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Théorème de renouvellement pour un système d’équations de

renouvellement

de Saporta Benôıte
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Abstract: We show that the classical renewal theorems of Feller hold in the case of a system
of renewal equations, when the distributions involved are supported on the whole real line.
We extend Feller’s methods and also use Perron-Frobenius theory and potential theory.

Résumé: On généralise les théorèmes de renouvellement de Feller au cas d’un système
d’équations de renouvellement faisant intervenir des mesures qui ont pour support toute
la droite réelle. Pour cela on suit la même démarche que Feller en faisant intervenir de plus
la théorie de Perron-Frobenius et la théorie du potentiel.

1 Introduction

We study the asymptotic behavior, when t tends to +∞, of Z(t) = t(Z1(t), . . . , Zp(t)) the solution of a
system of renewal equations of the following type:

Zi(t) = Gi(t) +
p∑

k=1

∫ ∞

−∞
Zk(t− u)Fik(du), ∀ t ∈ R, ∀ 1 ≤ i ≤ p, (1)

where G(t) = t(G1(t), . . . , Gp(t)) is a vector of real-valued Borel-measurable functions that are bounded
on compact sets, and for each 1 ≤ i, j ≤ p, Fij is a distribution: non-negative, non-decreasing, right-
continuous and tending to 0 in −∞.

Such systems, with Fij : R → R+, arise in the study of the tail of the stationary solution of the
stochastic equation Yn+1 = anYn + bn where (an) is a Markov chain on a finite state space {e1, . . . , ep}
with transition matrix P = (pij). In this case, Fij(t) = |ei|λpji1t≥log |ei|. This is what motivated this
study.

The standard renewal equation corresponds to the case when p = 1 and F11(∞) = 1. Then Feller’s
renewal theorems (see [5], XI) are available for any directly Riemann integrable G1. The multidimen-
sional case for measures supported on the positive real line has also already been studied by Crump in
[2] and Athreya et al. in [1]. They extended Feller’s ideas and methods to derive a similar theorem.

For more recent works on systems of renewal equations, see [4] and [7]. In both papers, the authors
study such systems in the special case when Fij are supported on the positive half-line and have a den-
sity. In [4], Engibaryan proves that the renewal theorems hold for a wider class of function G, namely
integrable, essentially bounded functions tending to 0 in +∞. His approach is based on similar results in
dimension 1, and the Gauss triangular factorization. In [7], Tsalyuk uses complex analysis. His functions
are complex-valued and he uses the Laplace transform F̂ (z) of F . Under suitable assumptions, mainly
that I − F̂ (z) is not invertible at a finite number of points in the closed half-plane Re(z) ≥ 0, he gives
the structure of the resolvent R of the renewal equation (R = U−F (0), see our notations in the following
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part). However both proofs can not be extended to wider classes of Fij .

In this paper, we further extend Feller’s methods to the case of measures supported on the whole
real line. Here we only study the case when the matrix of Fij is non-lattice (see definition 2).

In the following part, we state some definitions and the main results. In parts 3 and 4, we state and
prove two preliminary results that we will need in the last part to prove our renewal theorems.

2 Hypotheses and main results

We start with a list of notations we are going to use throughout this paper.

2.1 Notations

Let F = (Fij)1≤i,j≤p be a matrix of distributions as above.

Definition 1 For any p × r matrix H of Borel-measurable real-valued functions that are bounded on
compact intervals, we define the convolution product F ∗H by:

(F ∗H)ij(t) =
p∑

k=1

∫ ∞

−∞
Hkj(t− u)Fik(du),

when the integrals exist.

We can then rewrite equation (1) as

Z = G + F ∗ Z.

For any real t we define:
• the expectation of F (when it exists): B = (bij)1≤i,j≤p with bij =

∫
uFij(du),

• F (0)(t) = (δij(t))1≤i,j≤p with δij(t) = 1t≥0 if i = j and 0 otherwise, so that F (0) ∗H = H for any H
as in the definition above,

• the n-fold convolution of F : F (n)(t) = F ∗ F (n−1)(t),

• the renewal function associated with F : U(t) =
∑∞

n=0 F (n)(t).

We also recall the definition of a lattice matrix of distributions as given in [1].

Definition 2 F is lattice if the following assertions are true:
• For each i 6= j, Fij is concentrated on a set of the form bij + λijZ.
• For each i, Fii is concentrated on a set of the form λiiZ.
• The λii are integral multiples of some same number.

