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Abstract - Producing the Principal Components Analysis of a data 
table requires choices which need to be explained in order to 
acquire complete understanding of the results. This explicitness 
opens the road to other possible choices, leading to theoretical 
research and many practical applications. Changes of scale, changes 
of variables, weighting of statistical units, decentering of the 
representations, and elimination of dependence between individuals 
are dealt with. After reviewing the usual methods from this pers
pective, it can be seen that it is possible to transform them in 
order to better adapt mathematical abstractions to concrete 
situations. 

I - A REVIEW OF PRINCIPAL COMPONENTS ANALYSIS (PCA) 

Let us put ourselves in the place of a scientist who 
runs a data table through a PCA Variance Matrix program. The 
program gives a representation of the variables and of the objects 
as well as the eigenvalues, which will allow him to estimate the 
overall validity of the graphs obtained. In addition, especially if 
the program is French, it will give quantities called absolute and 
relative contributions which will evaluate the role played by each 
of the variables and each of the objects, also called units or 
statistical units in this paper. 

Let us try to specify what the program has done in 
order to go from the data table to the results. For this purpose, 
let X be an nxp matrix. The i-th row of X is denoted by X. and 

~ 

contains the p measures made on the i-th statistical unit. The 
j-th column, denoted by xj, contains the n values taken by the 
j-th variable. 
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Representation of variables and statistical units. Looking closely 
at the program, we will see that the arithmetic mean values of 
each of the variables are calculated first : 

Vj = 1, ..• ,p xj = 1 ~ X~ 
n i=l ~ 

A 

Then X is replaced by the centered array X for which 

Let Inxn be the Rn identity matrix, and 1n the column 
vector of Rn in which all the components are 1. 

We can write 
A 1 I' 
X = (I _ ~n ~n) X 

nxn n 1.1 

Secondly, the variance matrix associated with the array 

is calculated, i.e. : V 
A A 

X'x 
n 1.2 

The third step consists in calculating the eigenvectors 
and eigenvalues of V, that is the p vectors ~a of RP and the 
p numbers Aa satisfying 

Va = 1, ... ,p V~a A a ~a with ~~ ~a 1 

1.3 

Al ~ A2 ~ A 
P 

Standard mathematical expansions show that 

Va=l, ... ,p A ~o a 

Va=l, ... ,p 
, 1, ... ,p A f A , ~: ~a' = 0 a => a a 

If A A " ~ and ~ , can be chosen in such a way that ~' a ~a' = o. a a a a 
p 

Then: V I: A ~ ~' 
a=l a a a 

q 
Finally cons ider for q < p, Vq = I: A ~ 

a=l a a 
shown (see note after expression 1.14) that for every 
of rank q < p 

Tr( (V 
P 
I: 

a=q+1 

1.4 

~'. It can be 
a 

pxp matrix Aq 

1.5 
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where Tr represents the trace of the matrices, i.e. the sum of their 
diagonal elements. 

This property justifies the interpretation that is made 
from the variables display. Suppose that for every variable k, we 
associate to it the point whose coordinates are 

The scalar products that can be read from that represen
tation are the elements of the matrix V2 , the best possible 
approximation of V by a matrix of rank 2. 

If the sum ~ A; is sufficiently small, the 
a=q+1 

covariances and variances of the p variables can be visually 
appreciated. 

The fourth step is to calculate the coordinates of the 
units by the formula : 

.. 
Va 1, ... ,p 1/1* = X 4> a a 1.6 

It can easily be checked that 

.... 1/1*' 1/1* 
Va = 1, ... ,p XX' 

1/1* A 1/1* with a a 
n a a a n Aa 1.7 

.... 
XX' W This leads us to investigate the matrix that n n 

plays the same role for the units as V does for the variables. 

We then set 

P 
and we have W 

n E A 
a=l a 

Let ~ n 

q 
E 

a=l 

It has been shown (note after 
matrix Aq , of rank q < p 

W 2 W 
Tr«ri Aq» ~ Tr«ri 

n 1.8 

1.9 

expression 1.14) that for every nxn 

P 
E 

a=q+1 
2 

A a 
1.10 
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This property justifies the interpretation that will be 

made from the representation of the objects. W2 is the best rank 2 

approximation of W, which means that the graphical re.presentation 

obtained by giving the coordinates (~!i = ffl ~li ; ~~i = lIZ ~2i) 
to the i-th statistical unit allows to visualise the scalar 

products among the units, and thus their distances. 

