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SUMMARY

Consider two data matrices on the same sample of » individuals, X(p x n), Y(g X n).
From these matrices, geometrical representations of the sample are obtained as two
configurations of n points, in £? and %9 It is shown that the RV-coefficient
(Escoufier, 1970, 1973) can be used as a measure of similarity of the two configurations,
taking into account the possibly distinct metrics to be used on them to measure the
distances between points. The purpose of this paper is to show that most classical
methods of linear multivariate statistical analysis can be interpreted as the search for
optimal linear transformations or, equivalently, the search for optimal metrics to
apply on two data matrices on the same sample; the optimality is defined in terms of
the similarity of the corresponding configurations of points, which, in turn, calls for
the maximization of the associated R V-coefficient. The methods studied are principal
components, principal components of instrumental variables, multivariate regression,
canonical variables, discriminant analysis; they are differentiated by the possible
relationships existing between the two data matrices involved and by additional
constraints under which the maximum of RV is to be obtained. It is also shown that the
RV-coefficient can be used as a measure of goodness of a solution to the problem of
discarding variables.
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1. INTRODUCTION

HAVING observed the values of p numerical variables on each individual of a given sample, it is
customary to arrange the data into a p x n matrix X = (x;;). The ith row of X, denoted by X,
contains the # values of the ith variable while the jth column, denoted by X7, contains the p
observations recorded on the jth individual.

A common geometrical representation of the sample consists of a canonical mapping of the
data matrix X into a ““configuration” of # points in the p-dimensional space ZP. Our interest
will focus on the pattern of such a configuration or, equivalently, on the set of distances
between its points. The distance between the jth and the kth points (individuals) is defined, by
use of a positive semi-definite matrix Q, to be equal to {(X7— X*)' Q(X7— X*¥)}{. Frequent
choices for Q are the standardizing diagonal matrix having the inverses of the variances on the
main diagonal and the inverse of the covariance matrix which makes distances independent of
linear transformations on the data.

Given any positive semi-definite matrix Q one can find p x g matrices L(g not necessarily
equal to p) such that Q = LL'. Therefore there is an equivalence between the choice of the
metric defined by Q on points in #? and the linear change of variables giving the new data
matrix Y = L' X followed by the use of the ordinary sum of squares metric on the configuration
representing Y in %#2. This equivalence is fundamental for the purpose of this paper.
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We propose a unified view at some of the classical linear multivariate statistical methods
(principal components, multivariate regression, canonical correlations, discriminant analysis)
by showing that all can be interpreted as the search for linear transformations, L, of original
variables, X, that will maximize, under constraints characteristic of each method, the “close-
ness” of the configurations of points associated with X and Y =L'X. The measure of
closeness to be retained is based on the sample value of Escoufier’s RV-coefficient (Escoufier,
1970, 1973) and is established in the next section. Our results are summarized in Section 3 with
details given in Section 4. In Section 5 suggestions are made for the use of the RV-coefficient in
the problem of discarding variables.

2. COMPARISON BETWEEN TWO CONFIGURATIONS OF POINTS REPRESENTING
THE SAME INDIVIDUALS

Consider a given sample of n individuals on which two sets of observations have been made,
giving a p x rn data matrix X and a g x » data matrix Y. (The variables in the two sets may be
partially or totally distinct.) Let C(X) and C(Y) be the two associated configurations, in #?
and %9, respectively. To see the extent to which the two sets of variables give similar images of
the » individuals, we select a particular matrix to characterize each configuration and use a
measure of closeness of these two matrices.

First, as a measure of the relative positions of points in a configuration, say C(X), we could
use the nxn distance matrix D(X), with (j,k)th element equal to {(X/— X%)' (Xi— X¥)},
which is translation and rotation independent. Assuming that all variables have been centred
to have means equal to 0, we prefer to use the matrix S(X)/{tr S(X)?}}, where S(X) = X’ X.
This matrix is translation and rotation independent; the scalar denominator {trS(X)}}
ensures that it is also independent of global changes of scale.

