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Least-squares approximation of frequencies or their logarithms 
The reflexions that are presented herewith about L.A. Goodman's paper are based on 

mathematical results which will be recalled without proof. 
We shall first present certain aspects of correspondence analysis and then handle the 

log-bilinear model in the same context. 
Goodman's notations are kept as far as possible to make comparisons easier. 

Mathematical basis (Rao, 1980; Sabatier, Jan & Esconfier, 1984) 
Let us consider two vector spaces E and F whose respective dimensions are J and I, and 

suppose that they both have scalar products defined respectively in E by a positive- 
definite matrix Q and in F by a positive-definite matrix D. 

We will need the dual space of E, denoted by E* and with scalar product defined by 
Q-1. If A is the matrix associated to a linear transformation from E* into F we will 
denote by AT its transpose and by A* = QATD its adjoint. Let us use the notation 
N = min (I, J). 

It is well known that the best k-ranked approximation, with k < N, to A by a I x J 
matrix is provided by 

k 

Ak= A;mXmYT, m=1 

where the triplets (Am, Xm, Ym), for m = 1, 2, ... , k, are defined by 

AA*x = AQATDxm = A2Xm (XDXM =1), 
m 

m,(D4.1) A*Ay = ATDAQym = Am (yTQym = 1), 

and the A1, 2, ... , ,Am are ordered decreasingly. 
It is easily checked that for Am * 0 

Xm =AQym/Am, ym =ATDxm/Am, (D4.2) 

whereas, if A2 * 
A2,, 

then xTDXm = yTQym, = 0. 
We have also 

N 

IA - Ak 112 = Tr [(A - Ak)Q(A - Ak)TD] = C A2, (D4.3) 
m=k+l 

and no other k-ranked matrix provides a better approximation to A. 
In particular 

N 

A = 
AmXmyT. (D4.4) 

m=l 
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280 L.A. GOODMAN 

Note as well that, if A, is a diagonal matrix such that 1TAIA = 0, then 1TAzXm = 0, for 
m = 1, ... , N; and, similarly, if Aj is a diagonal matrix for which 1TAAT = 0, then 
1TAjym = 0, for m = 1,..., N, where 1, is the R' vector whose I components are equal 
to 1. 

Correspondence analysis 
Among the different ways of presenting this method we will choose, for brevity's sake, 

substitution of the contingency table P by the matrix A = 
A-IPA-'1, where 

We will apply the results just recalled with Q = Aj and D = A1. 
Formula (D4.1) implies calculating the eigenvectors of 

AAJATAI = 
AIl1PAJ-lpT, ATAIAAJ = A;-lpTAIlp 

It is easy to check that 1, is the eigenvector of the first operator for the eigenvalue 1, as 
is 1j for the second operator. So let us decide to number the other eigenvalues and 
eigenvectors from 1 to M = N - 1. 

Therefore it results from the orthogonalities of the vectors Xm and ym noted at (D4.2) 
that 

I J 

1TAIxm = ximPi. =0, lJAjym = YmPj = 0. (D4.5) 
i=1 j=1 

Formula (D4.4) is in this case written 

M 
A = 1,1T + 

ilxmyT m=1 

or, for all (i, j) in I x J, 

Pi; 
= Pi.P; 1 + mx imY~m. (D4.6) 

m=1 

If we limit the sum to k = M* < M terms, (D4.3) provides 

M 

26 = Tr [(A -Ak)AJ(A - Ak)TAI 
m=k+1 

I J / M* 2 = 'V' 1 ~ 
m imyv m2i e. 

(D4.7) 
i=l 

1 
Lei.e m= 1 

Correspondence analysis thus appears as a least-squares approximation of the 
P1./Pi.PJ, each (i, j)th element being weighted by the coefficient P,. P.i 

We remark that the notational problem that Goodman mentioned, that is Am or /,,, 
comes, in fact, from the eigenvalue notation in (D4.1), which is only conventional. 
Preference for the 'correlation' interpretation, as given by Goodman, leads to Am; in 
order to retrieve this notation the eigenvalues of AA* are denoted by A2,, this notation 
being in fact rarely used. 
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Passing from xm to y, and from y, to Xm in the formula (D4.2) leads in this case to 

A1PYm 

1[lPia 

] Xm = or Xim =- 
• -Ym 

(D4.8) 
AJ-1PTXm jPI ] 

Ym 
= or 

yim," • - xim 
m m i=1 j 

These equalities are known in France as the transition formulae. They are at the heart 
of the presentation of correspondence analysis as the 'reciprocal averaging' method. They 
lead to representations where the variable I's modalities have coordinates denoted by x', 
where x' = AmXm and variable J's modalities have y as coordinates, or symmetrically 
y' = Amym and Xm, thus exhibiting the feature known as the 'barycentric principle'. 