We take λ to be the largest such number.
• If aij , ajk, aik are points of increase of Fij , Fjk and Fik respectively, then aij + ajk − aik is an

integral multiple of λ.

2.2 Hypotheses

To get a renewal theorem similar to that of Feller in dimension 1, we need make some assumptions on
the matrix F , as in [1], essentially to be able to use Perron-Frobenius theory (see [6]):

• an assumption of finiteness of measures,

∀ 1 ≤ i, j ≤ p, Fij(∞) = lim
t→∞

Fij(t) < ∞, (2)
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• an assumption of irreducibility.
Recall that a n×n matrix A = 9aij) is irreducible if for any non-trivial partition (I, J) of {1, . . . , n}, we
can find i in I and j in J so that aij 6= 0 (see [6]).

F (∞) is an irreducible matrix. (3)

As F (∞) is a non-negative (component-wise) irreducible matrix, we can apply Perron-Frobenius
theorem: its spectral radius ρ(F (∞)) is an eigenvalue of algebraic multiplicity 1, with a right-hand and
a left-hand positive (component-wise) eigenvector. In the following, we will also assume that

ρ(F (∞)) = 1. (4)

This very assumption enables us to deal with the matrix F as with a “probability”. Then we denote
by m and u the Perron-Frobenius eigenvectors for the eigenvalue 1:

F (∞)m = m,
tuF (∞) = tu,

p∑
i=1

mi = 1, (5)

p∑
i=1

uimi = 1.

• Finally we make a transience-type assumption:

∀ t ∈ R, U(t) < ∞. (6)

This last assumption does not appear in [1]. Indeed, it is automatically true for measures distributed
on the positive half-line. However, this is no longer so in the general case, even in dimension 1 (for
example it is false if F has means zero).

2.3 Main results

We can now state the main theorems we are going to prove in the following parts.

Theorem 1 If assumptions (2), (3), (4), and (6) are true, if, in addition, F is non-lattice and Z is a
bounded continuous (component-wise) solution of Z = F ∗ Z, then Z is a constant vector.

Theorem 2 If assumptions (2), (3), (4), and (6) are true, then for any i, j, for any bounded interval
I =]a; b], Uij(I + t) = Uij(t + b)− Uij(t + a) is uniformly (in t) bounded.

These first two theorems will help us to prove the following renewal theorems:

Theorem 3 (Renewal theorem, first form) If assumptions (2), (3), (4), and (6) are true, if, in
addition, F is non lattice and B exists, then tuBm 6= 0 and, for any i, j and for any h > 0, we have

Uij(t + h)− Uij(t) −−−→
t→∞

cmiujh,

where m and u are the eigenvectors defined in (5), and c = (tuBm)−1.

Theorem 4 (Renewal theorem, second form) Under the assumptions of theorem 3, if G is directly
Riemann integrable (component-wise), and Z = U ∗G exists, then

lim
t→∞

Zi(t) = cmi

p∑
j=1

uj

∫ ∞

−∞
Gj(u)du.

This last form is the useful one when we want to derive the asymptotic behavior of a function from
a renewal equation it satisfies. Note that if Z = U ∗G exists, then Z is solution of the renewal equation
(1). However in the case of measures supported on the whole line, we can not prove the uniqueness of
this solution. To know the limit of a function Z satisfying a renewal equation of type (1), we have to
prove first that Z = U ∗G, then we can apply the renewal theorem. A general method to prove this is
iterating the renewal equation and prove that F (n) ∗ Z −−−−→

n→∞
0.
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3 Equation Z = F ∗ Z

As in dimension 1, the special form of the solutions of this equation will play an important part in
the proof of the renewal theorems. This whole section is almost the same as in the case of measures
supported on the positive half-line.

We start with a study of the points of increase of U .

3.1 Points of increase of U

Lemma 1 Let Σij be the set of all points of increase of the F
(k)
ij for all k ∈ N, ie

Σij = {a | ∃ k ∈ N, F
(k)
ij (a + ε)− F

(k)
ij (a− ε) > 0 ∀ ε > 0}.

Then for any i, j, k, Σik + Σkj ⊂ Σij.

The proof is exactly the same as in the case of measures distributed on the positive half-line.

Proof
Set x in Σik and y in Σkj . Then we can find integers n and m so that x be a point of increase of F

(n)
ik

and y a point of increase of F
(m)
kj . According to lemma V.4.1 in [5], x + y is then a point of increase of

F
(n)
ik ∗ F

(m)
kj , hence one of

∑p
k=1 F

(n)
ik ∗ F

(m)
kj = F

(n+m)
ij . Thus Σik + Σkj ⊂ Σij . 2

The definition of a lattice matrix was chosen to have the following lemma work quite similarly to
lemma V.4.2 in [5] in dimension 1.