It is known that for square matrices 4 and B, tr A’B is a scalar product and that the
corresponding norm for A4 is || A|| = (tr 4’ A)*. (With this definition || S(X)/{tr S(X)%}|| = 1.)
We shall therefore measure the distance between the configurations C(X) and C(Y) by

dist {C(X), C(Y)} = || S(X){tr S(X)% = S(Y)tr S(YH|
= J@) [L=te{S(X) S(Y)}/{tr S(X)*.tr (YA} = () [L - RV (X, V) IE,
with
RV(X,Y)={tr (X' X.Y' Y)}/{tr(X' X)?.tr (Y’ Y)?} = {tr (XY'. YX"}/{tr (XX .tr (YY)}

Within a multiplicative factor of 1/n, S;; = XX, Sps = YY’, S;o = XY’ and S,; = YX’
are the sample covariance and cross covariance matrices of the variables defining X and Y.
With these notations,

RV(X, Y) = tr(Sys- Sap)/(tr 3, . tr S3,)%.

This expression is analogous to the RV-coefficient originally defined by Escoufier (1970,
1973) for two random vectors on the same probability space. The link between the mathe-
matical definition of RV using expectations and the intuitive, data-oriented approach taken in
this paper is the fact that for sampled values the equality tr(S(X).S(Y)} = tr (Syy.Ss) holds.

The coefficient RV (X, Y) will be used as the actual measure of closeness of C(X) and C(Y).
The value of RV(X, Y) is in the closed interval [0, 1] and the closer to 1 it is, the closer are the
patterns and the better is ¥ (is X) as a substitute for X (for Y) to characterize the n individuals
of the sample.

The reader will have noticed that our approach is the classical one, which assumes X
known and D and S computed from X. The reversed approach is that of multidimensional
scaling which attempts to determine X knowing D. A method due to Torgerson (1958) allows
the computation of S knowing D. Provided S is positive semi-definite, X can be obtained by
factorization. Without pursuing this point any further, let it be clear that the forthcoming
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theory remains meaningful when the original data is a distance matrix D leading to a positive
semi-definite matrix S.

The problem of comparing different multivariate analyses on the same individuals has been
treated by a number of authors. In particular, Gower (1971) has used as a measure of closeness
of two configurations a statistic equal to tr (Sy,) tr (Syo) under the assumption that the variables
have been scaled in such a way that tr.Sy; = tr Spy = 1.

3. SUMMARY OF RESULTS

Typically, the problems to be solved in Sections 4 and 5 can be stated as follows. Having
observed two sets of variables on » individuals, giving a p x n data matrix X and a g x n data
matrix ¥, find linear combinations of the variables defining X to obtain a new data matrix L'X
and, also, linear combinations of the variables defining Y to obtain a new data matrix M'Y, in
such a way that the “images” of the » individuals given by L’X and M'Y be as “similar” as
possible. We shall interpret this as the search of the matrices L and M to maximize RV (L'X,
M'Y). Depending on the particular linear method of multivariate analysis under study, a
choice of constraints will be imposed on the row-dimensions and the elements of L' and M’.
(In certain cases the problem will be reduced by prespecifications, such as Y= X, M = 1)

Consider the statistic

.R V(L,X, M’ Y) = {tl‘ (L,S12 MM’S21 L)}/{tl‘ (L,SII L)2 r (M’ng M)2}}

and suppose that L is a p X ¢ matrix. The choice of L to maximize RV is determined to within a
rotation in & (i.e. L can be postmultiplied by any ¢ x ¢ matrix R such that RR’' = I). Since a
rotation in & is determined by #(¢z—1)/2 conditions, that number of degrees of indeterminacy
can be eliminated by specifying the same number of constraints on L, or equivalently, on L' X.
For example, we could require L'S;; L to be a diagonal matrix. Similar sets of degrees of
indeterminacy and constraints pertain to M or M'Y.

Table 1 gives a schematic list of the problems to be solved in Section 4, together with an
indication of the nature of the solutions.

TABLE 1
Summary of results
X: (pxn); Y:(gxn); L and M: matrices to be determined

Initial Transformed data Dimensions
data matrices _— Additional constraints
matrices (maximize RV of?) L M to remove indeterminacy Solution relates to:
X X pXt L’S,, L is diagonal First ¢ principal
L'Xx components of X
X X gxt M’S,, M is diagonal First ¢ principal
Y MY components of Y
with respect to X
X X gxp Sie M—M'Syy M =0 Multivariate regression
Y MY of Xon Y
X L'X pXt gxt L'SyL=MSyuyM=1 First ¢ pairs of
Y MY canonical variables
X L'X pPXt pxt L'Sy L = 1I;; M'Sy, M is First ¢ discriminant
Y=(Y) MY diagonal hyperplanes (L = M)

where individuals are divided into g groups and Y} = mean value of the ith variable in the group con-
taining the jth individual.

