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EXPLORATORY DATA ANALYSIS
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Le but du travail est de montrer comment K matrices peuvent
étre comparées visuellement; comment un compromis peut étre
défini entre les K matrices; et comment chacune de ces K
matrices peut &tre comparée au compromis.

We consider a set of K matrices. We find a graphical repre-
sentation which allows us to do an overall comparison of the
matrices. We define a new matrix which can be considered as
a good compromise between all the initial matrices. We
compare the view of the individuals given by the compromise
with the views given by the initial matrices.

1. Introduction

We consider the four matrices which are given below. They give four different
measures of similarity between four individuals.

2 0-2 0 5 3-5-3

-1 0 2 0-2 | 3 5-3-5

-2 0 2 o0 -5-3 5 3

0-2 0 2 -3-5 3 5
5-3-5 3 8 0-8 0

3 -3 5 3-5 o0 8 0-8
-5 -3 -8 0 8 0

3 -5 - 0-8 0 8

We are concerned with the three following problems.

a) We want to find a graphical representation which allows us to do an overall
comparison of the four matrices. We must be able to recognize that two
matrices are more similar than two others.

b) We want to define 2 new matrix which could be considered as a good compromise
between all the initial matrices. The compromise is a weighted mean of the
initial matrices. Its study will lead us to a global knowledge of the simi-
larity between the individuals.

c) At the end, we want to be able tc compare the view of the individuals given
by the compromise with the views given by the initial matrices.
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In this paper, we use this simple example of four matrices to present all the
details of the calculus. In the general case, we will consider K similarity
matrices relating to the same n individuals. We will see that the solution of
the first problem is given by the eigenvectors of a particular K x K matrix.

The solution of the second problem is given by the eigenvectors of a n x n matrix.
And the solution of the third problem is obtained through the regression of the
eigenvectors of each of the initial matrices on the eigenvectors of the compromise
matrix. These results allow us to appreciate the complexity of the problems and
to affirm that it is easy for a statistician to realize this type of study.

Later, we will give some indications on the extensions of the methodology when the
initial matrices are not similarity matrices. The interested reader can find
detailed applications of the method in the recent french papers refered to at the
end of this article.

2. K Similarity matrices: an example

a) We consider E = {sk /k=1,..., K} a set of K similarity matrices relating
to the same n individuals. We suppose that, for each k, Sk is a positive
semi-definite or definite matrix. We know that an observed similarity matrix

is seldom positive semi-definite; but we can find in the statistical litera-
ture [5] many ways to approximate a non definite matrix by a semi-definite

one. 8o the positive definite condition is not a strong constraint. It will

be important in the next paragraph. :

E is a subset of F, the set of the K x K symmetric matrices and it is easy to
see that the bilinear form b defined on F by (U, V) = Tr (UV) is an inner
product on F.

Guided by our knowledge of the Multidimensional Scaling we define a K x K
matrix C with elements: Cjy = Tr (Sj S3).

C will be used as the basis for a graphical representation of the K matrices.

We compute the eigenvectors Ly, *+-, Lx of C and the associated eigenvalues
Ap 2 A2 > *** 2 Ag. It is known that

K r
C=1 Aj Li Li's we know also that clr) - 3 Aj Lj Li' is the best

i=1 i=1

approximation of rank r for C.

We must remark that the information on the Sk matrices contained in C can be
‘studied through different technics: for example, cluster analysis and Indscal.
We choose a method based on the eigenvectors because the solution of our

first problem is, by this choice, consistent with the solutions of the
following problems.

For our example we have:

32 80 80 128
’ 80 212 128 320
80 128 2712 320
128 320 320 512
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i=1 i=2

Az okh 1Ly
5.66 0.0

)
AL 1.1k 8.49
1h.14 -8.40

22.63 0.0

We see that we have an exact representation in a two dimensional space
(Tr (C) = 94k + 14L): the inner products matrix between the points of R2 with

coordinates Vﬁ] L, and /Ié L2 is exaoctly C.

