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In this paper, a statistical study is defined as a trip-
let (X,0,D) where X is a data matrix, Q and D are matrices
used to compute distances between individuals and variables
respectively. It is shown that the problem of comparing
statistical studies can be well posed and efficiently solved
by use of the RV-coefficient.

Algorithms are given to choose metrics and perform vari-
able selections by optimization of the RV-coefficient. The
Proposed methods are applicable to quantitative as well as
qualitative variables.

In an Appendix, a conceptual framework is proposed in
which the notion of statistical study, as defined in this
paper, can be interpreted and further developed.

I. ANALYSIS OF DATA WITH CHARACTERISTIC OPERATORS

We consider a statistical study as characterized by a

triplet (X,Q,D) where:
- X is a pxn matrix of measures of p variables on n indi-

viduals,
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-~ Q is a pxp positive definite or semi-definite matrix which
is used to compute the distances between the individuals,

- D is a nxn diagonal matrix, with positive diagonal elements,
giving the weights attached to each of the individuals; the
sum of the weights must be equal to 1.

In this work we assume that the rows of X are centered
with respect to the weights in D = diag(dj), i.e., L dj xij

J

= 0 for each i. Then V = XDX' is the matrix of variances and

covariances of the p variables.

The nxn matrix W = X'QX of cross products between indi-
viduals plays an important role in data analysis; its rank is
p when Q and X are of rank p < n.

To define a statistical study by a triplet (X,Q,D) means
that the study is completely specified when the statistician
has an array of collected data (X), has decided on the weights
to be attached to each one of the individuals in the sample
(D) for the computation of the covariances from which vari-
ables are compared and, finally, has decided on how indi-
viduals are to be compared (Q).

To compare a statistical study (X,Q,D) with other
studies, we shall make use of the associated operator WD.

Given (X,Q,D), WD = X'QXD is specified. Conversely,
given WD, with a positive definite matrix W, one can con-
struct a triplet (X,Q,D) such that X'QX = W.

To compare two statistical studies (X,Ql,D) and (Y,Qz,D)

on the same individuals and with identical sets of weights D,

we seek a mean of comparison between the matrices w1D and sz.

The following propositions set the mathematical background for
this linking. No proofs are given; they are arrived at
through simple algebraic calculus and can be found in [1], [2]
or [7].

Let S(D) be the set of D-symmetric matrices, i.e., the
set of matrices A such that DA = A'D. Note that S(D) con-
tains all operators of the form WD; an arbitrary element A of
S(D) cannot be considered as an operator associated to a

statistical study unless (AD-l) is positive-definite. Then,
we have:

Proposition 1. The symmetrical bilinear from P defined
on S(D) by

P(A,B) = tr(AB)

is positive. Hence, it defines a scalar product on S(D) and
a distance d given by
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2

d" (A,B) P(A-B, A-B) = tr((A-B)z)

tr(a%) + tr(B%) - 2 tr(aB) .

By similarity with the usual statistical vocabulary, we
define (on S(D)):

COVV (A,B) = tr(AB) ,
VAV (A) = tr(Az) R
RV (A,B) = tr(AB)/[tr(Az) . tr(Bz)]li .

The RV-coefficient RV(wlD,sz) can serve as a measure of
comparison between the studies wlD and sz. The following

proposition helps to understand the significance of RV:

Proposition 2.
(i) For any (X,0 ,D) and (¥,Q,,D), © S RV(W D,W,D) < 1;

(i1) RV(WlD,WZD) =1 if and only if Wl = kW2 for some

non-zero scalar k;
(iii) 1f Q, and Q, are positive definite, RV(W,D,W,D) = 0 if
and only if 512 = X'DY = O.
The basic elements introduced above can take place in a

theoretical framework constructed on the usual vector spaces

RF ana Rn, in which individuals and variables are commonly
represented, as well as on their dual spaces of linear func-
tionals. This duality scheme, developed by Cailliez and
Pages [1], has already proved itself a useful tool for the
analysis of statistical studies and could be instrumental in
further research. The interested reader will find a summary
of this duality scheme in the Appendix to this paper; it has
been given this marginal place because its knowledge and
understanding are not a prerequisite for the remaining sec-
tions of the paper.

