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Abstract: Let Y be a Ornstein-Uhlenbeck diffusion governed by a
stationary and ergodic Markov jump process X: dYt = a(Xt)Ytdt+
σ(Xt)dWt, Y0 = y0. Ergodicity conditions for Y have been obtained.
Here we investigate the tail propriety of the stationary distribution
of this model. A characterization of both heavy or light tail case is
established. The method is based on a renewal theorem for systems
of equations with distributions on R.

1 Introduction

The discrete time models Y = (Yn, n ∈ N) governed by a switching process
X = (Xn, n ∈ N) fit well to the situations where an autonomous process X
is responsible for the dynamic (or regime) of Y . These models are parsimo-
nious with regard to the number of parameters, and extend significantly the
case of a single regime. Among them, the so-called Markov switching ARMA
models are popular in several application fields, e.g. in econometric mod-
eling (see [Hamilton, 1989, Hamilton, 1990]). More recently continuous-time
version of Markov-switching models have been proposed in [Basak et al., 1996]
and [Guyon et al., 2004] where ergodicity conditions are established. In this
paper we investigate the tail property of the stationary distribution of this
continuous-time process. One of the main results (Theorem 2) states that
this model can provide heavy tails which is one of major features required
in nonlinear time series modeling. Note that heavy tails may also be ob-
tained by using a Lévy-driven O.U. process (without Markov switching): see
[Barndorff-Nielsen and Shephard, 2001] and [Brockwell, 2001].

The considered process Y , called as diffusion with Markov switching is con-
structed in two steps:

First, the switching process X = (Xt)t≥0 is a Markov jump process (see
[Feller, 1966]), defined on a probability space (Ω,A, Q), with a finite state space
E = {1, . . . , N}, N > 1. We assume that the intensity function λ of X is
positive and the jump kernel q(i, j) on E is irreducible and satisfies q(i, i) = 0,
for each i ∈ E. The process X is ergodic and will be taken stationary with an
invariant probability measure denoted by µ.

Secondly, let W = (Wt)t≥0 be a standard Brownian motion defined on a
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probability space (Θ,B, Q′), and F = (Ft) the filtration of the motion. We
will consider the product space (Ω × Θ,A × B, (Qx ⊗ Q′)), P = Q ⊗ Q′ and E
the associated expectation. Conditionally to X, Y = (Yt)t≥0 is a real-valued
diffusion process, defined, for each ω ∈ Ω by:

1. Y0 is a random variable defined on (Θ,B, Q′), F0-measurable;

2. Y is solution of the linear SDE

dYt = a(Xt)Ytdt+ σ(Xt)dWt, t ≥ 0. (1)

Thus (Yt) is a linear diffusion driven by an “exogenous” jump process (Xt).
We say a continuous or discrete time process S = (St)t≥0 is ergodic if there

exists a probability measure m such that when t→∞, the law of St converges
weakly to m independently of the initial condition S0. The distribution m is
then the limit law of S. When S is a Markov process, m is its unique invariant
law.

In [Guyon et al., 2004], it is proved that the Markov-switching diffusion Y
is ergodic under the condition

α =
∑
i∈E

a(i)µ(i) < 0. (2)

The main result of the present paper is the following theorems. Note that
Condition 2 will be assumed satisfied throughout the paper and we denote by
ν the stationary (or limit) distribution of Y .

Theorem 1 (light tail case) If for all i, a(i) ≤ 0, then the stationary dis-
tribution ν of the process Y has moments of all order, i.e. for all s > 0 we
have: ∫

R
|x|sν(dx) <∞.

Theorem 2 (heavy tail case) If there is a i such that a(i) > 0, one can
find an exponent κ > 0 and a constant L > 0 such that the stationary distribu-
tion ν of the process Y satisfies

tκν(]t,+∞[) −−−−→
t→+∞

L,

tκν(]−∞,−t[) −−−−→
t→+∞

L.

Note that the two situations from Theorems 1 and 2 form a dichotomy.
Moreover the characteristic exponent κ in the heavy tail case is completely
determined as following. Let

s1 = min
{λ(i)
a(i)

| a(i) > 0
}
,

Ms =
(
q(i, j)

λ(i)
λ(i)− sa(i)

)
i,j∈E

for 0 ≤ s < s1.

Then κ is the unique s ∈]0, s1[ such that the spectral radius of Ms equals to 1.
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The proof of Theorem 1 is a consequence of a results of [Guyon et al., 2004],
and the proof of Theorem 2 is based on a recent renewal theorem for systems of
equations reported in [de Saporta, 2003] and on an AR(1) recurrence equation
satisfied by the discretization of Y that we will defined in Section 2. In section
3, we study an operator related to our problem and prove Theorem 1. Sections
4-7 are devoted to the proof of Theorem 2. First we state two renewal theorems
for systems of equations. Then in section 5 we derive the renewal equations
associated to our problem. In sections 6 and 7 we prove Theorem 2, the latter
section being dedicated to the proof that the constant L is non-zero. Finally, in
section 8 we give further details on the computation of the exponent κ.

2 Discretization of the process and an AR(1)
equation

First we give an explicit formula for the diffusion process. For 0 ≤ s ≤ t, let

Φ(s, t) = Φs,t(ω) = exp
∫ t

s

a(Xu)du.

The process Y has the representation (see [Karatzas and Shreve, 1991]):

Yt = Yt(ω) = Φ(0, t)
[
Y0 +

∫ t

0

Φ(0, u)−1σ(Xu)dWu

]
,

and for 0 ≤ s ≤ t, Y satisfies the recursion equation:

Yt = Φ(s, t)
[
Ys +

∫ t

s

Φ(s, u)−1σ(Xu)dWu

]
= Φ(s, t)Ys +

∫ t

s

[
exp

∫ t

u

a(Xv)dv
]
σ(Xu)dWu.

It is useful to rewrite this recursion as:

Yt(ω) = Φs,t(ω)Ys(ω) + V
1/2
s,t (ω)ξs,t, (3)

where ξs,t is a standard Gaussian variable, function of (Wu, s ≤ u ≤ t), and

Vs,t(ω) =
∫ t

s

exp
[
2

∫ t

u

a(Xv)dv
]
σ2(Xu)du.

For δ > 0, we will call discretization at step size δ of Y the discrete time
process Y (δ) = (Ynδ)n, where n ∈ N. Our study of Y is based on the investiga-
tions of these discretization Y (δ) as in [Guyon et al., 2004].

More precisely, for a fixed δ > 0, the discretization Y (δ) follows an AR(1)
equation with random coefficients:

Y(n+1)δ(ω) = Φn+1(ω)Ynδ(ω) + V
1/2
n+1(ω)ξn+1, (4)

with

Φn+1(ω) = Φn+1(δ)(ω) = exp
[ ∫ (n+1)δ

nδ
a(Xu(ω))du

]
,
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Vn+1(ω) =
∫ (n+1)δ

nδ
exp

[
2

∫ (n+1)δ

u
a(Xv(ω))dv

]
σ2(Xu(ω))du,

where (ξn) is a standard Gaussian i.i.d. sequence defined on (Θ,B, Q′). Note
that under Condition 2, all these discretization are ergodic with the same limit
distribution ν (see [Guyon et al., 2004]).

3 Study of a related operator

We now introduce a related operator A and investigate its properties. Fix s ≥ 0
and δ > 0. We define the operator A(s,δ) by

A(s,δ)ϕ(i) = Ei[Φs
1(δ)ϕ(Xδ)],

for every function ϕ : E → R and every i in E. It has the following semi-group
property:

Proposition 1 Fix s ≥ 0. Then for all δ, γ > 0 we have:

A(s,δ)A(s,γ) = A(s,δ+γ).