This content downloaded from 206.212.0.156 on Sat, 26 Oct 2013 11:14:49 AM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

260 APPLIED STATISTICS

In carrying the analyses of Section 4, we always reformulate any problem as that of the
search for linear combinations of variables, leading to data matrices of the form L'X and M'Y.
We urge the reader to realize that the initial question asked by the statistician may be different
but equivalent to this approach. It may be that of finding a proper metric, i.e. a positive
semi-definite matrix Q, to apply to the initial data matrices; in accordance with our Introduc-
tion, we have implicitly selected to define Q by the product LL'. In other situations, it may be
that of finding a proper set of ¢ projection hyperplanes; each hyperplane in %7 being defined by
a p-vector, such a set is represented by a p x ¢ matrix L.

Our aim is only to show the unifying role that can be played by the RV-coefficient. There-
fore, we do not develop any part of the classical theory of the methods referred to in Table 1.
The reader should be familiar enough with this theory to see the possible extensions and
benefits of our approach. (For references, see, for example, Anderson, 1958 and Cooley and
Lohnes, 1971.)

4. LINEAR MULTIVARIATE METHODS

4.1. Principal Components of X
Having observed p variables on each of » individuals, giving the p x n data matrix X, we
seek a number of new variables, say ¢ < p, which are linear combinations of the initial variables,
with Y = L'X (where L is a p X t matrix) as the new data matrix, such that the configurations
C(X) and C(Y) be as similar as possible. To this aim, we shall maximize for L the statistic

RV(X,L'X) = {tr (S LL'S)}/{tr 2, .tr (L'Sy, LY.

To remove the degrees of indeterminacy in this optimization problem we require that the
new variables be uncorrelated, i.e. that

L'X)(L'X) =L'Sy L =A = diag(5y, 1)

where the §;’s are to be determined.

Let A; (( = 1,2,...,¢) be arbitrary Lagrange multipliers. The problem is that of maximizing,
under constraints (1), the function ®(L) = tr (Sy; LL'Syy)— X A[L'Sy; L) The derivative of
®(L) with respect to L is equal to 2(S3; L— Sy, LA) where A = diag(A;). This derivative will
vanish if S;; L = LA. Thus we can take, for the columns of L, ¢ orthogonal eigenvectors of S,
normalized to satisfy (1). Such a choice is possible so long as ¢ does not exceed the number of
non-zero 6;’s. The A;’s will have to be the corresponding eigenvalues of S;; and we will have
tr (Syy LL'Syy) = tr (L'S} L) = tr (L'Sy; LA) = tr (AA),

s oo () () - (£ e (00 0

i=1 =1 =1

(23}

From the last ratio, it can be seen that given the A;’s, an optimal choice for each §; is
8; = A;. Then, with the eigenvalues of Sy, ordered so that A;>X,>...> ], the absolute
maximum of RV is found to be

max RV(X,L'X) = (Z A2 Z‘, /\2)
i=1
If I¢ is the ith column of L, we have Sy, /¢ = A;/* and the ith new variable is the ith principal
component of X having variance equal to A,.
If ¢ is equal to the rank of Sy, then the RV-coefficient is equal to 1. Further known results
of principal component analysis could now be derived.
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4.2. Principal Components of Y with Respect to X

The problem treated in this subsection is the following: given two data matrices X, (p x n)
and Y, (g X n), on the same n-individual sample, find the optimal ¢ linear combinations of the
variables defining Y, to give a new matrix MY, in the sense that the geometrical representa-
tions of the sample C(X) and C(M'Y) will be as similar as possible.

This question will arise in practical situations when the population is essentially defined by
the variables giving X but where, for some reasons, it appears more convenient to observe the
variables in Y. We shall call the new variables the principal components of Y with respect to X.
The problem has been treated under the title “principal components of instrumental variables™
by Rao (1965).

With the RV-criterion of optimality, we must maximize

RV(X, M'Y) = tr (S;s MM’ Sy)/{tr S2, . tr (M’ Sop M.