Lemma 2 If assumption (3) is true, and if F is non-lattice and the Fij are not all concentrated on R−,
then for any i, j, Σij is asymptotically dense at infinity in the following sense:

∀ ε > 0, ∃ ∆ε > 0 so that for any x ≥ ∆ε, ]x;x + ε[ ∩ Σij 6= ∅.

The proof follows the same steps as that of lemma 2 in [1].

Proof
According to lemma 1, if Σi0j0 is asymptotically dense at infinity, then so is Σi0j for any j and Σij0 for

any i, thus either all Σij are asymptotically dense at infinity, or none is.
Suppose none of the Σij is asymptotically dense at infinity, especially Σii is not asymptotically dense

at infinity. It is a closed subset of R for addition according to lemma 1, and it is not empty according to
lemma 1 and because F (∞) is not a zero-matrix thanks to assumption (3). Thus there is a δii so that
Σii ⊂ δiiZ and it contains nδii for all large enough n (see lemma V.4.2 in [5]).

Set c in Σij , and d in Σji. Set a large enough n so that nδii ∈ Σii and (n+1)δii ∈ Σii, then according
to lemma 1, d−nδii + c and d−nδii + c+ δii are in Σjj , thus δii ≥ δjj , and by symmetry they are equal.
Thus all δjj are equal. We set δ = δjj for all j.

By a similar argument, we show that if i 6= j, then Σij ⊂ bij + δZ (indeed Σij + Σjj is closed under
addition), and according to lemma 1, bij + bjk = bik + nδ. Thus F is lattice, which is impossible. 2

3.2 Proof of theorem 1

We start with studying a more regular special case.

Lemma 3 Let K be a vector of bounded uniformly continuous functions on R such that K = F ∗ K.
Under assumptions (2), (3), (4), and (6), if in addition F is non-lattice and there is i0 so that ai0 =
supt∈RKi0(t) > 0, then there exists δi0 > 0 such that for any h > 0, there exists an interval of length h
on which Ki0 > δi0 .
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Proof
For any 1 ≤ j ≤ p we set aj = supt∈RKj(t). Set i0 such that ai0 > 0 and j0 such that aj0

mj0
=

max1≤j≤p
aj

mj
> 0, where m is the eigenvector of F (∞) defined in (5). As F (∞)m = m, for any i, n we

get
∑p

j=1 Fn
ij(∞)mj = mi, where Fn

ij(∞) are the coordinates of the matrix F (∞)n. Then

p∑
j=1

Fn
j0j(∞)aj =

p∑
j=1

Fn
j0j(∞)mj

aj

mj

≤
( p∑

j=1

Fn
j0j(∞)mj

) aj0

mj0

= mj0

aj0

mj0
= aj0 .

Thus we get

aj0 ≥
p∑

j=1

Fn
j0j(∞)aj . (7)

We divide the rest of the proof in two cases depending on aj0 being reached or not.

First case: ∃ t0 ∈ R such that Kj0(t0) = aj0 .
Iterating K = F ∗K, we get

aj0 = Kj0(t0) =
p∑

r=1

∫
Kr(t0 − u)F (n)

j0r (du)

≤
p∑

r=1

ar

∫
F

(n)
j0r (du)

=
p∑

r=1

arF
(n)
j0r (∞)

≤
p∑

r=1

arF
n
j0r(∞) as F

(n)
ij (∞) ≤ Fn

ij(∞)

≤ aj0 according to (7).

All these inequalities are thus in fact equalities. Hence
∑p

r=1

∫ (
ar −Kr(t0 − u)

)
F

(n)
j0r (du) = 0. As

the integrated function is non-negative and continuous, we conclude that for any u, point of increase of
a F

(n)
j0r , ie for any u ∈ Σj0r, we have ar = Kr(t0− u). But according to lemma 2, Σj0r is asymptotically

dense at infinity. The uniform continuity of the functions Kr now implies that

lim
t→−∞

Kr(t) = ar.

From the bounded convergence theorem applied to Ki(t) =
∑p

r=1

∫
Kr(t−u)F (n)

ir (du) when t −→∞,
we derive that ai =

∑p
r=1 arF

(n)
ir (∞). Thus for any t, r we get

Kr(t)− ar =
p∑

l=1

∫
(Kl(t− u)− al)F

(n)
rl (du),

|Kr(t)− ar| ≤
p∑

l=1

∫
|Kl(t− u)− al|F (n)

rl (du)

=
p∑

l=1

∫ T

−∞
|Kl(t− u)− al|F (n)

rl (du) +
p∑

l=1

∫ ∞

T

|Kl(t− u)− al|F (n)
rl (du).