Proof Set ϕ : E → R and i in E. We have:

A(s,δ)A(s,γ)ϕ(i) = Ei[Φs
1(δ)A(s,γ)ϕ(Xδ)]

= Ei

[
Φs

1(δ)EXδ
[Φs

1(γ)ϕ(Xγ)]
]

= Ei

[
exp

(
s

∫ δ

0

a(Xu)du
)

EXδ

[
exp

(
s

∫ γ

0

a(Xu)du
)
ϕ(Xγ)

]]
.

Then the Markov property yields:

A(s,δ)A(s,γ)ϕ(i) = Ei

[
exp

(
s

∫ δ+γ

0

a(Xu)du
)
ϕ(Xδ+γ)

]
= Ei[Φs

1(δ + γ)ϕ(Xδ+γ)]
= A(s,δ+γ)ϕ(i). 2

Note that A(s,δ)ϕ(i) =
∑N

j=1 Ei[Φs
11Xδ=j ]ϕ(j), and therefore A(s,δ) can be

rewritten as the matrix ((A(s,δ))ij)1≤i,j≤N with (A(s,δ))ij = Ei[Φs
11Xδ=j ]. Note

also that it is a positive operator.

3.1 Spectral radius

Now we investigate the properties of the spectral radius of A. First, we recall a
result from [Guyon et al., 2004].

Proposition 2 Fix s > 0 and δ > 0. Then A(s,δ) is irreducible, aperiodic and
satisfies:

Eµ[(Φ1 · · ·Φk)s] =
∑
i∈E

Ak
(s,δ)1(i)µ(i) = µAk

(s,δ)1, (5)

where 1 is the constant function equal to 1 on E.

We denote by ρ(X) the spectral radius of a matrix X. Proposition 2 yields
the following corollaries.
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Corollary 1 We have:

ρ(A(s,δ)) = lim
k→∞

(
Eµ[(Φ1 · · ·Φk)s]

)1/k
.

Proof As A(s,δ) is a (component-wise) positive, irreducible and aperiodic ma-
trix, Theorem 8.5.1 of [Horn and Johnson, 1985] gives the existence of a matrix
B(s,δ) with positive coefficients such that:

(A(s,δ))n

(ρ(A(s,δ)))n
−−−−→
n→∞

B(s,δ). (6)

This result and Eq. (5) yield the expected result. 2

Corollary 2 For all fixed δ > 0, the mapping s 7−→ log ρ(A(s,δ)) is convex on
R+.

Note that for all fixed δ > 0 and i in E, we haveA(0,δ)1(i) = Ei(1) = 1. Thus,
as A(0,δ) is a positive operator, it is also a stochastic matrix and ρ(A(0,δ)) = 1.

Proposition 3 For all fixed δ > 0, the right-hand derivative of the mapping
s 7−→ log ρ(A(s,δ)) at 0 is negative.

Proof As all the functions considered are convex, we have:

∂

∂s
log

(
ρ(A(s,δ))

)
= lim

n→∞

∂

∂s

1
n

log Eµ[(Φ1 · · ·Φn)κ]

= lim
n→∞

1
n

Eµ[(Φ1 · · ·Φn)κ ·
∑n

i=1 log Φi]
Eµ[(Φ1 · · ·Φn)κ]

.

The sequence (Φn) is stationary, thus the ergodic Theorem yields:

1
n

n∑
k=1

log Φk −−−−→
n→∞

Eµ[log Φ1] Pµ-almost surely. (7)

But Eµ[log Φ1] < 0 because of Condition 2. Indeed, we have:

Eµ[log Φ1] = Eµ

[ ∫ δ

0

a(Xu)du
]

=
∫ δ

0

Eµ[a(Xu)]du = δα < 0.

Thus we get, as expected:

∂

∂s

∣∣∣
s=0

log
(
ρ(A(s,δ))

)
= lim

n→∞

1
n

Eµ

[ n∑
i=1

log Φi

]
= Eµ[log Φ1] < 0. 2

Corollary 3 Fix δ > 0. We have the following dichotomy:
i− either for all s > 0, ρ(A(s,δ)) < 1,
ii− or there exists a unique κ > 0 such that ρ(A(κ,δ)) = 1, and in this case

ρ(A(s,δ)) > 1 for all s > κ and ρ(A(s,δ)) < 1 for all 0 < s < κ.
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3.2 Choice of δ

Now we are going to prove that the preceding dichotomy is in fact independent
of the value of δ.

Proposition 4 Fix s ≥ 0. The following propositions are equivalent:
i− there exists δ > 0 such that ρ(A(s,δ)) < 1,
ii− for all δ > 0 we have ρ(A(s,δ)) < 1.

The same equivalence is true if we replace “< 1” by “> 1” or “= 1”.

Proof Set δ > 0 such that ρ(A(s,δ)) < 1, and γ > 0. For all integer n ≥ 1 we
define mn ∈ N∗ and 0 ≤ βn < δ by nγ = mnδ+βn (mn the integer part of nγ/δ
and βn its fractional part multiplied by δ). Thus Proposition 1 yields:

An
(s,γ) = A(s,nγ) = Amn

(s,δ)A(s,βn).

But for all n we have

‖A(s,βn)‖ ≤ max
i

Ei[Φs
1(βn)]

≤ exp(sβn max
i

(ai))

≤ exp(sδmax
i

(ai)).

This upper bound is independent of n. Thus we have:

log ‖An
(s,γ)‖ ≤ log ‖Amn

(s,δ)‖+ c,

where c is a positive constant. We get:

log ρ(A(s,γ)) = lim
n

1
n

log ‖An
(s,γ)‖

≤ lim sup
n

1
n

log ‖Amn

(s,δ)‖

=
γ

δ
log ρ(A(s,δ),

as mn ∼ nγδ−1. Hence ρ(A(s,γ)) ≤ ρ(A(s,δ)γ/δ < 1.
For the case “= 1”, fix δ0 and a corresponding κ such that ρ(A(κ,δ0)) = 1.

The mapping s 7−→ ρ(A(s,δ0)) is log-convex hence continuous. Thus we have:

ρ(A(κ,δ0)) = sup
s<κ

ρ(A(s,δ0)).

Set δ > 0. We want to prove that ρ(A(κ,δ)) = 1. According to Corollary 3, for
all s < κ we have ρ(A(s,δ0)) < 1. Thus the preceding study yields that for all
s < κ we also have ρ(A(s,δ)) < 1. Hence we have:

ρ(A(κ,δ)) = sup
s<κ

ρ(A(s,δ)) ≤ 1.

Suppose that ρ(A(κ,δ)) < 1, then the first case implies again that ρ(A(κ,δ0)) < 1
which is impossible. Thus we have ρ(A(κ,δ)) = 1 as expected.

The case “> 1” is a consequence of these two cases and Corollary 3. 2

In the following we will write As instead of A(s,δ) each time it is non-
ambiguous. We have an easy criterion to know in which case we are.
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Proposition 5 The following properties are equivalent:
i− for all i in E, a(i) ≤ 0,
ii− for all s > 0, ρ(As) < 1.

Proof Suppose that for all i in E we have a(i) ≤ 0. Fix δ > 0. Then for all
s > 0, we have Φs

1 ≤ 1. Thus for all i, As1(i) = Ei[Φs
1] ≤ 1, and component-wise

we have As1 ≤ 1, which implies that ρ(As) ≤ 1 for all s > 0. Corollary 3 then
yields that for all s, we have actually ρ(As) < 1.