II. CHOICE OF A METRIC

Consider a given pxn data array X and a statistical study
on it: (X,I,D). D is nxn, non-singular. We assume the dis-
tances between individuals to be obtained from the metric
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represented by the identity matrix I; it is easily seen in
the sequel that this assumption bears no loss of generality.

One can think of many practical situations in which
measurements will be taken on the same individuals but for a
second set of variables (totally or partially different from
those giving the array X). This second set of observations
may be made for a number of purposes. For example, it may
simply be to compare the apparent structure of the population
(the n individuals as seen from two points of view); it may be
with the idea of discarding variables (those or some from
those giving X) which are difficult or costly to measure.

Suppose the new set of q variables gives a gxn data array
Y on which the statistical study (Y,Q,D) is to be carried.
The positive definite, gxq, matrix Q defines the new way of
measuring distances between individuals.

The results of the two studies can be compared by use of

the RV-coefficient. With W1 = X'X, wz = Y'QY, the closer to

the value 1 will RV(WID,WZD) be the closer will the studies

(X,1,D) and (Y,Q,D) be. Note that, from Proposition 2, as

RV approaches 1 the set of cross products between individuals,
and therefore the set of distances between individuals, as
computed in the two studies tend to be equal within a common

multiplicative factor (Wl==k w2 for some scalar k).

We shall show, using two particular cases, that it is
always possible to find Q such that the studies (X,I,D) and
(Y,Q,D) will be as close as possible. In the context of this
paper, it means that RV(wlD,sz) must be maximized.

A. Selecting Q to be a Diagonal Matrix

In practice the restriction that Q be a diagonal matrix
means that the statistician is ready to change the measuring
scales of the variables defining Y. With Q = A = diaq(éj), we

have

RV(W;D,W,D) = t(X'XDY'AYD)/[tr((X'XD)Z) 'tr((Y'AYD)z)]}i .

Let uij (i=1,...,9; j =1,...,p) be the élements of
YDX'; vij (i=1,...,9; j =1,...,9 be the elements of YDY';
P
z, = L u,.. It is easily shown [4] that
i j=1 ij
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a p , q
tr(X'XDY'AYD) = I ( £ %)) §. = % z.6.,
i=1 j=1 Pog=p Y
2 a 2
tr((Y'AYD)") = I I V.. §. &8, ,

i=1 j=0 2 J

so that the maximization of RV(wlD,sz) reduces to the simple

quadratic problem:

- minimize z z vij Gi Gi

q
- subject to L =z, 6, =1 and Gi > 0 for all i .

This problem can be written in a canonical form by setting

2
N.= = H
i z, Gi , Cij vij/zizj
q q
- minimize z L C.. Ni N. .,
i=1 j=1 J
q .
- subject to I N. =1 and Ni > o for all i .
b
i=1

Since the variances and covariances matrix YDY' is posi-

. . . 2
tive definite, so are the matrices with elements vij and Cij

[6]. Thus the above problem is totally convex and admits a
unique solution. There exists a number of algorithms to com-
Pute the solution; one which was found particularly efficient
is an iterative procedure given in [5]. Starting with an

. . m+l
arbitrary vector N(o)' the (m+l) approximation N( )

(m)

obtained from N as follows:

™) _ max [o,=— (1 -

N =
1 C11 3

I ~.Q
0
z
—
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(m+1)

N, =max[o,CL(1— T C, 1 N, ™ _ oy C,. N.(m))]
i og<i 3 3>i
for 1 <i<gq,
q-1
+1
Nq‘“" = maxfo,—(1 - I c__ Nj(“‘ 1.
aq j=1
. (m) _
One shows that 1lim N = N* and
m > ©
q
= * * . = .
N =N /i§1 N, *; hence Gi Ni/zi

B. Unrestricted Q

We now seek a (symmetric positive semi-definite) matrix Q
that will make the statistical studies (X,I,D) and (Y,Q,D) as
similar as possible. For any Q, there exists a matrix M,
gxr (r < q) such that Q = MM'. The matrix M is not unique.
We must maximize

RV (W,D,W,D) = tr(X'XDY'MM'YD)/[tr((X'XD)2)
2
* tr((Y'MM'YD) )]L’ .
It is interesting to note that the same problem arises if
the statistician substitutes for Y the linear combinations of

variables which give the data array M'Y and then compares the
studies (X,I,D) and (M'Y,I,D).

