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The results shown in this paper concern the analysis of data, and especially the 
comparison of several analyses. They have as a common starting point an accepted 
party which must be specificd before anything else; a data analysis of n subjects 
is characteri zed by the couple (D ,D ) where Dis the matrix n x n of distances 
between subjects and D a diagonal P matrix of weights affected to each of the 
subjects . P 

The inevitable consequence of this point of view is that we are led to make a 
comparison of the data analyses given for the same subjects by comparing the c~u­
ples (0,0) which characterize them ; paragraph 2 deals with the way in which 
this aim P can be achieved. Paragraph 3 shows how this approach allows a new 
and unifying look at the different methods of multidimensional statistical ana­
lysis. Paragraph 4 touches the problem of variable choice while paragraph 
5 deals with the joint treatment of several data matrices . 

II - THE COMPARISON OF DATA ANALYSIS 

II -1 Let us take, for this paragraph, a point of view which could be 
called "traditional" in which a data analysis of n subjects is defined by the 
triplet (X ,Q,DP) in which : 

X is a matrix, px n, containing the values taken by p numeric varia­
bles on each of the n subjects. 

The column Xj of X contains the observations made on the individual j. 

Q is a positive definite or semi-definite matrix, px p, which allows 
the calculation of the distances between the individuals 

ojk [ (xj - xki'o(xj-h]
112 

subjects. 
OP is a diagonal positive matrix, n x n, of weights affected to the 

We have 

Let us define the matrix W, 

Djk = [ wjj + wkk 

the elements of which are 

1/2 

It is obvious 
that two analyses wh i ch 
k > O lead necessaril 2 tionality equal to kl/ 

that the knowledge of W allows the calculation of D and 
lead to the proportional matrices W of proportionality 
to the matrices D which have a coefficient of propor-
. This allows us, in this "traditional" point of view to 
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substitute in the comparaison of the couples (D,Dp) those of the couples (W,DP). 

Remarks 
Let )0 be the vector, n x 1, of components all equal to 1 and Y the 

centered matrix px n associated with X. We can write : Y= X(! - Op!!') . 
We can easily verify that : 

a) Y'QY=(l - ll ' D)W(l-0 11') 
-V,v p p,-..,,v 

b) The distances calculated from either W or Y'Q Y are the same. 

c) Y' Q Y admits the eigenvector D 1 associated with the zero eiqen­
value so that for all other eigenvectors U, P we have U'Dp ! = O. 

with 
Because of these remarks, we choose to calculate W and then to ~ork 

(! - 1 l' D) W (! - D 1 l ' ). ~~ P P~~ 

ïl-2 Let us now take a point of view less traditional in which the 
data are a couple (D"", Op) in which : 

OP has the same significance as in 11-1. 

D* is a n x n matrix of di ssimilarities between subjects obtained 
either as the result of manipulations of variables, eventually qualitatively, 
or in a purely subjective way. 

Given -©the matrix n x n the elements of which are the squares of 
those of D* , the Torgerson method defines a matrix of scalar products W"' by the 
formula : 

wr = - (! - ll'D);i) ( I D 1 n ~ ~ p p ~ 
which i s such that : 

Djk = [w~. + wkk - 2 w;k] 
1/2 

JJ 

but nothing assures that there exists a rea l configuration of n points, accepting 
as mutual distances the elements of Dk. 

Because the obtaining of real configurations of points is the center of all 1,1e­
thods of data analysis, we have chosen in this case to substitute for~ ~ the po ­
sitive definite matrix W which is its approximation in the sense of least squa­
res. If lU; ; i = 1, .... , n} is the set of eigenvectors (of unit norm) of W,.. 
associated v1ith the eigenvalues [.,<i ; i = 1, ... , n J we know that : 

W = L .,(. u1 u; where I = Î i/ /.... >0 l 
i t] l l l ) 

We remark that for all numbers k, the matrix W.~+ kl has the same eigenvectors 
as W'' , the eigenvalues being ,(i + k, thus by taking k.,._ = '.Z~to J 1 1 I • w~ + k''l 

i s pos i t i ve semi-definite and the distances corresponding to 1 it are equal to 

[ 

- 1/ 2 
[o~ 2 + 2 k~ 112 

= O".' 1 + _L~~-1 
Jk j Jk 0,..2 

. jk 

Consequently, working with the matrix W' + k* I (a method suggested tome by 
J.P. Pagès) does not modify the order of distances and thus is a happy alternati ­
ve to the "addit i ve constant method". Secondly, the eigenvectors associated with 

the largest eigenvalues 
configurations gi ven _ 
ciated by the fact ta: -
w~ + k, I have as nor-