5



As F (∞) has spectral radius 1, and thus that limn→∞ ‖F (∞)n‖ = 1, we get supn,i,j F
(n)
ij (∞) ≤

supn,i,j Fn
ij(∞) < ∞. Set ε > 0, we can choose T so that for any n, we have

p∑
l=1

∫ ∞

T

|Kl(t− u)− al|F (n)
rl (du) < ε.

As K is bounded and limn→∞ F (n)(T ) = 0 because U(T ) < ∞, we get

lim
n→∞

∫ T

−∞
|Kl(t− u)− al|F (n)

rl (du) ≤ M lim
n→∞

F
(n)
rl (T ) = 0.

Thus for any 1 ≤ r ≤ p, Kr is the constant function ar. Especially, Ki0(t) = ai0 > 0, from which we
derive the expected result for δi0 = ai0/2.

Second case: For any t, Kj0(t) 6= aj0 .
Then we can find (tn), a sequence tending to ±∞ such that Kj0(tn) → aj0 . Let ζn,i(x) = Ki(tn +

x). As K is bounded and uniformly continuous, (ζn,i)n,i is a uniformly bounded and uniformly equi-
continuous family. Ascoli theorem then gives us a sub-sequence (tnj

) of (tn) such that for any n, i,
the sequence (ζnj ,i)j converges uniformly on any compact set to ηi, a bounded uniformly continuous
function. Now we get

ζnj ,i(x) = Ki(tnj + x)

=
p∑

r=1

∫
Kr(tnj + x− y)Fir(dy)

=
p∑

r=1

∫
ζnj ,r(x− y)Fir(dy).

When j tends to ∞, the bounded convergence theorems says

ηi(x) =
p∑

r=1

∫
ηr(x− y)Fir(dy). (8)

In addition, for any x, i, we get ηi(x) = limj→∞Ki(tnj + x) ≤ ai, and by choice of tn, ηj0(0) =
limj→∞Kj0(tnj ) = aj0 . Thus sup ηj0 = aj0 > 0, hence ηj0 satisfies the assumptions of this lemma in the
first case. Each ηi is thus a constant function, say ci, with cj0 = aj0 .

From (8), we derive that c = t(c1, . . . , cp) is a right eigenvector of F (∞) for the eigenvalue 1. As
the corresponding eigenvectors sub-space is one-dimensional according to Perron-Frobenius theorem, we
conclude that c = αm. As cj0 = aj0 > 0, we get α = cj0

mj0
> 0 and thus c has positive coordinates.

Set h > 0. As Ki0(tnj
+ x) → ci0 uniformly on [0; h], for any large enough j we have Ki0(x) >

ci0
2

for any x in ]tnj
; tnj

+ h[. 2

Proof of theorem 1
Set φε(t) = 1

ε
√

2π
exp(− t2

2ε2 ). For any i, we set

fε,i(t) = φε ∗ Zi(t) =
∫ ∞

−∞
φε(t− y)Zi(y)dy =

∫ ∞

−∞
φε(y)Zi(t− y)dy.

For any ε > 0, and any 1 ≤ i ≤ p, we have

fε,i(t) =
p∑

r=1

∫ ∞

−∞
φε(y)

∫ ∞

−∞
Zr(t− y − u)Fir(du)dy

=
p∑

r=1

∫ ∞

−∞

( ∫ ∞

−∞
φε(y)Zr(t− y − u)dy

)
Fir(du)

=
p∑

r=1

∫ ∞

−∞
fε,r(t− u)Fir(du).
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In addition fε,i is smooth, and its derivative is bounded, because Z is bounded and uniformly con-
tinuous. Thus, f ′ε,i(t) =

∑p
r=1

∫
f ′ε,r(t− u)Fir(du), and we can use lemma 3.

Set ai = sup f ′ε,i. If there is a i such that ai > 0, then we can find δ such that for any h > 0 there is
an interval ]t; t + h[ on which f ′ε,i > δ. Integration on ]t; t + h[ yields δh < fε,i(t + h)− fε,i(t). As fε,i is
bounded, we get δh < M for any h > 0, which is impossible. Thus for any i, ai ≤ 0.