3 = ' = ' - ' = '
We.deflne 512 XDY', 521 YDX', sll XDX', 522 YDY
and write
RV(W.D,W_D) = tr(M'S__S._M)/[tr 52 * tr((M's M)z)]g
1 2 21712 11 22 .

Note that the value of RV is not changed if we replace M
by MR' and M' by RM' when R is an rxr orthogonal matrix
(RR' = I) so that we can seek the maximum of RV with some
degree of indeterminacy. We choose to impose that M'SZZM be

a diagonal matrix A = diag(éi); then any rotation R applied to

the solution found M will define the same solution matrix Q
Q = MR'RM' = MM'.
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Introducing the Lagrange multipliers Ai(i=l,...,r), we are

lead to the maximization of

d(M) = tr(M'SzlSle)

N MK

L}
I A [Mtsp oMl
i=1
The maximum is attained when

39 _ _
X Mo 821312M - szzmA = o (1)

where A = diag(ki). The solution is to give to the Xi's the

values of the r largest eigenvalues of this last generalized
eigenvalue problem. The columns of M will be the eigenvec-

tors associated to Al,kz,...,kr, normalized to satisfy

M'SzzM = A. It follows that

r 2 2%
RV(wlD,sz) = 51 Ai Gi/[tr si; ° (izl Gi)]

and that the optimal choice consists in taking Gi = Ai. Then

Y
RV(W,D,W,D) = [ Ai/tr si1]5 .

i=1

Note that the problem solved here has been studied in [8]
under the title of "principal component analysis of Y with
respect to the instrumental variables X". Our approach and
interpretation are different.

Another interpretation can be given, when r = p, in a
regression context. Indeed, it can be verified by substitu-
tion that HSIZS;; is a solution of (1) if H is the pxp ortho-

. . . . -1 . -1 .
gonal matrix which diagonalizes S,,S,.5,, : HS,,8,58,,H" = A.

. . -1 . .
This shows that the regression operator M*' = 512822 gives its

maximum value to the RV-coefficient.
Relationships between this type of analysis of statisti-
cal studies and other classical linear multivariate techni-

ques can be found in [9].
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III. SELECTION OF VARIABLES

Again we consider two data arrays on the same individuals,
X (pxn) and Y (gxn). The variables defining Y may be identi-
cal or they may be partially or totally distinct from those
defining X. The array X and the statistical study (X,I,D)
attached to it will serve as a reference study.

In this section we seek a selection of k variables from
the q variables defining Y. Not only can we select variables
but, using the RV-coefficient as a measure of quality, we can
attach to the selected variables a metric that will make the
corresponding statistical study as close as possible to the
reference study (X,I,D). If K is a set of k distinct indices
from {l,2,...,q} and Yk is the subarray of Y which retains

those rows with indices in K, we shall search for a metric Qk
3 5 1] ]
to maximize RV(X'XD, Y X Qk Yk D).

Theoretically one could consider all combinations of k
variables from the q variables defining Y and, for each com-
bination, use the algorithm described in Section II; the best
pair (Yk’Qk) will be detected. Unless g is very small, the

method is not practical.

The authors have designed sequential algorithms which are
suboptimal but have proved to be numerically efficient and, at
least from the test samples used, very close to optimality.

We shall consider three cases depending on the type of metric
Qk which is looked for. Computer packages have been coded in

FORTRAN which will perform the selected type of computation;
they are available from the authors.

A. Ordinary Euclidian Metric on Yk(Qk=I)

The problem is simply that of selecting the k variables.

We must maximize RV(X'XD, Y'kYkD) for the selected array Yk.

Suppose a subset of (k-1) variables, corresponding to the
array Yk-l' have been selected. Let y be a not yet selected

row of Y and let
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Yk-l being known, it is easy to construct an algorithm to

select the optimal y; one makes use of the simple expressions:

tr(X'XDY'Y D) = tr(X'XDY'

L 1
oY, po1¥_qD) *+ tr(X'XDy'yD) ,

tr(y}'(YkD)2 = tr(y' )2 + tr(y'yD)2

x-1Yk-1P

+ tr(y'

1
k-1Yk-1%Y YD) -

(Note that tr(A'ADy'yD) is equal to the sum of the squares of
the elements of the vector ADy').