Thus we consider that '- -
the couple (D~,o) t he:- : 
tian is chosen, P the s:: 

11-3 Le t 
Our previous choices 

If Ui is aneigenvector_ : -= _ 
the same eigenva lue .. : -

a) that t t,e r· :-

b) that if --=-

At this point, the 
(W,D ), and comparing 
ratoµs w1 o1 and w2 o2 

It is known that fo r r" 
corresponding norm bei~ç 
matrices w1 o1 and w2 D" · 

dl(E1,E z) 

In order to ~ake 

To clarify the 
marks : 

a) Let us re: =·= 
p(i-l)n+j = (W Dp)ij . . :· -
points representative o-=: = 
p2 in Rn X n is dl E: .:_ 

b) Let us ~o 
nal" and suppose tha 
for the same i ndividua·: 
bath cases. If we 



•h~se of the couples (W , D ). 
p 

•r all equal to 1 and Y the 
·e . Y = X ( I · D 1 1 ' ) . p~ ~ 

or Y'Q y are the same . 

soc'ated with the zero ei qen· 
e U'D 1 = O. 

p ~ 
~late W and then to ~ork 

.ss : rad itional i n wh i ch t he 

e:ween subj ects ob tained 
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r- ;~e sense of lea st squa­
rs (o f unit norm) of W* 
e know that : 

> -·J 
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the largest eigenvalues of W and Wfr + k~ I are the same (those also of wr). The 
configurations given by W and Wk + k~ I are thus neighbours ar7 are only differen­
ciated by the fact that the eigenvectors of W have as norm A 2 where those of 
Wfr + k* I have as norm ( ,< + k~)l/2. 

Thus we consider that in this less traditional point of view we can substitute for 
the couple (D*,D) the couples (W,D) or (W><-+ kl<' I, D ). No matter which solu· 
tion is chosen, P the study is char~cterized by a coup~e which we call (W,Dp). 

II-3 Let us now look at the operator on Rn defined by the matrix WD 
Our previous choices put WDP in the rank k ,s;;,n. P 

If u. is aneigenvector of WD , D 112 u. is the eigenvector of D 112w D 112 for 
the 1 same eigenvalue. It foTPowsP: 1 P P 

a) that the eigenvectors of W Dp are OP-orthogonal. 

b) that if the Ui are chosen as OP-orthogonal, then we have 

n 

L / .u.u'.=w 
1 1 1 

i = 1 

At this point, the operator WD appears as characteristic of the couple 
(W,D ), and comparing two studies P E1 and E2 is the same as comparing the ope­
rato~s w1 D1 and w2 o2 which are assoc,ated with them · 

It is known that for the s~uare matrices A and B, Tr (AB ) is a scalar product, the 
corresponding norm being L Tr (A2 ) 7 1; 2 . If thus two studies E1 and E2 lead to the 
matrices w1 o1 and w2 o2 , we can aefine a di stance between E1 and E2 by : 

[ 
2 ] 1/2 

dl (El,E2 ) Tr (Wl Dl - w2 D2 ) 

,...l 2 2 11 / 2 Tr(W 1D1) +Tr(W2 D2) - 2 Tr(W1D1W2D2) 

In order to make the propbrtional matrices equivalent, we use as well 

[Tr [ W1D/ [Tr(W1D1)2] 1/2 - W2Dzl [ tr(W2D2)2l 1/2]1/2] 1/2 

[ l- 2 2] Ï12] 112 
2 1 -1Tr(W1D1W2D2)/ Tr (W1D1) Tr(W2D2) 

d2(El,E2 ) 

To clarify the significances of these distances , we must make the following re­
marks : 

a ) Let us represent a study by a point P of Rn x n of coordinates 
p(. l) +· = (W D ) .. . Using in Rn x n the identity metric, if pl and p2 are the 

1- n J p lJ , 
points representative of the two studies E1 and E2, the distance between p' and 
p2 in Rn X n is d1(E 1,E 2). 

b) Let us now return to the point of view which we called "tradition­
nal" and suppose that we have to compare two studies (X,I,D ) and (Y,l,D ) given 
for the same individuals with the same weights and the iden~ty metrics iR 
both cases. If we remark that : 

X Dp X' = s11 the sample covariance matri x as estimated from the variables 
defining the rows of X. 