Absolute and relative contributions. We have seen in passing that 

~*' ~* 
~*' ~* = a a 
a a n 

Aa. The idea naturally arose to consider the 

quantities 

(~* ) 2 
ak 
A 

a 
as the participation of the variable k in the definition 

of A 
a 

as the participation of the statistical unit i to the 

1.11 

definition of Aa. 1.11' 

These quantities are given the name of absolute 

contributions. They allow to estimate the part played by a variable 

or a statistical unit in the construction of the representations. 

P 
From V L A ~ ~' 

a=l a a a 
and W 

n 
p ~a ~~ 
LA --

a=l a n 
we can also 

conclude that 

Hence 

while 

(~* ) 2 ak is the participation of the ~* axis 
a 

in the reconstruction of the variable K, 

in actual fact the reconstruction of the 
variance Vkk , 

is the participation of ~xi~ ~t in the 

W.. Xi Xi 
reconstruction of ~ that is, n n 
the inertia of the i-th statistical unit 

with respect to the mean point. 

1.12 

1.12 ' 
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These quantities are given the name of relative 
contributions. They are criteria for the quality of the represen
tation specifically concerning each variable and each statistical 
unit. 

p 
Reconstitution of data. Noting that I L ~a ~~ pxp a=l 

A A P A P 
II'ljI then X X I L X ~a ~~ L ~ I 

pxp a=l a=l a a a 1.13 

A q 
Then let Xq L I>:' ljI ~ I. It has been shown 

a= 1 a a a 
(following note) that for each nxp matrix Aq of rank q < p 

A A A A A A 

(X-A )(X-A )' 
Tr( 9 g) 

n 

(X-X )(X-X )' 
~ Tr( 9 g) 
v n 

P 
L Aa 

a =q+l 
1.14 

Note: Expressions 1.5, 1.10 and 1.14 come from the well-known 
result by Eckart and Young (1936). It is of importance to remark 

A 

that Vq , Wq and Xq are not only optimal for the least squares 
criterion given here by Tr(.) but also for an infinity of other 
criteria (Rao 1980 Sabatier et al. 1984). 

II - CHANGES IN THE INITIAL CHOICES 

11.1. Weighting of the statistical units. The preceding section 

weighted the units by *' first in the calculation of the mean 
values and second, for the calculation of the variance matrix. 

If we denote D 1 I the diagonal matrix of as 
1 n nxn 

elements n' then 
A 

X (Inxn - 1 1 I D) X 11.1 
~n ~n 

A A 

V X' D X II. 2 

Re-reading section I with formulas 11.1 and 11.2 then 
shows that the fact that all the diagonal elements of D are equal 
t 1 . 1· . 1 d . f a n ~s never exp ~c~t y use ~n proo s. 
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Re-working the formulas in which n appears explicitly, 

we get : 

Vo.=I, ... ,p 
A A 

X X'D ~* = A ~* with ~*' D ~* 0. 0. 0. 0. 0. 
P 

W D = E \ ~o. ~~ D 
0.=1 

q 
E 

0.=1 

(~*.)2 D .. 0. ~ ~~ 

A 0. 

A ~ ~'D 0. 0. 0. 

P 
E 

o.=q+l 

A 0. 

P 

II. 7 

II. 8 

II.9 

11.10 

11.11 ' 

E A II.14 
o.=q+l 0. 

It is possible to consider situations in which D is more 

general. Actually the mathematical results are stronger than those 

used by the usual computer programs. This lead to new applications 
which will be discussed in section IV. 

11.2. Invertible linear transformations of variables. Consider now 

the case of an invertible, linear transformation M, applied to the 

data matrix X and write the elements of the PCA of XM. 

A 
Centering XM (Inxn - 1 1 ' -n -n 

A 

Variance matrix VCMJ= M'X'D 

Eigenvectors and eigenvalues 

Va = 1, ... , p 

i.e. M' V M u = A u 0. 0. 0. 

A 

D) XM = X M 

A 

X 

of 

M = M'V M 

VCMJ 

A u 0. 0. with u'u, 
0. 0. 

with u'u 0. 0.' 