Replacing Zi by −Zi, we prove similarly that for any i, ai ≥ 0. Thus for any i, t, ε, we have
f ′ε,i(t) = 0. For any i, ε, the convolution fε,i is a constant function. Letting ε tend to 0, we obtain that
Zi is a constant function for any i. 2

4 Potential theory

The aim of this section is to prove theorem 2, ie that U has uniformly bounded increments. It is
easily proved for measures supported on the positive half-line, or in the one-dimensional case, thanks
to special renewal equations. However these methods can not be extended to the present case. This
is the only technical difficulty we have met to extend the renewal theorems from the case of measures
supported on the positive half-line to measures supported on the whole real line. We give here an original
proof of theorem 2 that involves the one-dimensional potential theory (see [3]), by extending it to the
d-dimensional case.

4.1 Definitions and notations

Definition 3 A kernel N on R is a mapping of R× B(R) onto [0,+∞] such that
• t 7−→ N(t, A) is measurable for any A ∈ B(R),
• A 7−→ N(t, A) is a measure for any t ∈ R.

For a given non-negative measurable function f on R, we define the mapping Nf by

Nf(t) =
∫

f(y)N(t, dy).

We also define the composition of kernels: given two kernels M and N on R, their product MN is
defined by

MN(t, A) =
∫

N(y, A)M(t, dy).

Definition 4 N = (Ni,j)1≤i,j≤p is a kernel on Rp if each of its components Nij is a kernel on R in the
sense of definition 3.

For any measurable non-negative (component-wise) vector of functions f = t(f1, . . . , fp), the mapping
Nf is defined by Nf = t

(
(Nf)1), . . . , (Nf)p

)
, with

(Nf)i(t) =
p∑

j=1

Nijfj(t).

If M and N are two kernels on Rp, their product is MN =
(
(MN)ij

)
, where

(MN)ij =
p∑

k=1

MikNkj .

We also define a special kernel I by

Iij(t, A) = 0 if i 6= j,
Iii(t, A) = 1A(t).

where

1A(t) =
{

1 if t ∈ A,
0 otherwise.
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Thus for any function f : R −→ Rp, we have If = f .

In the following, N will always denote a kernel on Rp. Let Nk be its powers for the composition
product defined above, with N0 = I.

Definition 5 The potential kernel associated with the kernel N is the following kernel

G =
∞∑

k=0

Nk.

On the set of measurable function from R onto Rp we define the following partial order relationship:

u � v if, ∀ 1 ≤ i ≤ p, ui ≤ vi.

This order has the following good property: if u � v then for any kernel M , we have Mu � Mv.

Definition 6 Let u : R −→ Rp
+ be a non-negative (component-wise) function. It is excessive for kernel

N if
Nu � u.

4.2 Maximum principle

Let A ⊂ R and Ac be its complementary set. We denote JA the kernel on Rp that satisfies (JAf)i(t) =
fi(t)1A(t), ie

(JA)ij(t, B) = 0 if i 6= j,

(JA)ii(t, B) = 1A∩B(t).

Notice that JAf depends only on the values of f on A.

Let GA be the potential kernel associated with NJA and GA that associated with JAN . We have
NGA = GAN and JAGA = GAJA. We also define the similar potential kernels for Ac.

Definition 7 We set HA = JA + JAcGAcNJA = GAc

JA.

We now give a series of propositions as a preliminary to the maximum principle.

Proposition 1 The measures (HA)ij are supported on A, and for any t in A,

(HA)ij(t, B) = 0 if i 6= j,

(HA)ii(t, B) = 1B(t).

Proof
It is an easy consequence of the definition of HA and JA. 2

Proposition 2 If u is an excessive function, then HAu � u.

Proof
We prove by induction on k that

JAu +
k∑

m=0

JAc(NJAc)mNJAu � u. (9)

If k = 0, as u is excessive and JAu � u, we have NJAu � Nu � u. Then JAcNJAu � JAcu and
JAu + JAcNJAu � JAu + JAcu = u.

Suppose it is true at rank k: JAu +
∑k

m=0 JAc(NJAc)mNJAu � u .
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At rank k+1, we apply N then JAc to the two members of the inequality in the induction hypotheses.
We get

JAcu � JAcNu � JAcNJAu +
k∑

m=0

JAcNJAc(NJAc)mNJAu

=
k+1∑
m=0

JAc(NJAc)mNJAu.

Adding JAu to both sides of the equation, we get:

JAcu + JAu = u � JAu +
k+1∑
M=0

JAc(NJAc)mNJAu.

which ends the induction.