Now suppose there exists a i0 such that a(i0) > 0. Fix s ≥ 2λ(i0)a(i0)−1. It
is proved in [Guyon et al., 2004] that for all function ϕ from E into R and all i
in E we have for small δ,

Asϕ(i) = [1 + δ(sa(i)− λ(i))]ϕ(i) + δλ(i)
∑
j 6=i

[q(i, j)ϕ(j)] + o(δ). (8)

Let ψ be the function from E into R such that ψ(i0) = 1 and ψ(i) = 0 for all
i 6= i0. Then for all i 6= i0 we have Asψ(i) = Ei[Φs

11Xδ=i0 ] ≥ 0 and for i = i0
we have:

Asψ(i0) = 1 + δ(sa(i0)− λ(i)) + o(δ) ≥ 1 + δ
sa(i0)

2
+ o(δ)

as we have chosen s ≥ 2λ(i)a(i0)−1. Thus component-wise, for small enough δ,
we have:

Asψ ≥
(
1 + δ

sa(i0)
2

+ o(δ)
)
ψ

≥
(
1 + δ

sa(i0)
4

)
ψ.

Thus ρ(As) ≥ 1 + δ sa(i0)
4 > 1. 2

This proposition ends the proof of Theorem 1 since we have the following
result from [Guyon et al., 2004] that relates the spectral radius of As to the
moments of the stationary law ν:

Proposition 6 Set s > 0. If ρ(As) < 1, then the stationary law ν of Y has a
moment of order s.

The proof of Theorem 1 is now complete.

4 Renewal theory for systems

Now we proceed to prove Theorem 2. From now on, we will assume that there
is a i such that a(i) > 0. Our approach is based on a new renewal theorem for
systems of renewal equations. First we introduce some notation and conventions
that we will apply throughout.

Let F = (Fij)1≤i,j≤p be a matrix of distributions: non-decreasing, right-con-
tinuous functions on R into R+ with limit 0 at −∞. For all p× r matrix H of
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Borel measurable, real valued functions Hij on R that are bounded on compact
intervals, we define the convolution product F ∗H by:

(F ∗H)ij(t) =
p∑

k=1

∫ ∞

−∞
Hkj(t− u)Fik(du)

where it exists.

The transpose of a vector or matrix X will always be denoted X ′. We study
the renewal equation Z = F ∗ Z + G, where G = (G1, . . . , Gp)′ is a vector
of Borel measurable, real valued functions, bounded on compact intervals, and
Z = (Z1, . . . , Zp)′ is a vector of functions. The renewal theorem will give the
limit of Z at +∞.

For all real t, we set:
• B = (bij)1≤i,j≤p where bij =

∫
uFij(du) if it exists, the expectation of F ,

• F (0)(t) = (δij(t))1≤i,j≤p where δij(t) = 1t≥0 if i = j and 0 otherwise, so that
F (0) ∗H = H for all H as in the definition above,
• F (n)(t) = F ∗ F (n−1)(t), the n-fold convolution of F ,
• U(t) =

∑∞
n=0 F

(n)(t), the renewal function associated with F .

We will also assume that all the measures Fij are finite:

Fij(∞) = lim
t→∞

Fij(t) <∞,

and that F (∞) is an irreducible matrix. F (∞) being an irreducible non-negative
matrix, we can use Perron Frobenius Theorem: its spectral radius ρ(F (∞)) is a
simple eigenvalue with right and left positive eigenvectors. We will also assume
that ρ(F (∞)) = 1, and we choose two positive eigenvectors m and u so that:

F (∞)m = m, u′F (∞) = u′,

p∑
i=1

mi = 1,
p∑

i=1

uimi = 1.

We also assume that the sequence (‖F (∞)n‖) is bounded (for instance if
F (∞) is aperiodic, this is true). We recall the following definition: F is lattice
if the following conditions are satisfied:

• For all i 6= j, Fij is concentrated on a set of the form bij + λijZ.
• For all i, Fii is concentrated on a set of the form λiiZ.
• Each λii is an integral multiple of the same number.

We take λ to be the largest such number.
• For all aij , ajk, aik points of increase of Fij , Fjk, Fik respectively,

aij + ajk − aik is an integral multiple of λ.

We can now state the renewal theorem. It extends a previous result of
[Crump, 1970] and [Athreya and Rama Murthy, 1976] which deals with the pos-
itive case: each distribution Fij has support on R+. The proof of this theorem
is given in [de Saporta, 2003].

Renewal Theorem A Assume that F is as above and that, in addition, it is a
non-lattice matrix, that its expectation B exists, and that for all t ∈ R, U(t) is
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finite. If G is directly Riemann integrable (see [Feller, 1966]), and Z = U ∗ G
exists, then for all i, we have:

lim
t→∞

Zi(t) = cmi

p∑
j=1

[
uj

∫ ∞

−∞
Gj(y)dy

]
,

where m and u are the eigenvectors defined above and c = (u′Bm)−1 (under
these assumptions, u′Bm 6= 0).

We also recall Theorem 2.3 of [Athreya and Rama Murthy, 1976] that will
be used in section 7. Note that this theorem can now be seen as a corollary of
Theorem A.

Renewal Theorem B Let F be a non-lattice matrix of distributions with sup-
port on the positive half-line, such that

• ρ(F (0)) < 1,
• F (∞) is finite, irreducible and aperiodic,
• there exist i and j such that Fij(0) < Fij(∞).

Assume also that there is a α > 0 such that ρ(Fα) = 1, where (Fα)ij =∫∞
0
e−αuFij(du). Then for all h > 0, and all i, j, we have

lim
t→∞

∫ t+h

t

e−αyUij(dy) = cmiujh,

where m and u are right and left eigenvectors of Fα, with the same normalization
as above, c = (u′Bm)−1, and B = bij with bij =

∫∞
0
ue−αuFij(du), c being

interpreted as zero if some bij is equal to infinity.

5 The renewal equations

Now we are going to derive the renewal equations associated to our problem. In
the following, we will suppose that the assumptions of Theorem 2 are satisfied.
We set δ = 1, and κ will denote the unique positive solution of ρ(As) = 1. We
are going to study the discretization Y (1).

5.1 Notation

As X is a stationary process, we can exetnd it to negative t and define the
coefficients Φn, Vn and ξn for negative values of n. Let bn = V

1/2
n ξn and

Rn =
∞∑

k=0

ΦnΦn−1 · · ·Φn−k+1bn−k,

(instead of Ỹn) be the unique stationary solution of Equation (4): Rn+1 =
Φn+1Rn + bn+1. The limit law ν of Y is also the law of R1. Thus we are going
to study the random variable R1.

The tail of the stationary solution of such recursive equations has already
been studied in various cases. In the i.i.d. multidimensional case: Φn are ma-
trices and Rn and bn vectors, renewal theory is used in [Kesten, 1973] to prove
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a heavy tail property when the Φn either have a density or are non-negative.
These results were extended in [LePage, 1983] to a wider class of i.i.d. random
matrices. Finally in [Goldie, 1991] a new specific implicit renewal theorem is
proved and the same results are derived in the i.i.d. one-dimensional case. This
theorem also applies to the study of the tail of several other random recurrences
implying i.i.d. random variables. Recently Goldie’s results were extended in
[de Saporta, 2004] to the case where (Φn) is a finite state space Markov chain.
Here, (Φn) is not a Markov chain, but conditionally to Xn, Φn and Φn+1 are
independent. Our proof is thus very similar to that of [de Saporta, 2004], but
we will repeat all the details for completeness.

