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Construction of a Vector Equivalent to a Given Vector from
the Point of View of the Analysis of Principal Components

Yves Escoufier, P. Robert, and J. Cambon, Montpellier

I. INTRODUCTION - All random vectors considered in this paper are
assumed to be centered, with elements belonging to the set
Lz(ii,CL,§’) of random variables with finite variances on (£,0,9P).

Let X, and X, be two such vectors ;' lTet 'Z." and Z
be the random vgétors of their principal camponents, respec%ively.
In section III we study the problem of attaching weights to the
elements of X, in such a way that the vector of principal compo-
nents z* of this weighted vector be as closed as possible to VA
In section IV we study ways of choosing a subvector XU o Rl
multaneously attaching weights to the selected elemengs sy 80 that
the vector ZE of principal components of the resulting weighted

Zz will best approximate gl » over all choices of 52 and all weigh-

tIng rules.

to measure and having approximately the same Principal components.
At this time not much is available. On the one hand, it is known
that the simplest non-singular transformation of the original vec-
tor may perturb deeply the principal components 5 on the other
hand, the results to be presented here indicate that the currently
Proposed techniques ([BEALE et alt 1967], [ JOLIFFE 1973)) may suf-

In section II we recall essential results obtained by
ESCOUFIER ([1970] , (2978747 [1973-b] ) which are the basis of
the solutions to the problems investigated in this Paper. To com-

ply with Printing space regulations, proofs are omitted (see quo-
ted references).

II. METHEMATICAL BASES - Let X be a pxl random vector and k < p

be the rank of E(XX'). It,is known that there exists a PXp ortho-
gonal matrix g'such that

A

'
B g A [N LT
O L 10,

where D is a kxk diagonal matrix with positive diagonal elements,

Let H be the pxk submatrix of ﬂ‘such that H' E(XX') Hig D7
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Definition 1. The kxl random vector Z = H'X
\ ~

-~

is called the vector
of principal components of X

-~

Definition 2, The pxl random vector X1 » With the vector of prin-
——_-10n 2 =

cipal components 51 » and the gxl random vector 52’
with the vector of principal components 52, are said to be equiva-
lent if there exist a positive inte
and a kxk matrix C such that

4\l L Y

ger k ¢ min (P,g8), a constant oL

4 s
X % ii) El [ 22.
(;k is the kxk identity matrix),

It is easily verified that the relation established in
Definition 2 is an equivalence relation. Itsg value, in our context,

stems from the following Properties [ESCOUFIER, 1973-@] :

Progosition rcal i o) 2 31 and 52 are equivalent vectors, then

i) for each diagonal element 8(§) of E(glg' ) there is a
diagonal element S(§) of E(gzé'z) such that S(? = cks(i)

ii) there exist Permutation matrices P and Q such that

P B g

0

|~
e mg

w
n
L]
"
I
B L

'
'
o e S
[
|
SR
'

2~'2) are distinct,
»45++4,k for which

Proposition 1 should make cle

ar what is to pe unders-
tood by the "qquivalence" of X

1 and 52. ‘
P is to find ap easily computable criterion
two vectors, ESCOUFIER [1973-a] associates 4
tmsformation Uy defined on L, (N & ¥ )
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a)- the set of operators U, is a subset of the class of

Hilbert=Schmidt operators on L2 and so is a Hilbert space “
o B

.Tl2
T Z21 : gzz
%

» the scalar product for the Hilbert

is the covariance

5. 0N

matrix of the vector X =

Ll

Space considered is given %

<Ugl ’ Ug? ™ e (212 221)5

) s if Zk is a principal component of X associated with
the eigenvalue Ak » then
UL AY S s Lo
From the above, the following practical criterion can be
deduced [ ESCOUFIER, 1973-b) :

~

Proposition 2. The vectors 51 and 52 are equivalent in the sense of
Definition 2 if and only if the coefficient

e lo) = Tr (& 2 YT T, o ol S 0 B
1 o2 2 =21 1 2

is equal to 1.