If we look at the graphical representation (figure n°l) we see that S; and S,
are proportional. We see also that S, and S3 have the same norms. The dis-
tances between S, and S,, 5; and S3, Sy and Sy, Sy and S3 are equal and the
distances between 5; and S,, S, and S3 are equal. Therefore the four points
are the vertices of a square.

b) Now, we deal with the compromise matrix.
When all the eigenvalues of the matrices Sk ( k=1, ++,K) are non negative,

it can be shown that all the elements of C are positive. From that, it
follows that all the elements of the first eigenvector of C can be chosen

positive. 8o, if we define L;' = (L;y» *°-, L1g), the matrix
K

5= I Ly Sp is also a positive semi-definite matrix and we have the
15y Mk Sk

following theorem:

Theorem: Let L, be the first eigenvector of the matrix C. We suppose
Lyt = (Lyqy, oee, Lyg) and L' Ly = 1.

Let o be any vector of RX such that o' = (ay, +++, ag) and a'a = 1. Then:
) ( K 2 ( K )2
a Tr I aq S < Tr r L S = A
k=1 k “k K=l 1k “k 1

v 3 « I ysp|
Tr I S S
=1 k=1 %k Pk7 g

2
: E Ly S0 S| = a2
s LT Ly 8 Se)| =af .

The demonstration is obvious if we remark that

K
Tr ( £ o S)2 =a' Ca
k=1 KK

2
Elre (5 a5 sp) "2
and I |Tr ap Sk = a .
2=1 1 K "

T
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These results look like the results relating to the first principal component
in a principal components analysis. As a matter of fact, hey are the same:

The matrix C takes the place of the ccrrelation matrix. In our example, W&
obtain the following S matrix:

10.86 0.0 -10.86 0.0

0.0 10.86 0.0  -10.86
5= | _10.86 0.0  10.86 0.0

0.0  -10.86 0.0 10.86 | .

It has two equal eigenvalues associated with the two following cigenvectors
(we choose Yi'Yy = ug)

i =1 i=2

Hy 21.72 21.72
2.33 -2.33

¥ 2.33 2.33
-2.33 2.33

-2.33 -2.33

The eigenvectors give the representation of the individuals as they are seen
by the compromise matrix (figure n°® 2).

It is important to understand the difference between the two figures. The
figure n® 1 gives a representation of the matrices (K in thc general casc).
The figure n® 2 gives a representation of the individuals (n in the general
case). C is the basis for the figure n® 1. S is the basis for the figure
n® 2,

We see that for the compromise matrix, the four points arc the vertices of a
square. But the question arises: What is the importance of the discrepancy
between the representation of the individuals given by the compromise matrix
and the representations which can be obtained from the initial matrices Sg?

¢) To answer this last question, we define:

Y the matrix of the eigenvectors of S associated with
the non-zero eigenvalues (YY' = 5);
Yy the matrix of the eigenvectors of Sk (Yg Yx' = Sgk)

Yg =Y (¥'Y)"1 y'y,  the orthogonal projection of Yy on the spuce spanned
by the columns of Y.

Identifying the first columns of Qk with the corresponding columns of Y, we
can represent in the space spanned by the column of Y (the compromise) the n
individuals as they are seen by Sk.

Remark 1:

It is p?ss%ble to compute the correlation between a column of Y and a column of
Yk . Th%s is a tool to detect some permutation in the order of the eigenvectors
of Yx with respect to those of Y.
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Remark 2:
If Yy = Y My and if Ml exists, then ¥y = Yg.

In our example, it can be shown that we had used the following matrices My
to construct the matrices Sg:

1/2.33 0 2/2.33 0
My = M, =
0 1/2.33 0 1/2.33

1/2.33 0 2/2.33 0
M3 = ML; =
0 2/2.33 0 2/2.33

The figure n® 3 gives the representation of the matrices Yy.

We see that S; and S, are squares and that S; and S3 are rectangles stretched
along the different axes. This is easily explained by the choice of the
matrices Mj.

Remark 3:

In our example, the rows and the columns of the matrices Sk (k = 1, -+,K) and
S are centered. It follows that the graphical representations of the indivi-
duals are also centered.. This distinctive feature is not necessary for the
progress of the method.