Note that ξn are standard Gaussian random variables, thus they are sym-
metric, and they are also independent from the sequences (Φn) and (Vn). Hence
we have

Pµ

( ∞∑
k=0

Φ1Φ0 · · ·Φ2−kb1−k > t
)

= Pµ

( ∞∑
k=0

Φ1Φ0 · · ·Φ2−kV
1/2
1−kξ1−k > t

)
= Pµ

( ∞∑
k=0

Φ1Φ0 · · ·Φ2−kV
1/2
1−k(−ξ1−k) > t

)
= Pµ

(
−

∞∑
k=0

Φ1Φ0 · · ·Φ2−kb1−k > t
)
.

Thus we have ν(]t,+∞[) = ν(] − ∞,−t[) for all t, hence if one of the limits
stated in Theorem 2 exists, the other exists too and equals to the same value.
Therefore we need study only one limit.

To study the tail of R1, we introduce a new function. For all t in R, we set:

z(t) = e−t

∫ et

0

uκP(R1 > u)du.

Lemma 9.3 of [Goldie, 1991] ascertains that if z(t) has a limit when t tends to
infinity, then tκP(R1 > t) also has the same limit.

For all i in E and t in R, we also set:

Zi(t) = e−t

∫ et

0

uκP(R1 > u,X1 = i)du,

so that z(t) =
∑N

i=1 Zi(t). We are now going to prove that Z = t(Z1, . . . , ZN )
satisfies a system of renewal equations.

5.2 The renewal equations

As Rn satisfies Eq. (4), we have R1 = Φ1R0 + b1, thus for all t in R, we have:

Pµ(R1 > u,X1 = i) = Pµ(Φ1R0 > u,X1 = i) + ψi(u),

where

ψi(t) = Pµ(t− b1 < Φ1R0 ≤ t,X1 = i)− Pµ(t < Φ1R0 ≤ t− b1, X1 = i).
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We set Gi(t) = e−t
∫ et

0
uκψi(u)du, and G = t(G1, . . . , GN ). Then we have:

z(t) =
N∑

i=1

[
e−t

∫ et

0

uκPµ(Φ1R0 > u,X1 = i)du+Gi(t)
]
.

We have Φ1 ≥ 0 and conditionally to X0, Φ1 and R0 are independent. Thus, a
simple change of variable and stationarity yield:

e−t

∫ et

0

uκPµ(Φ1R0 > u,X1 = i)du

=
N∑

j=1

e−t

∫ et

0

uκPµ(Φ1R0 > u,X1 = i | X0 = j)µ(j)du

=
N∑

j=1

e−t

∫ et

0

uκPj(Φ1R0 > u,X1 = i)µ(j)du

=
N∑

j=1

Ej

[
Φκ

11X1=ie
−(t−log Φ1)

∫ et−log Φ1

0

uκPj(R0 > u)du
]
µ(j)

=
N∑

j=1

Ej

[
Φκ

11X1=ie
−(t−log Φ1)

∫ et−log Φ1

0

uκPµ(R0 > u | X0 = j)du
]
µ(j)

=
N∑

j=1

Ej

[
Φκ

11X1=ie
−(t−log Φ1)

∫ et−log Φ1

0

uκPµ(R1 > u,X1 = j)du
]
.

Thus we get the following system of equations: for all i in E, we have:

Zi(t) =
N∑

j=1

[
Ej

[
Φκ

11X1=iZj(t− log Φ1)
]]

+Gi(t)

=
N∑

j=1

[
Fij ∗ Zj(t)

]
+Gi(t), (9)

where Fij(t) = Ej [Φκ
11X1=i1t≥log Φ1 ]. Thus F = (Fij)i,j∈E is a matrix of distri-

butions in the sense of section 4, and System (9) is a system of renewal equations
that can be rewritten as Z = F ∗Z +G. To apply Theorem A, we now have to
prove that F and G satisfy its assumptions.

6 Proof of Theorem 2, part I

As E is a finite set, Φ1 is bounded. Therefore, for all i, j in E, the measures
Fij are finite and Fij(∞) = Ej [Φκ

11X1=i]. Note that F (∞) = A′κ. As Aκ is
irreducible and aperiodic by Proposition 2, so is F (∞), and its spectral radius
also equals to 1. Besides, we have bij = Ej [Φκ

11X1=i log Φ1] thus the Fij have
finite expectation.

We are going to prove that the other assumptions of Theorem A are valid
here in the following sections.
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6.1 F is non-lattice

Set am = mini∈E{a(i)}, aM = maxi∈E{a(i)} and i0, j0 in E such that a(i0) =
am and a(j0) = aM .

Proposition 7 For all i, j in E, x ∈ ]am, aM [ and small enough ε > 0, we have

Pi

( ∫ 1

0

a(Xu)du ∈ ]x− ε;x+ ε[, X1 = j
)
> 0,

i.e. x is a point of increase of log Φ1 conditionally to X0 = i and X1 = j.

Proof Set x ∈ ]am, aM [ and 0 < t < 1 such that x = tam +(1− t)aM . Fix i and
j in E. As q is an irreducible matrix, we can find integers 0 ≤ l ≤ m ≤ n and
k1, . . . , kn in E such that qi,k1qk1,k2 · · · qkl,i0 > 0, qi0,kl+1qkl+1kl+2 · · · qkm,j0 > 0
and qj0,km+1qkm+1km+2 · · · qkn,j > 0. Set also y = a(i)+a(k1)+ · · ·+a(kl)− (l+
1)am + a(kl+1) + · · · + a(km) − (n − l + 1)aM + a(km+1) + · · · + a(kn) + a(j),
and z = min

{
ε|y|−1, t(l + 1)−1, (1− t)(n− l + 1)−1

}
. Then we have:

Pi

( ∫ 1

0

a(Xu)du ∈]x− ε;x+ ε[, X1 = j
)

≥ Pi

(
Xu = i on [0; η[, Xu = k1 on [η; 2η[, . . . , Xu = kl on [lη; (l + 1)η[,

Xu = i0 on [(l + 1)η, t[, Xu = kl+1 on [t; t+ η[, Xu = kl+2 on
[t+ η; t+ 2η[, . . . , Xu = km on [t+ (m− l − 1)η; t+ (m− l)η[,
Xu = j0 on [t+ (m− l)η; 1− (n−m+ 1)η[, Xu = km+1 on
[1− (n−m+ 1)η; 1− (n−m)η[, . . . , Xu = kn on [1− 2η; 1− η[,

Xu = j on [1− η; 1] ; η ∈ ]0; z[
)
. (10)

Indeed, on this event we have:

∫ 1

0

a(Xu)du = ηa(i) + ηa(k1) + · · ·+ ηa(kl) + (t− (l + 1)η)am + ηa(kl+1)

+ · · ·+ ηa(km) + ((1− t)− (n− l + 1)η)aM + ηa(km+1)
+ · · ·+ ηa(kn) + ηa(j)

= tam + (1− t)aM + ηy

= x+ ηy,

thus if η < ε|y|−1 then we have
∫ 1

0
a(Xu)du ∈ ]x − ε;x + ε[. Probability (10)

can be computed (see e.g. [Norris, 1998]):

(10) = µ(i)qi,k1qk1,k2 · · · qkl,i0qi0,kl+1 · · · qkm,j0qj0,km+1 · · · qkn,j ×

λ(i)λ(k1) · · ·λ(kn)λ(i0)(l − 1)λ(j0)(n− l + 1)
∫ z

0

[
e−λ(i)η ×

e−λ(k1)η · · · e−λ(kn)ηe−λ(i0)(t−(l−1)η)e−λ(j0)(1−t−(n−l+1)ηe−λ(j)η
]
dη.

Thus our choice of k1, . . . , kn and z ascertains that this probability is positive,
which proves the proposition. 2
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Therefore none of the Fij(·) = Ej [Φκ
11X1=i1·≥log Φ1 ] can be concentrated on

a lattice set, and in particular F is non-lattice.