III. THE FIRST PROBLEM - From the last Proposition it can be seen
that the first Problem can be restated as :

- Given vectors Y and X find a diagonal matrix é}so as
to maximize RV (! . L;g) , where

RV('Y'. é}m{-) = Tr [QE(X.X.')E(XZS')Q] { Tr [E(X!' )]2_Tr [QE(EK' )é]z}l/g,
Hence look for D to maximize
TraEL) Exxnp] / {rrloEaxnal? )12,

Denote by m. the j-th diagonal element of éé, by vij
the elements of E(XX'), by uij the elements of E(YX') and define

the vectors v, M and the matrix A by
U= (Uj) where UJ. tlzuij s

= (M.) whe M, =
( J) re 5 m

Tr [BE(XL) E(IXIA] - Uy
Tr [DExx)A)% = v'an
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Thus we are lead to the quadratic programming problem

Minimize M'AM
R5shlen kL, Subject to U'M = 1 and M > O.
Note that if E(XX') is positive semi-definite, so is A
[GOWER, 1971] . In such a case, the function (M'AM) is convex on
the convex set (U'M = 1 and M3 0).

It was found convenient to substitute to Problem Pl on
the unknown M the following equivalent problem on the unknown vec-
tor N :

Minimize N' C N,
ek B {Subject to gﬂ_ = 1.and N » O,

where ‘@' = (1 l..<easil) and where N and C are defined by :

1 (Nj) where Nj = M e U.m2

g 0 i1 e 4 4
v2
- s falide Sl 0
C (Cij) where Ci' Uin Uiuj .

The authors have solved Problem P2 for many sets of

statistical data. Numerical evidence on these test cases will not be

given here but reported on elsewhere [CAMBON, 1974] .

To be noted is the fact that the constraint e¢'N = 1 will
force most of the currently proposed quadratic programming algori-
thms into the difficulty of a degenerated case. For this reason the

authors have developped a specific algorithm which will now be jus-
tified and summarized.

C being (nxn), denote by I a subset of {1,2,..... n}
and by J the complement of I. Denote by gI the submatrix of C for-

med by the Cij's with i « I , j & I ; by C; the submatrix of C

formed by the Cij's with i« J , j & I , From the Kuhn-Tucker con-
ditions for Problem P2, it can be proved that

Proposition 3. Let EI = 2-1 e 1f

-

¥;30 and CcN. > e , (1)

then the vector N = (Ni)

) &8 Ii
Ni 1

(2)
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-1
is an optimal solution of Problem P2, and N'CN = (g'EI)

A technique to find an optimal solution would be to start
computing NI = C;l e for all subsets of indices I and to retain the
first found to satisfy (1). The number of sets I to be considered

can be greatly restricted in accordance with the following proposi-

tions.
=1
* .
Proposition 4. Let P = (P.) ='L§1— i L ={1=Pi k2 0} >
- CY A ;
J'={ i:Pi < 0} - There is an optimal solution N = (Ni) of Problem P2
such that Nj = 0 for at least one 1index je g

Proof. It is known that P is an optimal solution of P2 without the
Positivity constraint. Considerany feasible vector Q= (Qi) for P2
such taht Qj 20 for A1 1] e P77 pilid A J*be such taht Qr/PerQj/Pj
4 R R WPl VU020 77 el < 2ti-0y  § kQ . Since
the function F to be minimized is convex and 0 € k < 1 » F(Q)L F(Q
But gk is feasible for P2 and Qi = 0. The conclusion follows.l

Proposition 5. An optimal solution of Problem P2 can be found as the
best of the optimal solutions of the |J‘l (n-1)-di-

mensional problems on N g

minimize N' ¢ s N
e 2 "'(71‘ J) oL e (3)
subject to elN =] e N .08

where N} = {1,2,...,n} and where j spans J'.