Again, to remove the degrees of indeterminacy, we shall require the new variables to be
uncorrelated, i.e. we impose on the g x ¢ matrix M the constraint

M'S,e M = A = diag (). )]
The analysis proceeds as in the previous subsection. Using Lagrange multipliers A;’s and

A = diag(,), we must maximize the function ®(M) = tr(Sio MM 'Sy)— X A[M'Sos M 1.
The maximum is attained when

Let A, > ;> ... > A, be the eigenvalues of the generalized eigenproblem (3). The columns of
M should be the eigenvectors associated with Ay, A,, ..., A, (#<g), normed in such a way that (2)
is satisfied. (There is no gain in taking ¢ larger than the number of non-zero eigenvalues.) The
value of RV will then be

rroear ) = (00 st ()]

i=1

If the values of the variances of the new variables have not been preassigned, then an
optimal choice for the §,’s is given by A = A and the global maximum for R¥ will be attained:

maxRV(X,M'Y) = {(él)\%)/trSﬁ}}.

4.3. Multivariate Linear Regression

We consider again the search for linear combinations of the variables defining a ¢ x n data
matrix Y such that the pattern of the resulting configuration of points C(M’Y) be as close as
possible to the configuration C(X) mapping the p x n data matrix X representing the same »
individuals. We assume that S,, = Y'Y’ is non-singular and we seek p linear combinations;
thus we can speak about the “residual” variables and the corresponding residual data matrix
X-M'Y.

Let H be a p x p orthogonal matrix which diagonalizes S;,S;3 S,; and let

HS]_gSE% SZIHI = A = diag(Ai).

The solution to the problem of finding the principal components of Y with respect to X is given
by M’ = HS,, S3}. Indeed, we have M'S,, M = A and

S 812(S55 Say H')—Spa(S53 Sy H) A =0,
which shows that (2) and (3) are satisfied.
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The linear operator H is a rotation in #P. Since the RV-coefficient is independent of
rotations, we conclude that RV(X, M'Y) attains its maximum if we select M’ = S;, S5t. With
this choice we have also

(X—M'Y)Y' = S;3— M'Sy, = 0. @)

Thus it can be said that, the variables defining X being taken as regressands and those
defining Y as regressors, the linear multivariate regression operator S;, Sz} is one of the
optimal linear transformations in the sense of the RV-coefficient.

It is interesting to note that the regression operator is arrived at in a totally non-parametric
context. The same optimal value of RV is attained whether constraints (2) or (4) are imposed.

4.4. Canonical Variables

We now generalize the problem of Subsection 4.2 to the simultaneous search for ¢ linear
combinations of the variables defining X and ¢ linear combinations of the variables defining Y.
Let L'X and M'Y be the resulting data matrices. The configurations of points C(L'X) and
C(M'Y) will be as similar as possible if we choose L and M so as to maximize

RV(L'X,M'Y) = tr (L' Sy, MM’ Sy, L)/{tr (L'Sy; L)?. tr (M Sy M2},

The degree of indeterminacy will be removed by requesting that each set of new variables be
uncorrelated, i.e. that

L'S,L=A,=diag(s,;) and M'Sy, M =A, = diag(3,,). ®)

Let A =diag(A;) and ¥ = diag(i};), where the A;’s and i;’s are arbitrary scalars. The
problem reverts to the maximization, under constraints (5), of the function of L and M:

t 1
DL, M) = tr(L'Sy, MM'Sy, D-x ML'SuL]ii—El i [M" Sop M 1,5

The matrices L and M must satisfy
$H0D/OL) = S;o MM 'Sy L— S LA =0,
%(a@/aM) = S21LL,S12 M_SzzM‘F = 0.

If we premultiply the first equality by L’ and the second by M’ and let A = L'S;, M, we see
that we must have 44" = A, A, A'"A = A, ¥ and, hence, A, A4 = AA,¥. ThusA, A=A,
must hold.

Assuming that S;; and S,, are non-singular, it can be verified that a solution for L, M, A

and ¥ is as follows. Choose for the columns of L a set of ¢ independent eigenvectors of the
generalized eigenvalue problem

S12S 2—21 Sor L =Sy LT, (6)

where I' = diag (y;), the y,’s being the corresponding eigenvalues. The columns of L should be
normalized so as to satisfy L'S;; L = A,. Then (assuming that ¢ does not exceed the number of
non-zero eigenvalues of problem (6)), M = Sz} Sp; LT 2 AZEAZH; A=A T and ¥'=A, T
Note that in this solution the role of L and M are symmetrical, for we also have S, S7it S1o M =
S22 MF and L = Sﬂ]‘ S12 Ml—‘—% A;% A;%.