6.2 Finiteness of U

We are going to prove that for all i, j in E and t in R, Uij(t) is finite. We start
with computing the n-fold convolution of F .

Lemma 1 For all n, i, j, t we have:

F
(n)
ij (t) = Ej [Φκ

1 · · ·Φκ
n1log Φ1···Φn≥t1Xn=i].

Proof For n = 1, it is the definition of F . Suppose the formula is true for a
fixed n. Then the Markov property and stationarity yield:

F
(n+1)
ij (t)

=
N∑

k=1

Fik ∗ F (n)
kj (t) =

N∑
k=1

∫
F

(n)
kj (t− u)Fik(du)

=
N∑

k=1

∫
Ej [Φκ

1 · · ·Φκ
n1log Φ1···Φn≥t−u1Xn=k]Ek[Φκ

1δu(log Φ1)1X1=i]

=
N∑

k=1

∫
Eµ[Φκ

1 · · ·Φκ
n1log Φ1···Φn≥t−u1Xn=k1X0=j ]×

Eµ[Φκ
n+1δu(log Φn+1)1Xn+1=i1Xn=k]

1
µ(k)µ(j)

=
N∑

k=1

Eµ[Φκ
1 · · ·Φκ

n1log Φ1···Φn≥t−log Φn+11X0=j | 1Xn=k]×

Eµ[Φκ
n+11Xn+1=i | 1Xn=k]

µ(k)
µ(j)

=
N∑

k=1

Eµ[Φκ
1 · · ·Φκ

nΦκ
n+11log Φ1···Φn≥t−log Φn+11X0=j1Xn+1=i | 1Xn=k]

µ(k)
µ(j)

= Eµ[Φκ
1 · · ·Φκ

nΦκ
n+11log Φ1···ΦnΦn+1≥t1X0=j1Xn+1=i]

1
µ(j)

= Ej [Φκ
1 · · ·Φκ

nΦκ
n+11log Φ1···ΦnΦn+1≥t1Xn+1=i].

Thus the formula is also true for n+ 1 and the lemma is proved. 2

We have seen that F (∞) = A′κ. Proposition 1 and the preceding lemma also
imply that for all n we have F (n)(∞) = (An

κ)′ = F (∞)n. We can prove a more
general result.

Lemma 2 For all n and 0 ≤ r < κ we have:∫ ∞

∞
e−ruF (n)(du) = (An

κ−r)
′.
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Proof For all i, j in E, Proposition 1 and the preceding lemma yield∫ ∞

∞
e−ruF

(n)
ij (du) =

∫ ∞

∞
e−ruEj [Φκ

1 · · ·Φκ
nδu(log Φ1 · · ·Φn)1Xn=i]

= Ej [Φκ
1 · · ·Φκ

ne
−r log Φ1···Φn1Xn=i]

= Ej [Φκ−r
1 · · ·Φκ−r

n 1Xn=i]
= (An

κ−r)ji. 2

Now fix 0 < r < kappa. We have:

Uij(t) =
∞∑

n=0

F
(n)
ij (t)

≤ ert

∫ t

−∞
e−ru

∞∑
n=0

F
(n)
ij (du)

≤ ert
∞∑

n=0

∫ ∞

−∞
e−ruF

(n)
ij (du)

= ert
∞∑

n=0

(An
κ−r)ji, (11)

according to the preceding lemma. But Corollary 3 says that ρ(Aκ−r) < 1.
Thus the series in (11) converges. Hence Uij(t) <∞ for all i, j in E and t in R.

6.3 Proof of Z = U ∗G

Iterating the renewal equation (9) yields, for all n,

Z = F (n) ∗ Z +
n−1∑
k=0

F (k) ∗G. (12)

The same change of variable as in section 5.2 yields:

N∑
i=1

(F (n) ∗ Z)i(t) = e−t

∫ et

0

uκPµ(Φ1Φ2 · · ·ΦnR0 > u)du.

But we have seen at (7) that we have Φ1 · · ·Φn → 0 when n tends to infinity.
Thus the bounded convergence Theorem yields

∑N
i=1(F

(n) ∗ Z)i(x, t) → 0 as n
tends to infinity. Each term of this sum is non-negative, thus each term tends
to 0. Letting n tend to infinity in Equation (12) we thus get Z = U ∗G.

6.4 G is directly Riemann integrable

As the Gi are clearly continuous in t, it is sufficient to prove that :

∞∑
l=−∞

sup
l≤t<l+1

|Gi(t)| <∞,
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(see [Feller, 1966]). But for all i, t, we have Gi(t) = G1
i (t)−G2

i (t), where

G1
i (t) = e−t

∫ et

0

uκPµ(u− b1 < Φ1R0 ≤ u,X1 = i)du ≥ 0,

G2
i (t) = e−t

∫ et

0

uκPµ(u < Φ1R0 ≤ u− b1, X1 = i)du ≥ 0.

For all real t, we have Gi(t) ≤ G1
i (t) ≤ e−t

∫ et

0
uκdu = et(κ+1)(κ + 1)−1. In

particular, Gi is directly Riemann integrable on R−. We still have to study G1
i

and G2
i on R+. These two functions being of the same kind we only give the

detailed study of the first one.
The proof is adapted from [LePage, 1983]. Set ε ∈ ]0; 1[ such that −1 <

κ− (1− ε) < 0. Thus we have:

0 ≤ etG1
i (t) ≤

∫ et

0

uκPµ(b1 > uε, X1 = i)du+∫ et

0
uκPµ(u− uε < Φ1R0 ≤ u,X1 = i)du. (13)

We are going to give an upper bound for each one of these two terms.

• First term:
Chebychev inequality yields:∫ et

0

uκPµ(b1 > uε, X1 = i)du ≤ Eµ|b1|κ
et(1+κ(1−ε))

1 + κ(1− ε)
. (14)

Note that b1 has moments of all order. Indeed, we have, by independence,
Eµ|b1|κ = Eµ(V κ/2

1 )Eµ|ξ1|κ, and ξ1 is a standard Gaussian variable and V1 is
bounded.

• Second term:
We have:∫ et

0

uκPµ(u− uε < Φ1R0 ≤ u,Xδ = i)du

=
∫ et

0

uκPµ(Φ1R0 > u− uε, Xδ = i)du−
∫ et−etε

0

uκPµ(Φ1R0 > u,Xδ = i)du

≤
∫ et

0

uκ[1− 1u≥1(u− uε)κ(1− εuε−1)]Pµ(Φ1R0 > u− uε, Xδ = i)du.

Set 0 < r < κ. As Φ1 is bounded, there exists a positive constant c such that
for all u > 0 we have:

Pµ(Φ1R0 > u,X1 = i) ≤ c
Eµ|R0|r

ur
,

which is bounded by Proposition 6. Thus we get:∫ et

0

uκPµ(u− uε < Φ1R0 ≤ u,X1 = i)du ≤ Cet(κ−r+ε−1), (15)
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where C is a positive constant. Now set β = max{κ + ε − r; 1 + κ − κε} ∈
]0; 1[. Then Eq. (13), (14) and (15) yield etG1

i (t) ≤ cetβ for all t > 0. Thus
G1

i (t) ≤ cet(β−1) is directly Riemann integrable on R+.

6.5 Tail of the distribution

We have now proved that F and G satisfy the assumptions of Theorem A. Thus
we get, for all i, t:

Zi(t) −−−→
t→∞

cmi

N∑
j=1

uj

∫ ∞

−∞
Gj(y)dy. (16)

Summing up these terms, we get:

z(t) −−−→
t→∞

c
N∑

j=1

uj

∫ ∞

−∞
Gj(y)dy, (17)

as
∑
mi = 1. We still have to prove that this limit is non-zero.