Letting k tend to +∞ in (9), we get the expected equation HAu � u. 2

Proposition 3

HA = JA + JAcNHA, thus NHA = HA on Ac,

NHA = GAcNJA.

Proof
We have GAc = I + NJAcGAc , thus NHA = NJA + NJAcGAcNJA = GAcNJA. It yields that

JAcNHA = JAcGAcNJA = HA − JA. Thus HA = JA + JAcNHA. 2

Proposition 4 Let u be an excessive function. Then HAu is the smallest (for �) excessive function
greater than or equal to u on A.

Proof
Set v = HAu. As u is excessive, we have v = HAu � u according to proposition 2, and thus

Nv � Nu � u. As u = v on A by proposition 1, especially we have Nv � v on A. Proposition 3 yields
NHA = HA on Ac, therefore on this set Nv = v. Thus Nv � v everywhere and v is excessive.

If w is excessive and greater than or equal to u on A, proposition 1 yields HAu � HAw, and HAw � w
by proposition 2. Hence HAu � HAw � w everywhere. 2

Proposition 5
G = HAG + JAcGAc = HAG + GAc

JAc .

Proof
Multiplying equality I − JAcN = I −N + JAN on the left by GAc

and on the right by G yields:

GAc

(I − JAcN)G = GAc

(I −N)G + GAc

JANG.

But by definition we have GAc

(I − JAcN) = I = (I −N)G. Thus

G = GAc

+ GAc

JANG

= GAc

JAc + GAc

JA(I + NG)
= GAc

JAc + HAG

= JAcGAc + HAG.

2
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Proposition 6 If f is any non-negative (component-wise) excessive function, v an excessive function,
and A = ∪p

i=1{fi > 0}, then

Gf � v on A ⇒ Gf � v on R.

Proof
As Gf � v on A, proposition 1 yields HAGf � HAv. But v is excessive, thus proposition 2 yields

HAv � v. Finally proposition 5 yields Gf = HAGf + GAc

JAcf = HAGf as by definition of A, we have
JAcf = 0. Thus Gf = HAGf � HAv � v. 2

Definition 8 Let f be a non-negative (component-wise) function, and A ⊂ R. We define supt∈A f(t)
by:

sup
t∈A

f(t) = max
1≤i≤p

(
sup
t∈A

(fi(t))
)
.

With this definition, on the set A we have f � supt∈A f(t)1, where 1 = (1, . . . ,1), the function with
all coordinates equal to the constant function 1.

Corollary 1 (Maximum Principle) If 1 is excessive, then for any non-negative (component-wise)
function f , if A = ∪p

i=1{fi > 0}, we have

sup
t∈R

Gf(t) = sup
t∈A

Gf(t).

Proof
Set α = supt∈A Gf(t). If α is infinite, it is obviously true. Otherwise, we have Gf � α1 on A. As

1 is excessive, proposition 6 yields Gf � α1 on R. Thus supt∈R Gf(t) ≤ α, and then supt∈R Gf(t) =
supt∈A Gf(t).

2

4.3 Increments of U

Now we can give the proof of theorem 2. Let m be the eigenvector defined in (5), and N = (Nij) the
following kernel:

Nij(t, A) =
mj

mi

∫
1A(t− x)Fij(dx).

Then (Nf)i(t) =
∑p

j=1
mj

mi

∫
fj(t− x)Fij(dx) =

(
(mj

mi
Fij) ∗ f

)
i
(t).

Function 1 is excessive for N . Indeed,

(N1)i(t) =
p∑

j=1

mj

mi

∫
Fij(dx)

=
1

mi

p∑
j=1

mjFij(∞)

=
mi

mi
by definition of m,

= 1.

The potential kernel G associated with N satisfies Gij = mj

mi
Uij .

Set h > 0, A = [−h;h], and fi = 1A for 1 ≤ i ≤ p. Then we have

(Gf)i(t) =
p∑

j=1

mj

mi

∫
1[−h;h](t− x)Uij(dx)

=
p∑

j=1

mj

mi

(
Uij(t + h)− Uij(t− h)

)
.
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In the sense of definition 8, Gf has finite upper bound, say α, on the bounded interval A = [−h;h],
because U is finite according to assumption (6). The maximum principle yields then supt∈R Gf(t) =
supt∈[−h;h] Gf(t). Denote i0 the number of a coordinate of Gf that reaches this upper bound. Set (tn)
a series of points in A such that (Gf)i0(tn) tends to this upper bound. Then majoring 1[−h;h](tn − x)
by 1[−2h;2h](x), we get, for any t ∈ R and any 1 ≤ i ≤ p,

p∑
j=1

mj

mi

(
Uij(t + h)−Uij(t− h)

)
= (Gf)i(t) ≤ sup

t∈[−h;h]

(Gf)i0(t) ≤
p∑

j=1

mj

mi0

(
Ui0j(2h)−Ui0j(−2h)

)
< ∞.