y Dp Y' = 522 the sample covariance matrix as estimated from the va r iables 
defining the rows of Y, 

• 



128 Y.ESCOUFIER 

Y Op X' s21 and X Dp Y' s 12 , 

then Tr(WlDp W2Dp) = Tr(s 12 s21 ) 
- 2 2-1;2 ,- 271/2 

and Tr(W1DP w2DP)/ LTr(W1Dp) Tr(W2Dp) J = Tr(S 12 s21 );l_Tr(S11 2)Tr(s 22 ) J 

The expressions on the right-hand side of the two preceding equilities are ana­
logues of the coefficients COVV and RV introduced in ·(2) for two random vectors 
defined on the same probability space. By extension we thus use : 

III - MULTIDIMENSIONAL STATISTICAL ANALYSIS 

Without going into the details of the demonstrations which the interested reader 
can find in a recent paper (5), we will now show how the different methods of 
multidimensional statistical analysis could be presented starting from the coef­
ficient RV. 
Note, first, that for every matrix Q, px n, oositive semi-definite, there exists 
a matrix L, px t, t ..;;;P, such that Q = LL'. -This allows us to describe a study 
on a matrix X, px n in the form (X, LL', D ). If we consider a second study 
(Y, MM', D ) with Y of dimensions q x n, foP the same individuals and the same 
weights, wi can adopt the notation RV(L'X, M'Y). Note also that the matrix L is 
such that Q=LL'is determined to within a rotation in Rt. Inasmuch as we 
want to determine L, we are thus forced to introduce the conditions which allow 
its determination. In the following table, we can find the description of pro­
blems the solutio~s of which correspond with the methods of multidimensional 
analysis. 

Problems 

Find M, p x t, t ,;;;p which maximises 
RV(X, M'X) under the constraint : 
M' X Dp X M diagonal 

Find M, q x t, t -a;;,inf (p,q) which 
maximises RV(X, M'Y) under the cons­
traint : M'Y DP Y M diagonal 

particular case : t = p 

Find 
mise 
L' X 

L, px t, and M, q x t which maxi­
RV(L'X, M'Y) under the constraints 
D X'L = M' Y D Y'M = It p p 

Cas particulier : The iQdividuals are 
d1v1ded 1nto k groups. YJ is the mean 
vector in the group containing the jth 

indidual 

solutions 

First t principal components 
of X 

First t principal components of Y 
with respect to X 

M' = (X D Y') (Y D Y' f 1 gives the 
ma.ximum P and P(X-M'Y)D Y' = 0 
Thus we have the regression P of X 
with respect to Y. 

First t couples of canonical varia­
bles 

First t discriminant functions 
(L = M) 
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N.B. - Our approach leads to the introduction of all the methods in terms of com­
parison of distance matrices. This gives sometimes an unusual point of view; for 
example the regression of X with respect to Y is interpreted as the research for 
the metric MM' to be taken for Y, in such a way that the distances in the study 
(Y, MM', Op) are as close as possible to the distances in the study {X,I,Dp). 

Let us finish this paragraph by noting that for all the studies given under the 
fo.,rm of a couple (D, D) we have associated a couple (W, D ). The factorization 
of Win the form W = X~X allows the presentation of the st8dy in the form (X,I,D) 
and thus the extension of all the classical methods of multidimensional analysisp 
for data {D,DP). 

IV - CHOICE OF VARIABLES 

The use of the RV coefficient and in particular the results of the previous para­
graph allows us to study much more clearly the problem of the choice of variables 
by clearly showing that the choice is always ·accompanied by a choice of the me­
tric to be used. Let us take two given studies (X,LL' ,D ) and (Y ,MM' ,D ) with 
X, px n, and Y, q x n, given for the same individuals P ( possibly P Y= X 
and M = L). 

The problem is to find Z , t x n, t -c:q, extracted from Y, which for a metric NN' 
where N is given or has to be found, realizes the maximum of RV{L'X, N'Z). 

Problem 1 : N = It 

We want to use the variables Z as they are. The distance between two inüividuals 
is the classic~l :uclidean distance. The study (Z, It, OP) is, from the point of 
v1ew of the pr1nc1pal components method the closest possiole to (X. LL'. c ). 

• p 

Problem 2 : N positive diagonal 

The affecting of weight to the chosen variables is accepted (i.e. the changing of 
units) but we want to conserve the experimental significance of the variables. We 
look for both Z and N. 