7 Proof of Theorem 2, part II

Now we are going to prove that there exists a positive constant C such that
tκPµ(|R1| > t) ≥ C > 0 when t tends to infinity. First, we give a lower bound
of this probability involving the products Φ1 · · ·Φn, and then we study the
asymptotic behavior of such products.

7.1 Lower bound for ν{x : |x| > t}
The following proof is adapted from [Goldie, 1991] and [de Saporta, 2004].

Proposition 8 There exist ε > 0 and a corresponding positive constant C such
that for large enough t we have:

Pµ(|R1| > t) ≥ C Pµ(sup
n

(Φ1 · · ·Φn) >
2t
ε

).

For the i.i.d. case, the key to such a lower bound is an inequality estab-
lished in [Grincevičius, 1980] that extends Lévy’s symmetrization inequality (see
[Chow and Teicher, 1978]). Here we need first to extend this inequality.

Recall that R1 =
∑∞

k=0 Φ1Φ0 · · ·Φ2−kb1−k. For all n ≥ 1, we set:

Rn
1 =

n−1∑
k=0

Φ1Φ0 · · ·Φ2−kb1−k and Πn = Φ1Φ0 · · ·Φ2−n.

If x is a σ(Xt,Wt, a ≤ t ≤ b)-measurable random variable, let medi(x) be a
median of x conditionally to Xb = i and med−(x) = mini{medi(x)}.

Lemma 3 For all t > 0 and n ≥ 1, we have

Pµ

(
max

1≤j≤n

{
Rj

1 + Πjmed−

(Rn
1 −Rj

1

Πj

)}
> t

)
≤ 2Pµ(Rn

1 > t).
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Proof Set T = inf
{
j ≤ n t.q. Rj

1 +Πjmed−
(
Π−1

j (Rn
1 −R

j
1)

)
> t

}
if this set is

not empty, n+1 otherwise, and Bj =
{
med−

(
Π−1

j (Rn
1−R

j
1)

)
≤ Π−1

j (Rn
1−R

j
1)

}
.

The event (T = j) is in the σ-field generated by (Xt,Wt, (1− j) ≤ t ≤ 1), and
Bj is in the σ-field generated by (Xt,Wt, (1−n) ≤ t ≤ (1− j)). Therefore these
events are independent conditionally to X(1−j). Besides, for all i and j we have

Pµ(Bj | X(1−j) = i) ≥ Pµ

(
medi

(
Π−1

j (Rn
1 − Rj

1)
)
≤ Π−1

j (Rn
1 − Rj

1) | X(1−j) =

i
)
≥ 1/2. Thus, as the products Πj are positive or zero, we have:

Pµ(Rn
1 > t) ≥ Pµ

( n⋃
j=1

[Bj ∩ (T = j)]
)

=
n∑

j=1

N∑
i=1

Pµ(Bj | X(1−j) = i)P(T = j | X(1−j) = i)µ(i)

≥ 1
2

Pµ(T ≤ n)

=
1
2

Pµ

(
max

1≤j≤n

{
Rj

1 + Πjmed
(Rn

1 −Rj
1

Πj

)}
> t

)
. 2

Under our assumptions, Rn
1 tends toR1 when n tends to infinity, and for fixed

j, Π−1
j (Rn

1−R
j
1) converges to a random variable R̂ that has the same distribution

as R1. Set m0 = med−(R1) = mini{med(R1 | X1 = i)} = med−(R̂), and letting
n tend to infinity in Lemma 3, we get, for all t > 0,

Pµ

(
sup

j
{Rj

1 + Πjm0} > t
)
≤ 2Pµ(R1 > t).

Replacing R1 by −R1 yields a similar formula, thus, for all t > 0 we get:

Pµ

(
sup

j
|Rj

1 + Πjm0| > t
)
≤ 2Pµ(|R1| > t). (18)

Furthermore, as proved in [Goldie, 1991], p.157, for all t > |m0| we have:

Pµ

(
sup

n
{Rn

1 + Πnm0} > t
)

≥ Pµ

(
∃n s.t. |(Rn+1

1 + Πn+1m0)− (Rn
1 + Πnm0)| > 2t

)
,

where R0
1 = 0 and Π0 = 1. But we have:

(Rn+1
1 + Πn+1m0)− (Rn

1 + Πnm0) = Φ1Φ0 · · ·Φ2−nb1−n + (Πn+1 −Πn)m0

= Πn

(
b1−n + (Φ1−n − 1)m0

)
.

Thus Eq. (18) yields, for all ε > 0

Pµ(|R1| > t) ≥ 1
2

Pµ

(
∃n s.t.

∣∣Πn

(
b1−n + (Φ1−n − 1)m0

)∣∣ > 2t
)

≥ 1
2

Pµ

(
∃n s.t.

∣∣Πn

∣∣ > 2t
ε

and∣∣b1−n + (Φ1−n − 1)m0

∣∣ > ε
)
. (19)
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Now we give an extension of Feller-Chung’s inequality adapted to the present
case (see [Chow and Teicher, 1978]):

Lemma 4 For all t > |m0| and ε > 0, we have:

Pµ

(
∃n s.t.

∣∣Πn

∣∣ > 2t
ε

and
∣∣b1−n + (Φ1−n − 1)m0

∣∣ > ε
)

≥ min
1≤i≤N

Pi(|b0 + (Φ0 − 1)m0| > ε)Pµ

(
∃n s.t. |Πn| >

2t
ε

)
.

Proof Set A0 = ∅, An = {|Πn| > 2tε−1} and Bn = {|b1−n+(Φ1−n−1)m0| > ε}.
Conditionnally to X(1−n)1, Bn is independent of A0, . . . , An. Thus we have:

Pµ

( ∞⋃
n=1

[An ∩Bn]
)

=
∞∑

n=1

Pµ

(
Bn ∩An

n−1⋂
j=0

[Bj ∩Aj ]c
)

≥
∞∑

n=1

Pµ

(
Bn ∩An

n−1⋂
j=0

Ac
j

)
=

∞∑
n=1

N∑
i=1

[
Pµ(Bn | X(1−n)1 = i)Pµ

(
An

n−1⋂
j=0

Ac
j | X(1−n)1 = i

)
µ(i)

]
.

where Ac denotes the complementary set of A. But, by stationnarity we have
Pµ(Bn | X(1−n)1 = i) = Pi(|b0 + (Φ0 − 1)m0| > ε). Thus we get:

Pµ

( ∞⋃
n=1

[An ∩Bn]
)
≥ min

1≤i≤N
Pi(|b0 + (Φ0 − 1)m0| > ε)Pµ

( ∞⋃
n=1

An

)
. 2

Now we can give the proof of Proposition 8.
Proof of Proposition 8 Eq. (19) and Lemma 4 yield, for all t > |m0| and
ε > 0,

Pµ(|R1| > t) ≥ 1
2

min
1≤i≤N

Pi(|b0 + (Φ0 − 1)m0| > ε)Pµ(∃n s.t. |Πn−1| >
2t
ε

).

As we have b0 = V
1/2
0 ξ0, V0 and Φ0 are bounded, but ξ is not bounded as it is

a Gaussian variable equality b0 +(Φ0− 1)m0 = 0 can not hold Pi-almost surely.
Thus we can find ε > 0 such that min1≤i≤N Pi(|b0 + (Φ0 − 1)m0| > ε) > 0.
Hence, as expected there is a constant C > 0 such that for all t > |m0|, we
have:

Pµ(|R1| > t) ≥ C Pµ(sup
n

|Πn| >
2t
ε

). 2

7.2 Asymptotic behaviour of the products Φ1 · · ·Φn

To estimate the probability Pµ(supn |Πn| > t), we use the ladder height method
given by [Feller, 1966] for the study of the maximum of random walks.
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7.2.1 Notation

First we introduce some notation. Set S0 = 0 and for all positive n, we set:

Sn =
n∑

k=1

log(Φ2−k) = log Πn =
∫ 1

(1−n)

a(Xu)du.