Variables are added sequentially. The first variable to
be introduced must maximize

2 2
RV(X'XD, y'yD) = tr(X'XDy'yD)/[tr(X'XD) " « tr(y'yD) ];’

p 2
= I [cov(xi,y)f/[tr(x'xn) -03]% .

Thus, the process is initialized with the variable which
maximizes

p
X [cov(xi.y)]z/o2
i=1 Y

B. Selecting Qk to be a Diagonal Matrix

To the problem of the selection of the variables is now
added that of scaling the selected variables: we require Qk
to be a diagonal matrix, say Ak.

Again we assume that k-1 variables have been selected and
their optimal weights computed; let Yk-l and Ak—l be corres-

ponding matrices. For each variable not yet selected the
algorithm of Section II.A must be applied with Y replaced by
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The result will be a new set of weights Ak (the weights

attached to the k-1 initial variables will generally be
changed) and the resulting value of RV. The best choice for
y is made by comparing the RV values.

Note that the first variable to be retained is the same
as in III.A (with weight equal to 1).

C. Unrestricted Q
Lastly, we consider the general problem of selecting k
variables, with data array Yk, and an unrestricted (positive
semi-definite) matrix Qk to make the statistical studies
(x,I,D) and (Yk,Qk,D) as close as possible.
As in Section II.B we wri = ' and seek to maximize
te 9 = MM

is given, we know from Section

] 1] L]

RV (X'XD, YkMkMkYkD). When Yk
* ! -
II.B that Mﬁ = Mk = XDYQ (YkDYi) 1 is optimal and then,
-1 2
) TMAM* ! = [] [] )
RV (X'XD, YkMkMk YkD) {tr[XDYk (YkDYk) Yka ]
/tr(x'Dx)2}5 .

It can be shown that from k-1 known variables, it is rela-
tively simple to select the k-th variable which will maximize
the numerator of the above expression. The algorithm uses
successive Choleski decompositions of the matrices Y

k-1
U [} v - ' . .
DYk—l' YkDYk' If YkDYk Sksk' where Sk is lower triangular,
-1 2 -1 -1,2
t XD' 1] = Al L3
r [ Yk(YkDYk) Ykai tr(sk Y, DX xnyksk )

. -1 1
and the matrices S i .
X Yk are easily computed from Sk-l Yk-l

Remark. We have presented here forward selection techni-
ques. Computer programs have been coded for backward elimina-
tion and step-wise selection (combined forward-backward). The
relative efficiencies of the methods are presently being
studied.
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IV. QUALITATIVE VARIABLES

In a paper [6] of much practical interest J. C. Gower
introduced a notion of similarity which allows the simultane-
ous treatment of quantitative, qualitative and dichotomous
variables. For each one of such variables, an nxn similarity

matrix s; (i=1,2,...,9) is defined. Giving weight 6i >0

to the i-th variable, a global similarity matrix S between
q

the n individuals is defined as S = I éisi' Gower dis-
i=1

cusses conditions under which S is positive definite.
Suppose a reference similarity matrix R, nxn, is known.

Using the RV-coefficient as a measure of closeness, one can

compute the optimal values for the Gi's if S is to reproduce

R as best as possible. Indeed, assuming that each Si is

positive semi~definite, R and S are analogous to the matrices
of cross-products between variables, wl and w2, respectively.

(For example, referring to the notation of Section II.A and
denoting by y. the i-th row of Y, it can be seen that
i

Y'A 5
Y= E 6; viv;)-

The maximization of RV (RD,SD) is easily seen to be equi-
valent to the quadratic programming problem:

q q
e ; 8.6,
minimize ‘Z ‘Z tr(SiDSjD) i%j
131 j=1
- subject to I tr (S, DRD) Gi =1 and Gi > 0 for all i.
i=1

. 2
Hence the algorithm of Section II.A can be used (with v_lj =
tr(s,Ds.D) and z. = tr(S,DRD)).
175 i i