Proof. From Proposition 4, it is seen that one can find an optimal
solution of P2 by looking at the solutions of each of the IJ" pro-
blems

minimize N'CN

subject to e'§ =1 ¢ N>oO

and the additional constaint Nj = 0,
fortia % Por each j, this last Problem is equivalent to (3).'

Clearly (3) is a Problem of type P2 with dimensions re-
duced by 1. We may therefore repeatedly invoke the above pProposi-
tion to justify the following algorithm. A queue @ is built which
elements are sets of indices I for which BI = g;l & has to be cal-
culated in accordance with Proposition 3. (We recall that in a

"queue", elements are added "at the bottom" and removed "from the to
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the second element moving up at the top).

1 - Set the queue @ to the single element {1,2,...,n} and = 0 ;

2054 TEEQuile eémpty, print error diagnostic and stop ; otherwise, se-

=]
lect and remove the first element I, Compute NI = QI [
s=ilet K = {k - NIk L0 }. £ Kiiia empty, go to Step 5 ; otherwise

4 - For each k e Kol B (I= fdal Yiis' inot a subset of an element of

@, ‘then 4dd (1=4k}) tou@: Goito Step 2 ;
Slis IE eC S S'EI » 80 to Step 2 ; otherwise, set o = g._'_l_!I H

G 1L LN 3> e (see (1)) , set N, as per (2) and stop ; otherwise

80 to 8tep 2,

The numerical efficieney of the algorithm will depend
8reatly on the Particular code used to compute g;l e. It will be_
seen in Section IV that, by using the Choleski decomposition of SI
one can make the test EjEI >
step 2,

1

’

e of step 6 an immediate byproduct of

IV. THE SECOND PROBLEM - Let Y

Assume X to be n-dimensional and for k ¢ n denote by QIL the set
of all k-dimensional subvectors of X.
indices, we shall denote by X

If I is a set of k distinct
1 the subvector of X retaining those
elements of X with indices in I and by fg(gl) the vector (&bX.) so-
lution of the first problem studied in Section III
cond problenm can be stated as :

=~ Determine the vector 31 c'Vl which maximizes

R B Fox i e %W

From the analysis carried in Section LTS
seen that for g, given set 1 the vector X
sent problems if and only if the

it is easily
is feasible for the pre-
vector N = g; e is non negative

and that the coefficient RV [x. i (glﬂ €

is then Proportional to
«I = e'c! e,

£'C, Thus our problem becomes that of maximizing,
=X ¢ =1
L = o
1 £'C; e subject to EI £330,

over all subsets I of k distinct indices,

and X be two vectors, possibly equal.

:
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Suppose now that I is a subset of only (k-1) indices
which is known to be feasible (i.e. N, = g;lg > 0). The step-wise
technique consists in the determination of that index j ¢ I such
thaewich (I33) = Iv{jt , E(I,j) will be feasible and “KI,j)

will be maximized (over all choices of j).

The technicalities will now be described, assuming for
simplicity that the set I contains the first (k-1) indices :
Ul ol . k-1 .

Consider the matrix

Castufr

i
!
|
I
]
1
L oy

11-1
R' be the Choleski decom-

-~

§t e e—

£
1
where C is given by (3), and let £+ R
position [FORSYTHE, MOLER, 1967] of C'

~

(which is positive semi-de-
finite), i.e R is uppertriangular. We assume that the choice of

the elements of the set I has been made sequentially by this same
algorithm and that the first (k-1) steps of the Choleski decomposi-