The first ladder epoch of this random walk is τ = τ1 = inf{n ≥ 1 s.t. Sn > 0},
and the first ladder height is Sτ . We denote by H(t) the matrix of distributions
of Sτ with the following coordinates:

Hij(t) = Pµ(τ <∞, Sτ ≤ t,X(1−τ) = j | X1 = i).

As Sτ > 0, H is distributed on the positive half-line. Moreover Sτ > 0, S1−τ ≤ 0
and the Φn are bounded, thus we have Sτ ≤ sup log Φn ≤ sup a(i) <∞, and H
has bounded support.

We define also the nth ladder epoch by τn = inf{n > τn−1 s.t. Sn > Sτn−1},
and Sτn is the corresponding ladder height. We check that we have:

H
(n)
ij (t) = Pµ(τn <∞, Sτn ≤ t,X(1−τn) = j | X1 = i),

where H(n) is the n-fold convolution of H. Let Ψ =
∑∞

n=0H
(n) be the renewal

function associated with H.

7.2.2 The random walk Sτn

To investigate the asymptotic behaviour of (Sτn) we are going to use a renewal
theorem as in [Feller, 1966] for the i.i.d. case, namely Theorem B. We want
to apply it for F = H and α = s, thus we have to prove that H satisfies its
assumptions.

As H(0) = 0, we have ρ(H(0)) < 1 thus the first assumption is true. In
addition, Hij are probability measures, therefore H is finite. We have seen
that H thus B̂, the expectation of Hκ(∞) =

∫∞
0
e−κuH(du) is well defined.

Proposition 7 yields again that H is also non-lattice.

Irreducibility and aperiodicity For all i, j in E, we have:

Hij(∞) = Pµ(τ <∞, X1−τ = j | X1 = i)
≥ Pµ(τ = 1, X0 = j | X1 = i)

= Pj(log Φ1 > 0, X1 = i)
µ(j)
µ(i)

= Pj

( ∫ 1

0

a(Xu)du > 0, X1 = i
)µ(j)
µ(i)

,

and Proposition 7 implies that the last term is positive as 0 ∈ ]am; aM [. Thus
the second assumption af Theorem B is valid. We have also proved that for all i
and j we have 0 = Hij(0) < Hij(∞), so that the third assumption is also valid.
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Spectral radius of Hκ(∞) Now we define a new probability law Pκ on Ω×Θ.
For all bounded A × B-measurable functions f which first coordinate depends
only on (Xt, (1− n) ≤ t ≤ 1), we set:

Pκ(f) = Eκ(f) =
Eµ

(
f(Φ1, . . . ,Φ2−n, θ)(Φ1 · · ·Φ2−n)κ

)
Eµ

(
(Φ1 · · ·Φ2−n)κ

) .

Set Hκ(t) =
∫ t

0
e−κuH(du). We have

(Hκ)ij(t) =
Pκ(τ <∞, Sτ ≤ t,X(1−τ) = j | X1 = i)

Eµ

(
(Φ1 · · ·Φ1−τ )κ, τ <∞

)
=

(H]
κ)ij(t)

Eµ

(
(Φ1 · · ·Φ1−τ )κ, τ <∞

) ,
where (H]

κ)ij(t) = Pκ(τ < ∞, Sτ ≤ t,X(1−τ) = j | X1 = i) describes the
behaviour of the ladder heights of our random walk under the new probability
law Pκ.

The computation we made in the proof of Proposition 3 yields:

∂

∂r

∣∣∣
r=κ

log
(
ρ(Ar)

)
= lim

n→∞

1
n

Eκ(
n∑

i=1

log Φi)

= Eκ(log Φ1).

But we have log ρ(A0) = log ρ(Aκ) = 0, this function is convex (Corollary 2)
and its right-hand derivative at 0 is negative (Proposition 3). Thus its left-hand
derivative at s is positive, i.e. Eκ(log Φ1) > 0. Under the law Pκ our random
walk thus drifts to +∞, hence for all n and i, we have (Pκ)i(τn < ∞) = 1 and
H] is a stochastic matrix, therefore its spectral radius equals to 1.

For all n, we have:

H(n)
κ (∞) = (Hκ(∞))n =

(H]
κ(∞))n

Eµ

(
(Φ1 · · ·Φ2−τn)κ, τ <∞

) ,
thus ρ(Hκ(∞)) = lim

(
Eµ((Φ1 · · ·Φ2−τn

)κ, τ < ∞)
)−1/n and we now have to

prove that this limit equals to 1. But for all n, we have τn ≥ n, and the event
(τn = k) depends only on (Xt, (1− k) ≤ t ≤ 1). Thus we have:

Eµ((Φ1 · · ·Φ1−τn
)κ, τn <∞) =

∞∑
k=n

Eµ((Φ1 · · ·Φ1−k)κ, τn = k)

=
∞∑

k=n

Pκ(τn = k)Eµ((Φ1 · · ·Φ1−k)κ). (20)

Set ε > 0. For large enough n, our choice of s and Eq. (5) and (6) yield:

µAn
κ1− ε ≤ Eµ((Φ1 · · ·Φ1−n)κ) ≤ µAn

κ1 + ε.

Thus for large enough n, Eq. (20) yields:

(µAn
κ1− ε)

∞∑
k=n

Pκ(τn = k)

≤ Eµ((Φ1 · · ·Φ1−τn)κ, τn <∞) ≤ (µAn
κ1 + ε)

∞∑
k=n

Pκ(τn = k),
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and as Pκ(τn <∞) = 1, we have:

µAn
κ1− ε ≤ Eµ((Φ1 · · ·Φ1−τn

)κ, τn <∞) ≤ µAn
κ1 + ε.

Thus as n→∞ we have, with the notation of Corollary 1, Eµ((Φ1 · · ·Φ1−τn
)κ ∼

µBκ1. Hence we have, as expected Eµ((Φ1 · · ·Φ1−τn
)κ, τn <∞)1/n → 1.

Thus all the assumptions of Theorem B are valid here. We are going to use
it in the following part.

7.2.3 Asymptotic behaviour of the maximum

Let M = supn Sn = supn Sτn
, be the maximum of our random walk. Using the

definition of H, we get, for all 1 ≤ i ≤ N :

Pµ(M ≤ t | X1 = i)

=
∞∑

n=1

Pµ(τn <∞, Sτn ≤ t, τn+1 = ∞ | X1 = i)

=
∞∑

n=1

N∑
j=1

Pµ(τn <∞, Sτn
≤ t, τn+1 = ∞, X1 = i | X(1−τn) = j)

µ(j)
µ(i)

=
∞∑

n=1

N∑
j=1

[
Pµ(τn <∞, Sτn

≤ t,X(1−τn) = j | X1 = i)×

(1− Pµ(τn+1 <∞ | X(1−τn) = j)
]

=
∞∑

n=1

N∑
j=1

[
H

(n)
ij (t)

(
1−

N∑
k=1

Hjk(∞)
)]

=
N∑

j=1

[
Ψij(t)

(
1−

N∑
k=1

Hjk(∞)
)]
. (21)

Thorem B applied to (21) yields, when t tends to infinity:

1− Pµ(M ≤ t | X1 = i) =
N∑

j=1

[(
1−

N∑
k=1

Hjk(∞)
) ∫ ∞

t

e−κu(eκuΨij)(du)
]

t→∞∼
N∑

j=1

[(
1−

N∑
k=1

Hjk(∞)
) ∫ ∞

t

e−κuĉm̂iûjdu
]

=
N∑

j=1

[(
1−

N∑
k=1

Hjk(∞)
)
ĉm̂iûj

]
e−κt, (22)

where m̂ and û are right and left eigenvectors ofHκ(∞) with positive coordinates
with the same normalisation as in section 4, and ĉ = (tûB̂m̂)−1 > 0.