Problem 3 : Any N 

Both Z and N have to be found, which means that the principal components analysis 
on (X, LL', D ) and (Z, NN', D ) must be as close as possible. Remark that for a 
given Z, N isPgiven by the priRcipal components of Z with respect to X. 

Problem4: N' = (L' XD Z') (ZD Z')-l p p 

Following the results of the previous paragraph, we realize the regression of L'X 
with respect to Z. The problem is thus to find the best sub-set of Y from the 
point of view of the regression of L'X. 

Problem 5 : LL' = {X DPX' )-l , MM' = (Z Op Z' )-l 

One can see as well (by calculating RV for example), that the variables retained 
are those that are susceptible to allow the canonical analysis, with X the most 
satisfying. 

Problem 6 : X matrix px k of the averages of k groups {LL')-l inter-groups cova­
riance matrix for X . 

Y matrix q x k of the averages of the same k groups (NN' )-l inter-groups covari­
ance matrix for Z extracted from Y. The maximisation of RV(L 'X, N'Z) is the same 
th ing as looking for the best sub-set of the variables Y, in the sense where it 
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allows a discriminant analysis, the closest possible ta that which allows X. 

V - JOINT ANALYSES OF SEVERAL DATA MATRICES 

V-1 Let us define 1E- ; i i:: _I J a family of data analyses on the same 
individuals with the same weignts .. \Jitr{ E. ; i • I) is associated the family of 
operators ( Wi D ; i é I J. We propose to 1 study the proximities and the diffe -
rences of Ei. P 

Consider the matrix C the elements of which are C .. = COVV(E.,E.) C is the matrix 
of scalar products between the operators and, fol13wing the temdrk (a) in II3 , 
there exists a real configuration of points compatible with C. The canonical fac­
torisation of C gives a visualisation of this configuration of points in which 
each study is represented by a point. The distances between the points are 

(C .. + C .. - 2 C .. )1/Z . Particularly if w. D = kW. D , the origin and the pain~ 
11 J~ lJ J p 1 __ 7 _p -,. 

pl and pJassociùtedwith E. and E. are colinear and OpJ = k0p 1 . The converse is 
true . Of course practicàl thou~ht leads ta limit the representation ta two or 
three eigenvectors of C associated wit,'.1 the la_r9est eigenvalues. The qualiti of 
this approximation is appreciated by the usual tools : rate between the extracted 
eigenvalues and Tr(C) for example. 

Rather than work with C, we can choose ta work with R the elements of which are 
R .. = RV(E., E.). In this case, studies leading ta proportiQl)~l operators are re­
P/:s~ent~_1by J confused points. Moreover, for all i , I, jjOp1 li= 1 and 
<Op 1 , OpJ> = RV(E.,E.). If the representation by the_first two eigenvectors of 
R keeps, for the 1 J projections of the vectors Op 1 , the norms nei ghbour to 
the unity, then the value of....,RV(E.,E.) is rather equal ta the cosine of the angle 
made by the projections of Opl and J Op.i . 

V-2 The coefficients COVV(E. ,E.) and thus RV(E.,E . ) are alway.; non - ne­
gat i ve. So, the matr i ces C and R have a1fitst eigenvector; J the elements of 
which are always non - negative . Let us take t...::- ; i E: I} as the components of this 
vector. We have the following theorem : 1 -

For all I f> .; i " Il such that for all i , j?, i.;;;,,.O 
and Ll 52 = ~j d..? 

· ' l . L.. l L l[t I ) l cc I 

i t: I RV(f-;I ,Gj wj Op)] 2 ¾ 

we have : 

' Thus , W D = .L s--Z- W. D is an operator which constitutes the best compro-
mise betwgen ail~the ~tudie~ in the sense of the criteria used in the theorem. 
Because it is a positive linear combination of positive semi -defin i te operators, 
W D is also positive semi-definite. We can thus obtain by a canonical factori­
sat9on a visualisation of the abjects which constitutes a compromise between all 
the studies. 

Remark : We have as well an analagous theorem for COVV. 

V-3 The space of the representations of abjects as they are seen by 
the compromise can be used as reference space into w~ich each one of the initial 
studies is projected. This possibility allows us ta see the way in which each 
one of the studies differs from the compromise. In the case ~fa chronological 
study, it allows us to visualise the evolution of the different abjects du ri ng 
the time. Examples of the application of the theory developed in the fifth 
section are treated in (3). A program exists and the way in which it can be ab ­
ta i ned wi 11 be gi ven by the author . 
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