All these terms are non-negative and mi > 0 for any i, thus each Uij(t + h)−Uij(t− h) is uniformly
(in t) bounded. To get the expected result on any finite interval I, just include I in a larger symmetric
interval. 2

5 The renewal theorems

Now we can prove the renewal theorems 3 and 4. Thanks to the result of the preceding section, the proof
is now again the same as in the case of measures supported on the positive half-line, at least for the
first two steps. The renewal equation used in the third step is slightly different as it involves F (∞)1t≥0

instead of F (∞), and Z(t) = m1t≥0 instead of Z(t) = m. However the method is essentially the same.

Proof of theorem 3
For any interval I =]a; b], any 1 ≤ i, j ≤ p, and t ∈ R, we set U

(t)
ij (I) = Uij(t + b) − Uij(t + a).

Theorem 2 yields that the family
(
U

(t)
ij (I)

)
t
is bounded. Theorem VIII.6.2 in [5] gives us a sequence (tn)

tending to +∞ and measures Vij such that for any 1 ≤ i, j ≤ p and any interval I, U
(tn)
ij (I) −−−−→

n→∞
Vij(I).

First step: Show that Vij are multiples of Lebesgue measure.
Set k0 ∈ {1, . . . , p} and a > 0. Let G(t) be the vector defined by Gk(t) = 0 for any k 6= k0 and Gk0

is a continuous non-zero function that vanishes outside [0; a]. Then Z = U ∗G is well defined, and Z is
solution of the renewal equation

∀ 1 ≤ i ≤ p, Zi(t) = Gi(t) +
p∑

k=1

∫
Zk(t− u)Fik(du). (10)

For any i, we have:

Zi(tn + x) =
∫

Gk0(tn + x− y)Uik0(dy)

=
∫

Gk0(x− y)U (tn)
ik0

(dy)

−−−−→
n→∞

∫
Gk0(x− y)Vik0(dy).

Set ζi(x) =
∫

Gk0(x− y)Vik0(dy). Then ζi is a bounded continuous function, and Zi(tn +x) → ζi(x).
The bounded convergence theorem applied to equation (10) yields

∀ 1 ≤ i ≤ p, ζi(t) =
p∑

k=1

∫
ζk(t− u)Fik(du).

Now theorem 1 yields that ζi is a constant function for any i. Thus
∫

Gk0(x − y)Vik0(dy) does not
depend on x, and this is true for any continuous function Gk0 that vanishes outside a compact set.
Thus Vik0 is finite on compact sets, and unchanged by translation, therefore it is a multiple of Lebesgue
measure. Denote Lebesgue measure by l. Hence there are aij ∈ R such that:

∀ i, j, Vij = aij l.
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Second step: Show that aij = cmiuj .
Again we set k0 and we define G by Gk(t) = 0 for any k 6= k0 and Gk0(t) = 1[0;1](t). Then Z = U ∗G

is well defined and Z is solution of the renewal equation Z = G + F ∗ Z. For any x, we have

Zi(tn − x) =
∫

Gk0(tn − x− y)Uik0(dy)

= Uik0(tn − x)− Uik0(tn − x− 1)
−−−−→
n→∞

aik0 .

The bounded convergence theorem applied to equation Z(tn) = G(tn) + F ∗ Z(tn) yields aik0 =∑p
k=1 akk0Fik(∞). Thus (a1k0 , . . . , apk0) is an eigenvector of F (∞) for eigenvalue 1. As the corre-

sponding eigenvectors subspace is one-dimensional, there is a rk0 such that for any i, aik0 = rk0mi.
Replacing F by tF , we prove similarly that there is a sk0such that for any j, ak0j = sk0uj . Thus for
any i, k0, we have aik0 = rk0mi = siuk0 . Hence the quotient si

mi
= rk0

uk0
= c does not depend on i, and

aij = rjmi = cmiuj .

Third step: Identification of c.
Now we set G(t) =

(
F (∞)1t≥0 − F (t)

)
m. Let Z(t) = m1t≥0. Then

Gi(t) +
p∑

k=1

∫
Zk(t− x)Fik(dx) =

{
mi −

∑p
j=1 Fij(t)mj +

∑p
k=1 mkFik(t), if t ≥ 0,

−
∑p

j=1 Fij(t)mj +
∑p

k=1 mkFik(t), if t < 0,

and thus

Gi(t) +
p∑

k=1

∫
Zk(t− x)Fik(dx) = mi1t≥0 = Zi(t).