7.3 Conclusion

We still have to prove that there is a j ≤ N such that 1 −
∑N

k=1Hjk(∞) > 0.
But the mapping r 7−→ Hr(∞) =

∫∞
0
eruH(du) is clearly increasing component-

wise. As these matrix are non negative and irreducible, Corollaries 8.1.19 and
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8.1.20 of [Horn and Johnson, 1985] imply that the mapping r 7−→ ρ(Hr(∞)) is
also increasing. As ρ(Hκ(∞)) = 1, we have ρ(H0(∞)) = ρ(H(∞)) < 1. This is
a sub-stochastic, non-stochastic matrix, thus there exists a j such that we have
1−

∑N
k=1Hjk(∞) > 0.

We have now proved that the right-hand side term in (22) is positive, thus
there is a constant C > 0 such that, when t tends to infinity, we have:

eκtPµ(M > t) ≥
N∑

i=1

eκtPµ(M > t | X1 = i)µ(i) ≥ C. (23)

Putting together this result and Proposition 8, we get, for large enough t:

tκPµ(|R1| > t) ≥ K > 0. (24)

With the notation of Theorem 2, it means that L > 0, which ends the proof of
this theorem.

8 Determination of κ

Set s1 = min{λ(i)a(i)−1 | a(i) > 0}, and let Ms be the matrix with components
{q(i, j)λ(i)(λ(i)− sa(i))−1}. This matrix is well defined for all s < s1. We can
precisely compare the spectral radius of As and that of Ms.

Proposition 9 For all 0 < s < s1, we have ρ(Ms) < 1 if and only if ρ(As) < 1,
and we have ρ(Ms) > 1 if and only if ρ(As) > 1.

Proof Suppose that ρ(Ms) < 1. Ms is a positive irreducible matrix as q
is, λ being positive and s < s1. Thus Perron-Frobenius Theorem (see e.g.
[Horn and Johnson, 1985]) gives the existence of a vector ϕ with positive coor-
dinates such that Msϕ = ρ(Ms)ϕ < ϕ. Hence for all i in E, we have:

ϕ(i) >
∑

j

q(i, j)
λ(i)

λ(i)− sa(i)
ϕ(j),

that we can rewrite, since s < s1, as

(sa(i)− λ(i))ϕ(i) + λ(i)
∑

j

q(i, j)ϕ(j) < 0. (25)

Proposition 4 enables us to choose a small enough δ such that Formula (8) is
valid here. Eq.(25) thus yields:

Asϕ(i) = [1 + δ(sa(i)− λ(i))]ϕ(i) + δλ(i)
∑
j 6=i

[q(i, j)ϕ(j)] + o(δ)

= ϕ(i) + δ[(sa(i)− λ(i))ϕ(i) + λ(i)
∑

j

q(i, j)ϕ(j)] + o(δ)

< ϕ(i).

Thus component-wise we get Asϕ < ϕ, which implies that ρ(As) < 1. The
proof that ρ(Ms) > 1 implies ρ(As) > 1 runs the same, the inequalities being
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reversed.
Suppose now that ρ(As) < 1. As is a positive irreducible matrix, thus

Perron-Frobenius Theorem gives the existence of a vector ψ with positive coor-
dinates such that Asψ = ρ(As)ψ < ψ. Hence for all i in E, and small enough
δ, we have:

δ[(sa(i)− λ(i))ψ(i) + λ(i)
∑

j

q(i, j)ψ(j)] + o(δ) = Asψ(i)− ψi

< 0.

Hence, for all i, we get (sa(i)−λ(i))ψ(i)+λ(i)
∑

j q(i, j)ψ(j) < 0, or, as s < s1,

ψ(i) >
λ(i)

λ(i)− sa(i)

∑
j

q(i, j)ψ(j),

and thus Msψ < ψ. As Ms is a positive matrix, we conclude that ρ(Ms) < 1.
Here again the proof that ρ(As) > 1 implies ρ(Ms) > 1 runs the same with
reversed inequalities. 2

Proposition 10 The spectral radius of Ms tends to infinity when s tends to s1.

Proof Set i0 ∈ E such that λ(i0)a(i0)−1 = s1, and ei0 the row vector with zero
coordinates except the ith0 which is set to be 1. Set vi0 = λ(i0)(λ(i0)−sa(i0))−1.
We have ei0Ms = vi0q(i0, ·) ≥ vi0ei0 as q is a positive matrix. As Ms is also
positive, for all s < s1, we get ρ(Ms) ≥ vi0 = λ(i0)(λ(i0) − sa(i0))−1. Hence
this spectral radius tends to infinity when s tends to s1. 2

Corollary 4 There is a unique s ∈ ]0; s1[ such that ρ(Ms) = 1, and this s
equals to the unique κ such that ρ(Aκ) = 1.

Proof For all s < κ, we have ρ(As) < 1 by Corollary 3, thus Proposition 9
yields ρ(Ms) < 1 for all 0 < s < min{κ, s1}. As ρ(Ms) → ∞ as s tends to s1,
we also have ρ(As) > 1 for s close to s1. Therefore κ < s1, and ρ(As) > 1 for
all κ < s < s1. Hence ρ(Ms) > 1 for all κ < s < s1. As Ms has continuous
coordinates, its spectral radius is also continuous, thus ρ(Mκ) = 1 and κ is the
only value of s ∈ ]0; s1[ satisfying this equation. 2

We now give an illustration by computing the value of κ when E = {1, 2}.
The jump kernel q then equals to:

q =
(

0 1
1 0

)
,

and the invariant law of the process X is µ = (λ(2), λ(2))/(λ(1) + λ(2)). We
suppose that a(1) or a(2) is positive. Condition 2 becomes

λ(1)a(2) + λ(2)a(1) < 0. (26)

For all i in E, set ri = a(i)
λ(i) . We have r1 + r2 < 0, r1r2 > 0, and s1 =

max{r−1
1 , r−1

2 }. For s ∈ [0, s1[, the matrix Ms equals to:

Ms =
(

0 1
1−sr1

1
1−sr2

0

)
,
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and its spectral radius is
[
(1 − sr1)(1 − sr2)

]−1/2. It equals to 1 for κ =
r−1
1 + r−1

2 = λ(2)a(2)−1 + λ(1)a(1)−1.

References

[Athreya and Rama Murthy, 1976] Athreya, K. and Rama Murthy, K. (1976).
Feller’s renewal theorem for systems of renewal equations. Journal of the
Indian Institute of sciences, 58:437–459.

[Barndorff-Nielsen and Shephard, 2001] Barndorff-Nielsen, O. E. and Shep-
hard, N. (2001). Non-Gaussian Ornstein-Uhlenbeck-based models and some
of their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol.,
63(2):167–241.

[Basak et al., 1996] Basak, G., A.Bisi, and M.K.Ghosh (1996). Stability of ran-
dom diffusion with linear drift. J. Math. Anal. Appl., 202:604–622.

[Brockwell, 2001] Brockwell, P. J. (2001). Lévy-driven CARMA processes. Ann.
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