7X(1,T) =7 | X = Z)

As S; > 0, H is distributed on the positive half-line. Moreover S, > 0, 5;_, <0
and the ®,, are bounded, thus we have S; < suplog ®,, < supa(i) < co, and H
has bounded support.

We define also the n*" ladder epoch by 7, = inf{n > 7,,_1 s.t. S,, > S,, .},
and S;, is the corresponding ladder height. We check that we have:

HP(t) = P70 < 00,8, <6, X(_r) =3 | X1 =1),

where H(™ is the n-fold convolution of H. Let ¥ = >"°° / H(™ be the renewal
function associated with H.

7.2.2 The random walk S,

To investigate the asymptotic behaviour of (S;, ) we are going to use a renewal
theorem as in [ ] for the i.i.d. case, namely Theorem B. We want
to apply it for F' = H and a = s, thus we have to prove that H satisfies its
assumptions.

As H(0) = 0, we have p(H(0)) < 1 thus the first assumption is true. In
addition, H;; are probability measures, therefore H is finite. We have seen
that H thus B, the expectation of H,(co) = IS e " H(du) is well defined.
Proposition 7 yields again that H is also non-lattice.

Irreducibility and aperiodicity For all 7,5 in E, we have:

Hq,(OO) = PM(T < 0, Xl—T :] ‘ X1 = Z)
> Pu(r=1, Xo=j| X1 =1)
w(Jj)

= IF’J(log (I)1 > 0, X1 = Z)

(%)

- IP’j(/la(Xu)du>0, X :i) M)

(%)

)

and Proposition 7 implies that the last term is positive as 0 € ]an,; ap[. Thus
the second assumption af Theorem B is valid. We have also proved that for all ¢
and j we have 0 = H,;;(0) < H;;(0c0), so that the third assumption is also valid.
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Spectral radius of H,;(co) Now we define a new probability law P,; on Q2 x O.
For all bounded A x B-measurable functions f which first coordinate depends
only on (X¢, (1 —n) <t <1), we set:

By (f(B1, -, 2 6) (B2 By)”)

Pr(f) = En(f) = E,((®-- ®y_p)")

Set H,(t) = fot e "“H(du). We have
Pm(T < OO?ST < t?X(lf‘I’) =J | X = Z)
B, (@1 B, )7 < o)
(HE)i; (1)
]Eu(((bl DR T < OO) ’
where (HE)ij(t) = Pu(t < 00,8; < ¢,X1_r) = j | X1 = i) describes the
behaviour of the ladder heights of our random walk under the new probability

law P,.
The computation we made in the proof of Proposition 3 yields:

(Hn)ij (t) =

or

r=K n—oo N,

log (p(40)) = lim TE() log )

= E,(log®y).

But we have log p(Ap) = log p(A,) = 0, this function is convex (Corollary 2)
and its right-hand derivative at 0 is negative (Proposition 3). Thus its left-hand
derivative at s is positive, i.e. E,(log®1) > 0. Under the law P, our random
walk thus drifts to 400, hence for all n and i, we have (P,;);(7, < 00) =1 and
H* is a stochastic matrix, therefore its spectral radius equals to 1.

For all n, we have:

(HE(o0))"
E/L(((bl s (I)Q_.,—n)'i,T < OO) ’

H{" (00) = (Hy(00))" =
thus p(H.(o0)) = lim (E,((®1 - Po—r, )", 7 < oo))fl/n and we now have to
prove that this limit equals to 1. But for all n, we have 7,, > n, and the event

(1n = k) depends only on (X;, (1 — k) <t < 1). Thus we have:

Eu(®1-e-®1or,)" 70 <00) = Y Eu(®1---®1-4)", 0 = k)
k=n

Z Pﬁ(Tn = k)EM(((I)l T (bl—k)ﬁ)' (20)
k=n

Set € > 0. For large enough n, our choice of s and Eq. (5) and (6) yield:
pAGL —e <E (1 P1-n)") S pARl + e
Thus for large enough n, Eq. (20) yields:

(nA2L =€) > Pu(ry = k)
k=n

< EM(((bl e (I)l—Tn)KaTn < OO) < (MAZ]' + E) ZPK(T’I’L = k‘),
k=n
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and as Py (7, < o0) = 1, we have:
pARL —e <E, (D1 P1-1,)", T < 00) < pARL + .

Thus as n — oo we have, with the notation of Corollary 1, E,,((®1 -+ ®1_,,)" ~
uB,1. Hence we have, as expected E, (@1 -+ ®1_,, )", 7, < 00)'/™

— 1.

Thus all the assumptions of Theorem B are valid here. We are going to use
it in the following part.
7.2.3 Asymptotic behaviour of the maximum

Let M = sup,, S,, = sup,, S;,,, be the maximum of our random walk. Using the
definition of H, we get, for all 1 <7 < N:

IP’M(M<t|X1:i)

= Z]P’ (Th < 00,87, <t,Thy1 =00 | X5 =14)

n=1

~—

c© N
= ZZP“(T’L <00,8;, <t,Thp1 =00, X1 =i | Xg_r)= j)M(J_

== (i)
o N
= > [Pulra <008, <t Xa_py =3 | X1 =1)x
n=1j=1
(1 — PM(Tn+1 < o0 | X(lf'rn) :])}
oo N N
S0 - 3 Haloo)]
n=1j=1 k=1
N N
= D [wit)(1- Y Hix(o0)] (21)
j=1 k=1

Thorem B applied to (21) yields, when ¢ tends to infinity:

P (M<t|Xi=i) = ZN:[ 1—2ij /OO 6‘”“(e““\11ij)(du)}

Jj=1
N oo
e Z [ 1-— ZHJk / e*““Eﬁllujdu}
=1
jN
= Z [ (1- XZH];¢ cmzuj] —nt (22)
Jj=1

where m and @ are right and left eigenvectors of H,;(oo) with positive coordinates
with the same normalisation as in section 4, and ¢ = (*uBm)~! > 0.