Thus G + F ∗ Z = Z. Iterating this equality yields

Z = G + F ∗ Z

= G + F ∗G + F (2) ∗ Z

= . . .

=
n−1∑
k=0

F (k) ∗G + F (n) ∗ Z.

But we have

(F (n) ∗ Z)i(t) =
∫ ∞

−∞

p∑
k=1

Zk(t− x)F (n)
ik (dx)

=
p∑

k=1

mk

∫ t

−∞
F

(n)
ik (dx)

=
p∑

k=1

mkF
(n)
ik (t)

−−−−→
n→∞

0,

as U(t) =
∑∞

n=0 F (n)(t) is finite for any t. Thus Z = U ∗G. As G is non-increasing and integrable on R+

and on R−, G is directly Riemann integrable (see [5], XI). To conclude, we need the following lemma.

Lemma 4 Let G be directly Riemann integrable, and U a matrix of distributions such that for any real
x, any h > 0 and any 1 ≤ i, j ≤ p, Uij(tn + x + h)− Uij(tn + h) −−−−→

n→∞
aijh. If Z = U ∗G exists, then

Zi(tn) −−−−→
n→∞

p∑
k=1

aik

∫ ∞

−∞
Gk(y)dy.
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This lemma and the result of the first step yield

mi = Zi(tn) −−−−→
n→∞

p∑
k=1

aik

∫ ∞

−∞
Gk(y)dy.

But ∫ ∞

−∞
Gk(y)dy =

∫ ∞

−∞

p∑
j=1

(
Fkj(∞)1y≥0 − Fkj(y)

)
mjdy

=
p∑

j=1

mj

∫ ∞

−∞
yFkj(dy)

=
p∑

j=1

mjbkj .

As aij = cmiuj , we get mi = c
∑p

k=1

∑p
j=1 miujbjkmk. But

∑
k,j ujbjkmk 6= 0 as mi > 0 thus

c =
( ∑

k,j ujbjkmk

)−1. This value does not depend on the choice of the sequence (tn). As (Uij(I + t))t

is bounded, from any sequence (t), we can extract a convergent sub-sequence. Hence we have proved the
weak convergence of U

(t)
ij to aij l as t tend to +∞. 2

Proof of lemma 4
Set h > 0. For any k ∈ Z, we set gk(x) = 1[(k−1)h;kh], Gk

i = gk for any i, and Zk = U ∗Gk. Then

Zk
i (tn) =

p∑
j=1

∫
Gk

j (tn − y)Uij(dy)

=
p∑

j=1

Uij(tn − (k − 1)h)− Uij(tn − kh)

−−−−→
n→∞

p∑
j=1

aijh.

This limit is independent of n and k, thus for any n, k, i, Zk
i (tn) ≤ Mh.

Let mi
k and mi

k be respectively the minimum and maximum of Gi on [(k− 1)h; kh]. As G is directly
Riemann integrable, the series σi = h

∑
mi

k and σi = h
∑

mi
k are absolutely convergent, and their

difference tends to 0 as h tends to 0. For any i, we have:

k∑
j=−k

mi
jgj(tn) ≤ Gi(tn) ≤

k∑
j=−k

mi
jgj(tn) +

∑
|j|>k

mi
jgj(tn),

p∑
r=1

k∑
j=−k

mr
j

∫
gj(tn − y)Uir(dy) ≤ Zi(tn) ≤

p∑
r=1

k∑
j=−k

mr
j

∫
gj(tn − y)Uir(dy) + Mh

p∑
r=1

∑
|j|>k

mr
j ,

n →∞,

p∑
r=1

k∑
j=−k

mr
jairh ≤ lim sup Zi(tn) ≤

p∑
r=1

k∑
j=−k

mr
jairh + Mh

p∑
r=1

∑
|j|>k

mr
j ,

k →∞,

p∑
r=1

σrair ≤ lim sup Zi(tn) ≤
p∑

r=1

σrair.

Letting h tend to 0 we get lim sup Zi(tn) =
∑p

r=1 air

∫
Gr(u)du. We get the same value for the

inferior limit. Thus lim Zi(tn) =
∑p

r=1 air

∫
Gr(u)du. 2

13



Lemma 4 and theorem 3 easily yield the second form of the renewal theorem.
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