The new variables defining the solution data matrices have the property that the jth
variable for L'X and the kth variable for M'Y are uncorrelated when j# k; we find
L'X)(M'Y) = diag{(y; 8,9,

For the selected values of A, and A,, the optimal value of the RV-coefficient is

RV(L'X,M'Y) = (él Vi Oz Sw') / { (él 331) (21 Sgi) }%’ Q]

where the selected y,’s must be the largest eigenvalues of problem (6).
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The expression on the right in (7) is homogeneous in the §,,’s and also in the §,;’s. We may
impose the additional constraints that 3 82; = ¥ 62, = ¢ without changing the value of RV,
which is then equal to RV(L'X,M’Y)= (X vy,0, 9,)/t. In particular, if we choose
84 = 8,; =1 for all i, we obtain RV(L'X,M'Y) = ¥, v,/t for the solution in L and M given
above with L'Sy; L = M'S;, M = A, = A, = I,. This solution is precisely that formed by the
first ¢ pairs of canonical variables for the variables defining X and Y.

We conclude this subsection by a remark which will be useful in the next one. If we
preassign A, or A, to be the identity matrix I, then the optimal choice for the other is to make it
equal to I'. Indeed if| say, A, = I, then we see that the maximum of the right-hand side of (7)
is attained for §,; = y; for all i. This maximal value is equal to {(¥ y3)/¢}}, and the solutions for
L and I" are given by (6) and M = S5} Sy, L.

4.5. Discriminant Analysis

Let us consider a p x n data matrix X from a sample of » individuals belonging to g distinct
groups. The first #, individuals belong to the first group; the next n, belong to the second
group, and so on; ny+ny+...+n, = n. As previously, we assume that each variable has been
centred over the n sampled individuals. We shall denote by Y the data matrix obtained by
substituting for each element X;; of X the mean value of the ith variable within the group
containing the jth individual.

With the terminology of Cooley and Lohnes (1971) and our previous notation, Sy; = XX’
is the grand total sum of squares and cross-products and S,, = YY"’ is the among-groups sum
of squares and cross-products; W = S;; —S,, is this sum within groups. The definition of Y is
such that we have the particular simplification: Sy, = Sy = Sp;.

To relate in some way the characterization of the sample by the individual values in X and
its characterization by the group means forming Y, we shall search for projections on ¢ ortho-
gonal hyperplanes of the configuration of points C(X) and for projections on ¢ orthogonal
hyperplanes of the configurations C(Y) so as to optimize the RV-coefficient of the two
projected sets of points. Each hyperplane being defined by a vector in %7, the problem amounts
to that of finding the two p x ¢ matrices L and M that will make the two configurations of
points C(L'X) and C(M'Y) as similar as possible. To ensure that the hyperplanes are
orthogonal, we shall request that the new variables defining L'X be orthonormal, i.e.
L'XX'L =L'S;, L =1, and those defining M"Y be orthogonal: M'YY'M = M'Sy, M = A,
where A, is a diagonal matrix to be determined.

From the analysis done in Subsection 4.4, it can be seen that the problem is essentially that
of finding the canonical correlations of X and Y under the above constraints. The last
paragraph of this previous subsection provides the answer when we substitute S,y for S;, and
Sy in (6).

The solution is M = L, where L is the eigenmatrix associated with the ¢ largest eigenvalues
of the problem Sy, L = S;; LI'. The matrix I' = diag(y,) is formed by those ¢ largest eigenvalues
and A,=T. The columns of L should be normalized to satisfy L'S;;L=1. Then,
RV(L'X,L'Y) = (S i/t )

Note that since W = S}; —S,,, L also satisfies Sy, L = WLT', where ' = diag {y,/(1—v,)}.

One will have recognized that the solution matrix L defines the first ¢ discriminant hyper-
planes of discriminant analysis. It is interesting to note the relationship between canonical
variables of X and Y and discriminant analysis when Y is defined by the within-group means.
As in the case of multivariate regression, the results are arrived at in a totally non-parametric
context.

5. DISCARDING VARIABLES

A problem of great practical importance is that of discarding variables from a given set.
The problem is two-fold. Firstly, one should choose the variables to be retained and, secondly,
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one should find the proper metric to be applied to those variables so as to obtain an image of
the population as close to the one he would have had if all variables had been kept.

A number of methods have been proposed to solve this problem. A limited survey of
methods can be found in Jolliffe (1972). Most methods have the property, which we consider
erroneously restrictive, that they use only the Euclidean metric on the selected variables.