7.3 Conclusion

We still have to prove that there is a 7 < N such that 1 — Zi\’ 1 Hjk(oco) > 0.
But the mapping r — H,.( fo e™ H(du) is clearly increasing component—
wise. As these matrix are non negatlve and irreducible, Corollaries 8.1.19 and
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8.1.20 of | ] imply that the mapping r — p(H,(00)) is
also increasing. As p(H(00)) = 1, we have p(Hp(o0)) = p(H(0)) < 1. This is
a sub-stochastic, non-stochastic matrix, thus there exists a j such that we have
L= o0, Hp(oo) > 0.

We have now proved that the right-hand side term in (22) is positive, thus
there is a constant C' > 0 such that, when ¢ tends to infinity, we have:

N
P (M > 1) > Py (M >t | Xy =i)u(i) > C. (23)

i=1
Putting together this result and Proposition 8, we get, for large enough ¢:
t"P,(|Ri| >t) > K > 0. (24)

With the notation of Theorem 2, it means that L > 0, which ends the proof of
this theorem.

8 Determination of

Set s1 = min{A(i)a(i)~! | a(i) > 0}, and let My be the matrix with components
{q(i, ))A(E)(A(i) — sa(i))~1}. This matrix is well defined for all s < s7. We can
precisely compare the spectral radius of A, and that of M.

Proposition 9 For all0 < s < s1, we have p(My) < 1 if and only if p(As) < 1,
and we have p(My) > 1 if and only if p(As) > 1.

Proof Suppose that p(My) < 1. M, is a positive irreducible matrix as ¢
is, A being positive and s < s;. Thus Perron-Frobenius Theorem (see e.g.
[ ]) gives the existence of a vector ¢ with positive coor-
dinates such that Msp = p(Ms)p < ¢. Hence for all ¢ in E, we have:

(0 > Y atid) 32 e )
that we can rewrite, since s < s1, as
(sa(i) = A(0)e(i) + A(i) Z q(i, j)e(j) <0. (25)

Proposition 4 enables us to choose a small enough ¢ such that Formula (8) is
valid here. Eq.(25) thus yields:

Asp(i) = [L+38(sa(@) = MD)]e(i) + 6A(0) D _lali, 7)e(i)] + 0(6)
i

(i) + 0[(sa(i) — M(i))p() + M) > q(i, j)e(i)] + o(6)

J

< (7).

Thus component-wise we get Asp < ¢, which implies that p(A4s) < 1. The
proof that p(M;) > 1 implies p(As) > 1 runs the same, the inequalities being
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reversed.

Suppose now that p(A;) < 1. A, is a positive irreducible matrix, thus
Perron-Frobenius Theorem gives the existence of a vector ¢ with positive coor-
dinates such that AsY = p(As)y < 1. Hence for all ¢ in E, and small enough
0, we have:

S[(sa(i) — A(8))1(i) + A(i) Z a(i, ()] +o(6) = An(i) —
< 0.

Hence, for all 4, we get (sa(i) —A(¢)) (i) +A(@) 22, q(4, )¢ (j) <0, or, as s < s1,
v(i) > A@)A_(Zza(@) > a0 0),

and thus Mz < ¢. As Mj is a positive matrix, we conclude that p(M;) < 1.
Here again the proof that p(As) > 1 implies p(M;) > 1 runs the same with
reversed inequalities. O

Proposition 10 The spectral radius of My tends to infinity when s tends to s1.

Proof Set ig € E such that A(ig)a(ig) ! = s1, and e;, the row vector with zero
coordinates except the i{" which is set to be 1. Set v;, = A(ig)(A(ig) —sa(ig))~!.
We have e;, Ms = v;,q(io, ) > vi €, @s ¢ is a positive matrix. As M is also
positive, for all s < s1, we get p(My) > v;, = A(ig)(A(ig) — sa(ip))~*. Hence
this spectral radius tends to infinity when s tends to si. O

Corollary 4 There is a unique s € ]0;s1[ such that p(Ms) = 1, and this s
equals to the unique k such that p(A,) = 1.

Proof For all s < k, we have p(4,) < 1 by Corollary 3, thus Proposition 9
yields p(M;) < 1 for all 0 < s < min{k, s1}. As p(M;) — oo as s tends to sy,
we also have p(A4,) > 1 for s close to s;. Therefore k < s1, and p(As) > 1 for
all Kk < s < s1. Hence p(M;) > 1 for all kK < s < s1. As M, has continuous
coordinates, its spectral radius is also continuous, thus p(M,) =1 and & is the
only value of s € ]0; s1[ satisfying this equation. O

We now give an illustration by computing the value of k when E = {1,2}.
The jump kernel ¢ then equals to:

(01
q= 1 0 i
and the invariant law of the process X is p = (A(2),A(2))/(A(1) + A(2)). We
suppose that a(1) or a(2) is positive. Condition 2 becomes
A(1)a(2) + A(2)a(l) < 0. (26)

a(i

For all ¢ in F, set r; = NOE We have r;{ +r5 < 0, riro > 0, and s; =

=

max{r;*, 75 '}. For s € [0, 51, the matrix M, equals to:

0 1
M. = 1—s7ry
El ( 1_1 0 >7
ST9
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and its spectral radius is [(1 — sr1)(1 — 57’2)]71/2.

rit gt = A2)a2) 7+ ALa(l)

It equals to 1 for k =
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