III. 1 

III. 2 

For each 0. = 1, ... ,p, consider <Po. defined by Uo. 
M M' = Q 

M' <p and set 0. 
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We have M'V Q CPa. = A- M' cP with cp' a. a. a. 

i. e. V Q CPa. A-a. CPa. with cp' a. 

p 
From V[M J E A- u u' , we have M'VM 

a.=l 

Moreover we have 

P 
E 

a.=q+l 

a. a. a. 

VQ 

q 
E A-Tr( (M'VM 

a.= 1 a. 

q 
Tr«VQ - E 

a. =1 

M' cP a. 

The coordinates of the statistical units 

A A A 

Let ~~ = X M ua. = X M M'CPa. = X Q CPa. 

It can be verified that 

A A A A 

M M' 

Q cP a.' 

p 
E A-

a.=l a. 

Va. = 1, ... ,p X M M'X'D ~* = X Q X'D ~* = a. a. 
A A 

with ~*' D ~* cP , Q X'D X Q CPa a a a 

cP , Q CPa. A- A-a. a. a. 

CPa.' 

M' 

A-a. 

and the properties 11.8, II. 9, 11.10, which do not 
A A 

0 a. a. ' 

0 a. a.' IIL3 

CPa. cp' M hence a. 

IIL4 

IIL5 

IIL6 

~* a. 

III.7 

explicitly 
involve Q, remain valid. The matrix X Q X' which could be noted 

WCMJ' is the matrix of the scalar products between statistical 
units when the space RP is given the positive bilinear form 
defined by Q = M M' . 

Thus, studying linear data transformations is similar 

to choosing a means of calculating distances between statistical 
units. Most of the current programs choose Q = I pxp ' avoiding the 
problem of choice by previous processing (the variables are 

standardized in order to use the correlation matrix). 
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We can see that this choice in mathematical equations 

does not present great difficulties, but it appears important not 

to hide it. 

Absolute and relative contributions. For absolute contributions, 

the starting point is ~*'Q ~* = A so that absolute contributions a a a 
are only obtained when Q is diagonal like D. Thus we have 

(~~\) 2 Qkk 
A a 

p 
Formula 111.4 implies V = L Aa ~a ~~ so that relative 

contributions can always be calculatea~l 

Reconstitution of data. 

A P v1' lji 
p 

If' lji We have XM L u' = L ~~ M III. 13 
a=l a a a a=l a a 

A p 
IX' Supposing that (XM)q L ljia ~' M, we obtain 

a=l a a 

p A A A A 

L A Tr «XM (XM)q) (XM XM)~)D) 
a=q+l a 

A q 
1I'1/I 

A q 
II'lji Tr «X- L ~~)Q(X- L ~d) 'D) III.14 

a=l a a a=l a a 

III - THE DUALITY DIAGRAM 

The above section presents the idea of a PCA which is a 

function of the triplet eX, Q. D) instead of the usual presentation 
of the PCA of the X array based on some implicit choices : 

Q = Ipxp' D = ~ Inxn' Cailliez and Pages (1976) popularized this 
point of view in France by giving it a rigourous mathematical 

formalization that we are going to review. We will keep in mind 
that our first objective is to bring out the choices to be made in 

order to carry out a study: the data (X), the weighting of 

statistical units necessary for the calculation of relationships 

between the variables (D), and the way of quantifying the 

resemblances between the statistical units (Q). 
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Our second objective is to define the mathematical 

nature of the objects dealt with in order to make the best use of 

their properties. 

The first step consists of considering the i-th unit 
as a vector of E RP. It will be written as 

P 
L 

j=l 
x~ e., 

1. -J 

where (~1' ... , ~p) is a system of n linearly independent vectors 

of E, i.e. a basis of E. 

Symmetrically the j-th variable is considered as a 
vector of F = Rn. It will be written as 

n 
L 

i=l 
x~ f. 

1. -1. where (iI' ... , in) is the basis of F. 

The second step consists in associating a linear 

mapping ~j with the j-th variable, which makes the i-th statistical 

unit correspond to the value xi, that it has taken for that 
variable : 

P k 
et (L X. ek ) 
-J k=l 1.-

~ X~ et (~k) 
k=l l.-J 

x~ 
1. 

Thus variables also have a representation in E*, the 

dual space of E. In fact (et, ... , e*) is the basis of E*, the dual 
-1. -p 

basis of (e1 , ... , e ) which is the basis of E. In a similar way - -p 
(it, ... , i~), the basis of F*, the dual of (iI' ... , in)' can 
be defined. ft is the representation of the i-th statistical unit. 