In this section we shall describe a method using the RV-coefficient to solve this two-fold
problem of discarding variables. Again, let X be a p xn data matrix giving the values of p
variables for each of » individuals. Suppose (p—¢) variables are discarded and let Y be the
t X n submatrix of X containing the values of the retained variables. Using the reduced informa-
tion, Y, and a metric defined by the product MM ', where M is a ¢ x ¢ matrix, the similarity of
the configurations of the #-sample given by the total and the reduced information, is given, in
accordance with the theory of Section 2, by RV(X, M'Y).

Without loss of generality, assume that the variables defining Y are the first . If we write
X'=(Y"iZ"), we have S}; = XX, Spp = YY', S;s= XY’, S;; = YX' and

Sp | YZ' L oyz
S11= = S’12 : ................. .
zy' | zz' {7z

The solution for M is given by the principal components of Y with respect to X. It is the matrix
of eigenvectors of the generalized eigenvalue problem (3): Sy; S;o M = Sps MA. We then have

RV(X,M'Y) = {(3 A)/tr S3,}A.

A complete solution of the problem, in the scope of this theory, would then be to choose
that set of ¢ variables and the corresponding data submatrix Y in such a way that RV(X, M'Y)
will be maximized, i.e. the sum Y} A? will be maximized. The optimal metric to use on Y is the
resulting matrix MM’ and a measure of quality of the particular choice of variables and metric
is the resulting value of RV(X, M'Y).

When the numbers ¢ and p are small, one could conceivably try all combinations of ¢
variables. For large values of ¢ or p, the authors have not succeeded, up to now, in finding a
numerically efficient algorithm to select the optimal subset of variables. However, a sub-
optimal but numerically efficient technique will now be summarized.

For the purpose of this description, we call a diagonal matrix with non-negative elements a
weight matrix. The optimal weight matrix A to be used on the data submatrix Y of X is the one
that maximizes RV(X,AY). As for the case of an arbitrary metric, the authors have not yet
found an algorithm that they would call numerically efficient for the two-fold problem of
selecting the best set of ¢ variables together with their optimal weight matrix. They have found
and coded a suboptimal algorithm which makes a sequential selection of variables. This
algorithm, described in Escoufier et al. (1974), will be called the Sequential-Weight-Selection
algorithm. It selects the one best variable with its corresponding weight; then, having selected
k variables at the kth step, it proceeds to determine which one of the remaining p — & variables,
when added to the k previously selected variables, will, with the optimal weight matrix,
maximize RV. (Of course, at each step, the weights of the variables previously selected have to
be recomputed.) The choice of the (k+ 1)th variable is dependent on the choice of the first k;
as with sequential regression, it is this sequentiality that restricts the choice algorithm to
suboptimality.

For the general problem of discarding p — ¢ variables, we may then proceed in two phases:

Phase 1. Use the Sequential-Weight-Selection algorithm to select ¢ variables and the
associated optimal weight matrix. Let Y be the selected data submatrix, A its weight matrix
and p, = RV(X,AY).

Phase 2. Use the results of Subsection 4.2 to compute the optimal metric MM’ to be used on
the variables defining the data matrix Y selected in Phase 1. Let p, = RV(X,M'Y).
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Since the choice of M is not restricted to that of a diagonal matrix, p, is at least equal to p,
and will usually be greater. The value of p, serves as a measure of the goodness of the solution
to the discarding problem (with proper choice of metric on the retained variables).

In practice, assuming the RV-coefficient is to be used as a criterion to estimate the quality of
the result, it is most likely that the problem of discarding variables will be posed in the following
terms: discard as many as possible among the variables defining the data matrix X, while
ensuring that the remaining variables (Y) with a proper metric (MM") will represent the total
information to a “level” at least equal to « (RV(X, M'Y) > a, « relatively close to 1).

The Sequential-Weight-Selection algorithm coded by the authors is designed so that, given
p1, it will select variables until the resulting RV (X, AY) attains the value p;. For a solution of
the problem stated in the previous paragraph, one would use this option in Phase 1 with p;
equal to or slightly smaller than «. Then Phase 2 will give a value of p, which should reach the
required level.

The authors are presently gathering numerical evidence, to be published in the near future,
on the following properties of the proposed method: computational performance, degree of
suboptimality, comparison with other methods. We conclude by pointing out that the
Sequential-Weight-Selection algorithm, using the simpler transformation A instead of M, is of
interest in its own right since it provides good solutions to the problem of retaining variables
with only an appropriate change of scales.
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