Figure 1 of Escoufier, (1982), cited by Goodman, is followed and developed by Fig. 2 
which is an illustration of this technique. Benzdcri et al. (1973) show this property in 
T II A, n' 26; another example of using this technique, written in English, is given by 
Greenacre (1984, pp. 76-77, 90). So the statement that the usual way of using 
correspondence analysis is with x' and y' is unfounded. The same is true of the statement 
that the use of this method systematically implies choice of two x' vectors and two y' 
vectors. Usually one chooses as many vectors as judged necessary for a good description 
of the table that is being analysed. The following section contains some remarks 
concerning this choice. 

Log-bilinear model 
Goodman considers the model 

Pij = a, exp 1 
myimvm), 

where ca and fA must be positive numbers and the vectors Mm and Vm must satisfy, among 
other conditions, the equality 

I J 

S?imPi.Im = VmP= O. i= 1 j=1 

If we develop this constraint we obtain 
M 

log P1i = log ai + log f3j + > 4mmimVjm, (D4.9) 
m=l 

and therefore 
I I J J 

>(log 
Pi)Pi. 

= > (log aa)P. 
+ log f, (log 

Pi,)P, 
= (log f)P + log an,. i=1 i=1 j=1 j=1 

It is evident that if the I x J couples (log ac, log fi) are solutions of (D4.9) then for 
every constant c the I x J couples (log 

ai 
+ c, log 13 - c) are solutions too. So it is possible 

to choose, for instance, a condition such as 
J 

S(log fi)P = 0 
j=1 
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to be imposed on the ij. And thus we would have 

J 

log a = 1 (log P1)P , 
j=1 

I I J 

log f3 = > (log P,1)P, - E E (log Pi)P,.P,. 
i=1 i=1 j=1 

Let us then consider the array A defined by its elements 

Aij = log Pij - log 
a• 

- log fl, 
which satisfy 

I J 

AjP, = . 
A•jfj 

= O. i=1 j=1 

By applying the results discussed in the section 'Mathematical basis' above to A, to 
Q = A, and to D = A, we can find the coefficients 0m and the vectors Mm and Vm by 
solving the equations corresponding to the formula (D4.1). 

Formula (D4.2) leads to 

#m =AAjvm/Im, Vm = 
ATAPlm/IIm (D4.10) 

and finally 
k 

Ak = mmT m=1 

is the best k-ranked approximation to A. To be precise, as a consequence of (D4.3), we 

Table D4.1 
Results of analysis of Goodman's Table 1 
using method described above; approx- 
imations made with three decimals for m = 1 
and m = 2 

m=l m=2 

Eigenvalues 0-02930 0-00183 
Percentages 93-16% 5-83% 
Row coordinates 1-679 0-680 

(standardized for 0-139 0-215 
the Pi weights) -0-133 - 1840 

-1-413 0-832 
Column coordinates 1-076 -0-421 

(standardized for 1.148 -0-736 
the Pi weights) 0.366 -0-414 

-0-024 1.272 
-0-967 1.008 
-1-854 -1-587 
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have 
M 

( 2 = Tr [(A - Ak)AJ(A - Ak)TAI m=k+l 
I J k 2 

= [logPj- l og ai -log flj - ~mimVjm P. Pj.- i=-1j=1 m=l1 
In other words, this approach gives a least-squares approximation to 

log P1j - log aj - log f3A, 
where each couple (i, j) bears the weight Pi. Pj. The results obtained by using this method 
on the table that Goodman has analysed are shown in Table D4.1. 
Conclusions and perspectives 

Correspondence analysis users do not usually speak of it in terms of a model as 
Goodman does. Perhaps they ought to admit that even if a method such as correspon- 
dence analysis is used for exploring data, it is based on an algebraic approach which 
defines the form of the solutions that one will be able to obtain. 

There is in fact a model which can be explained by the following: the general form of 
possible solutions is known before the study, but the model is only a potential one since it 
is the results of the analysis that will provide the choice of the value of k. 

Goodman insists on the practical interest of being able to impose constraints on the 
solutions, for instance xil = xo, + iA*. The presentation given above leads to solutions to 
the least-squares problems solved without constraints. However one could easily take 
constraints into account; the numerical problem of computing eigenvectors and eigen- 
values would then be replaced by one of minimizing a function under certain constraints. 
It seems that this is probably a field to be explored. 

Goodman concludes with the problem of choosing the right number of axes for a 
correspondence analysis study. In France the method most currently used consists in 
computing the proportion. 

This proportion can also be read in terms of inertia, and as a consequence of formula 
(D4.7) it is an index of the quality of the approximation to PjI/P.Pj by 

1 + ,AmXimYjm . 
m=1 

Nishisato (1980, p. 42) proposes and uses Bock's adaptation of Bartlett's x2 
approximation. 

It might be preferable to use a bootstrap-inspired approach which would mean looking for the number of axes that keep stable through a number of new studies done by 
resampling in the original table. This seems quite a natural way of handling the choice 
because correspondence analysis is seen as a method for exploring data. 
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