3. Some other results
We will give in this paragraph a general survey of the extensions of the method.
a) We consider first a set of K matrices {Xx / k =1, -+, K}.

Xk is a n x Py matrix of measures of Py quantitative variables on n given
individuals. The variables (and the Pk) are possibly different in the K
studies. Sk = Xk X' is the inner products matrix between the individuals
deducted from Xj. All the results of the preceding paragraph still holq for
the set E = {8 / k = 1, ++,K}. 1If we decide to work with centered variables,
then Xp' Xy is proportional to the covariances matrix of the variables in Xk.
So the columns of Yk, which are the eigenvectors of Xk Xy', are proportional
to the wellknown principal components of Xk. We note Y the matrix, the

columns of which are the eigenvectors of S. Then following the usual prac;};e
of principal components analysis, the matrices (nY'Y)'l/E Y'Xx and (n¥'Y)-
Y'Yy give the coordinates of the initial variables and of their principal

components in the space spanned by the columns of Y.

b) We consider now K qualitative variables. Uk is the n x Pk matrix of indicator
functions associated with the variable k defined as follows:

(Ug)iy 48 1 if the individual i takes the modality J of the variable k.

(Uk)ij is O if the individual i does not take the modality j of the
varieble k.

Let Dk be the diagonal matrix of the weights of the modalities for the
variable k : Dy = Uy' Ux / n.
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11
N

We define  Uf = (I - ) Uk

n

S = Uf Dp Uy' / n

and C a K x K matrix, the elements of which are Ck£ = Tr (Sx Sg) .

It can be shown [2] that Cky is nothing other than the ¢2 coefficient between
the variables k and %.

The overall comparison of the K qualitative variables is made through the
graphical representation given by the eigenvectors of C. The representation
of the individuals given by the eigenvectors of S has the distinctive feature
to be equal to the representation of the individuals in the Correspondence
Analysis of the matrix:

M= (/L U EVle Up e i i W) -

It follows, that the detailed study of the variables is obtained by the
representation of the modalities in this Correspondences Analysis.

Remark 4:

Let M be a p x q positive matrix. We define Ap as the diagonal matrix, the
elements of which are the sums of the rows of M, and bq as the diagonal
matrix, the elements of which are the sums of the columns of M.

Looking only at the results we can say that in the Correspondences Analysis

of M, the p items associated with the rows of M are represented by points, the
coordinates of which are the components of the eigenvectors & of

A;l M Aal M'; the q items associated with the columns of M are represented
from the eigenvectors T of Aal M! Aﬁl M. If A is the diagonal matrix of the
non-zero eigenvalues of the two preceding matrices, % and T are choosen in
such a way that: g¢ Ap B = T' Aq T = A. The two matrices have an eigenvalue
equal to 1 which is irrelevant for the representations.

¢) At the end ogmthis general survey, we consider K contingency tables: Tor two

given qualitative variables, Xx is a p x q contingency table and we have K
such tables.

Let Dy (k) and Dq (k) be the diagonal matrices of marginal weights in Xk.
We define the so called Burt's tables:

Let C be the K x K matrix with elements

Cxy, = Tr (Sk Sg).
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The ?k tables are again symmetrical matrices so, the eigenvectors of the
matrix C lead to a representation of the K contingency tables.

We define S from the first eigenvector of C by
Dy X

K
Lie S /2 Lk = | g

9]
I

[ Se =]

k=1 Dq.

5 is the compromise matrix and can be utilized as a Burt's table. The
Correspondences Analysis of S is equivalent to the Correspondences, Analysis
of X and gives a representation of the modalities of the two variables.

The tables Xk can be compared together by the way of the projections of their

;ows and columns as supplementary points in the Correspondences Analysis of

Sy

Figure n® 1 :

Overall comparison of the matrices
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Second coordinate

° 2

Figure n° 2 :

The compromise

Second coordinate

o 1

Figure n® 3 :
Graphical representations

of the matrices ik

in the space of the compromise matrix

(51 =438 =x383=035, =%

First
coordinate

First
coordinate
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