The proposed method assumes previous acceptance of a simi-
larity matrix R and, using it as a reference, allows the
determination of the relative weights to be given to qualita-
tive variables to explain as well as possible the similarities
in R.
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APPENDIX: DUALITY DIAGRAM

Consider a pxn data array X giving the values of p vari-
ables on n individuals. As stated in Section I of this paper,
a statistical study is completely defined when the statisti-
cian has decided on a metric, represented by a positive
semi-definite matrix Q, to compute the distances between the
individuals and has selected a set of weights dj's to be

attributed to the individuals. The matrix D = diag(dj) plays

the role of a metric between the variables: the cross pro-
duct between two variables is indeed their covariance computed
using the density function defined by the selected weights

L]
(v = XDX , assuming all variables centered).
The variables-individuals system is usually represented

in the vector space E = Rp. There, the i-th axis corresponds
to the i-th variable and the j-th individual is characterized
by the p values on the j-th column of X. Considered as a
point in E, the j-th individual is the vector

I ™Mo

X, . e , where (21'2

K3 Sk 2""'§p) is the basis of E

k=1

We can associate to the i-th variable a function g; (a

linear functional) which, when applied to any individual,
gives the value of the i-th variable for this individual;
i.e.:

P p
e* (L x .e)= L x .*e* (e) =x..
k=1 kj —k kel k3j i —k ij

Thus, variables also have a representation in the dual space

E* of linear functional on E = Rp. From a mathematical point
of view, the functional e¥* associated to the i-th variable is
the i-th element of the canonical basis of E*.

Similarly, the system can be represented in F = Rn. In
this representation the i-th variable corresponds to the vec-
tor

I ™Q

xik gk' where (51,52,...,§n) is the basis of F .

k=1
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Also, it can be argued that individuals have a representation
in the dual space F* of F: the j-th individual corresponds to
the functional g; which is the j-th element of the canonical

basis of F*. As a function applied to the vector of F repre-
senting a variable, it selects the value of this variable for
the j-th individual:

q
f* (L x., £) =
| k=1 ik —k "

* = .
X fj (fk) xij

I ™MQ

1

This conceptualization gives us two representations for

the individuals: one in E = RP (as column of X) and the
second in F* (as a basis vector). The matrix associated to
the corresponding mapping from F* onto E is obviously X.

Slmllgrly for the two representations of the variables 1n
R and E*, the mapping is represented by the matrix x':

- for the individuals E = RP < X F*

L

X

n
- for the variables E* >F =R .

To compute distances between individuals, considered as

points in E = Rp, a quadratic form Q has been selected. From
a mathematical standpoint the choice of a quadratic form is
known to be equivalent to the choice of a linear mapping from
a space to its dual. Thus Q can be thought of as a mapping
from E to E*. Similarly, D is considered to be a mapping from
F to F*,

We have the following diagram:

= Rp <____)£.___—- F*

E
0| To
E¥ — > F = R
X'

It can be seen that V XDX' is a mapping from E* to E.
V is the variance-covariance matrix for the p variables.
Similarly, the matrix W = X'QX represents a mapping from F* to
F; it is the matrix of cross products between individuals.

The above diagram is then augmented into a complete
duality diagram in which all initial components (X,Q,D) of
the statistical study, together with V and W, do appear:
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—_—
&)

=]

-

0
<] |
* e
<
L] =
|l (=====Mm

X!

Experience has shown that this simple diagram can be an
excellent conceptual aid in the analysis of statistical
methods. Here are two examples:

(i) 1If Q= V‘-l (Mahalanobis distances) then WD = X'V-IXD
is the orthogonal projection operator on the subspace of R"
generated by the rows of X.

(ii) One can see that a principal components analysis on
the triplet (X,Q,D) consists in the computation of each
eigenvector h of QV followed by that of the corresponding
principal component X'h; h € E* and X'h € F are two repre-
sentations of the same variable. If Q is selected to be
the identity matrix I, one is lead to the diagonalization of
the variance-covariance matrix V. If Q is the diagonal matrix
of the inverses of the variances, to work on QV is equivalent
to working directly on the correlation matrix.

To convince himself of the advantages of using the duality
diagram, the reader is invited to refer to [1] or [3].
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