: +
tion of C have been carried, column-wise,leading to the (n+1)x(k-1)

matrix
r N
- 51
r'
~ k
.._;..?-.n__, (4)
'
1
S gy o U
X (n+l)e
where r', = 1 LY. & oy 5
¥ (rJl rJz rj(k-l)) for j 3k and
= ;
21 "Sa Ry
,51 s(n+1)o Tilug
For j & I (j # n+l), define
&l o
Yas®.C.0.% T
i 337 b=y id
(5)
k-1
8381355 g;; Tii T(n+1)it

i L'jo R; e). If the index j is to be added to the set I
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with the feasible vector E(I % we must have the corresponding
’

matrix C(I ) non-singular , hence wj > 0 . The Choleski decompo-

E ' i %
sition C(I E(I,j) B'(I,j) would then give
-1 ! -1
R i &9 Rinse
.-1 —_— — ___.__-__E;_-_- —_——— e - ———
,.(I,J) -1 £ ~;1 , 1 . 41 e " s / m
% dley by

The coefficient RV [! 5 Y (X(I J))] will be proportional to

daerd 21 2 . 2
0‘(I,j) Ta R Ry 8 (sj/“j) Srat (sj/wj) (6)

The feasibility condition of non-negativity of

N G must be respected. It can be verified by substitu-
o @ 2 1 "(I HE
tion of the above relations that

il g
g § Wi =)

N M ) e ?
“'(Ioj) "'(I)j) ""(I)j) il PP AR St ey

i

e i

w.

]

where Zj is the solution of the triangular system E'Iij = Ejo'
We can now summarize one basic cycle of the algorithm

assuming that k is given, that I is a set of indices with less

than k elements and that the corresponding matrix (4) is available,

as sj and wj for all j @ 1 :

1 - Define J = (j GETEY PU T w] > 0 and J > o};

2 - If J is empty, stop. Otherwise select J
(s’ /w ) (see (6)) ;

3 Solve for ;J

o
- i = %P . i - i £*5
B VAL B(Iilo) 5, (!JO/VJ ) zjo is non-negative, then accept j
set I : = I v{jJ n By 2 o E(I,jo) and go to Step 5. Otherwise
set J : = J- {joi and repeat Step 2 ;

Carry one more step of the Choleski decomposition of Ef, compu-

€ J which maximizes

: ’ &
& the triangular system glgj ;j; H

d ; b + .
ting the column corresponding to column "JO" of C (to obtain

B(I_jb)) and, for j « J, set ((5)) :

s SN13 L STy g . Eiats W 3= 3 E e H
3 LBER G FER - LT 4 e >
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6 ‘=T ko Ry Yget ko: = k°+1 and repeat a complete cycle from

Step 1. Otherwise, stop.

Note that a "stop" a Step 2 implies that the set of in-
dices already chosen connot be enlarged by addition of a single

element so asto increase the RV coefficient.

To initiate the algorithm one may choose any one ele-
ment X. of X and set I = {i} . The square of the RV coefficient is
then proportional to Czli ; this suggests initiation with that in-

dex for which the diagonal element of C is minimum.

It must be made clear that this algorithm does not ne-
cessarily produce the optimal solution. As in the step-wise regres-
sion technique, it produces the best solution of order k knowing

which solution has been selected to the order (k-1).

Subject to this conditionality restriction upon conver-
gence to the optimal solution, a count of the number of operations

for a k-th cycle shows the algorithm to be quite efficient.

We conclude the study of this second problem by pointing
out that the first problem (Section III) can be interpreted as a
special case of the second : the case where k = n . Thus the algori-
thm of this section could be used in an attempt to solve Problem P2.
The following proposition, deduced from the Kuhn-Tucker conditions
for Problem P2 and the above analysis, provides a criterion to de-

tect the optimal solution :

Proposition 6. A solution produced by the algorithm of this Section
is optimal for ProblemP2 of Section III if and only
if, at stop,

sj <0 for all jeld

or all n variables have been accepted (The proof is omitted).

CONCLUSION. - The theory summarized in Section II has shed new

lights on two practical problems of interest to the
applied statistician. Arguments on convexity and a factorization
of the matrices involved haveled to algorithms to solve those pro-
blems. A deeper numerical analysis of the problems, particularly
the first one, should lead to more efficient algorithms and compu-
ter programs.
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