-1. 

This construction gives two representations for each 
unit: one in E, the second one in F*. Consider then the linear 
mapping defined by 

Vi = 1, •.. , p it 
-1. 

Its associated matrix is X'. 

P 
L 

j=l 
x~ e. 

1. -J 
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In the same way, X is associated with the linear mapping 
n 
1.: 

i=1 
X~ f. 

1. -1. 

The calculation of distances between objects considered 
as points of E, entails the choice of a positive definite bilinear 
form Q which is considered to be a mapping from E into E*. Similar
ly, the calculation of covariances between the variables in F 
depends on a quadratic form D that maps F into F*. 

This can be summarized by the following diagram which 
illustrates the choices to be made for a study. 

X' E=RP ~(' _________ F* 

Q 1 TD 
E* -------:X,.....----4) F=Rn 

The calculation of scalar products between two variables 

~f and ~~ in E* must give the same result as the calculation made 
between the two same variables Xk and X~ in F for the positive 
definite bilinear form D. This leads to the fact that E* must be 
provided with the metric V = X' D X. For symmetrical reasons, F* 
has the metric W = X Q X'. The diagram can then be completed as 
follows : 

X' E=RP f.(--------F* 

Q! jv W! i D 
E* X ) F=Rn 

Expressions 111.4 and 111.7 show that the solutions of 
the PCA are given by the eigenvalues and eigenvectors of VQ and 
WO, which appear on the diagram. 

IV - ON APPLICATIONS CONCERNING D 

IV.I. Special centering 

Since the duality diagram just described coincides 
exactly with sections I and II using the matrix X, the weights D 
can be included as follows : 
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X' (I - D 1 l' ) F* E=RP ~ 
nxn ~n ~n 

Ql iv w 1 ID 
E* 

(Inxn - 1 1 ' D)X 
) F=Rn 

~n ~n 

IV.l.l. It is possible that one of the units has a very unusual 
behaviour. The representation of the units will tend to show on 
the first axis that this individual is in opposition to the others. 
While this unit can be eliminated and the peA repeated, the duality 
diagram allows for another possibility. Let 6 be a diagonal matrix 
whose diagonal elements are all zero except for that corresponding 
to the unusual object, which is set to 1. In the following diagram, 

X'(I -611') 
P nxn ~n ~n E=R ~( ____________________ __ 

Ql IV 
E* 

(Inxn - 1 l' 6) X 
~n ~n 

) 

F* 

the principal components will be the eigenvectors of 
WD = (Inx - 1 l' 6)X D X'(I - 6 1 l')D. They are clearly n ~n ~n nxn ~n ~n 

a) centered for 6 (because l' 6 W D = 0) . 
~n ' 

and b) orthogonal for D. 

In practice, this means that the unusual object is 
located at the origin, and the representation of the other points 
is studied in relation to it. The matrix (I - 1 l' 6 )X nxn ~n ~n 

expresses the deviations from that statistical object. Note that 
the weighting assigned to that object in D is unimportant. 

IV.l.2. This procedure can be further modified by a matrix 6 having 
more than one diagonal element different from zero. Thereby, 
representations of the objects, centered for 6 and orthogonal for 
D, are obtained. This means giving more importance to the represen
tations of some objects. Here, the relative weighting of these 
objects in D cannot be ignored. 
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IV.2. Analysis of partial covariances (Lebart et al. 1979, p.300) 

Equation 1 l' D = 1 (1' D 1 )-1 l' D is the basis for 
~n ~ n ~ n ~n ~n ~ n 

the interpretation of centering in terms of projecting on the line 
of constants (Cai11iez and Pages 1976, p. 146). 

Let us consider an nxq matrix of data X2 , dealing with 
the same objects as X. We define X3 as the matrix obtained by the 
juxtaposition of 1 and X2 ~n 

X3 (!n i X2) 

Let P3 = X3 (X3 
the columns of 

D X )-1 X'D. Based on the orthogonality of tn and 
A 3 3 

A 

X2 = (Inxn - !n !~ D) X2 , 

( I X (X'D X )-1 X' D)(I 1 I'D) nxn- 2 2 2 2 nxn- ~n ~n 

In the next duality diagram, 
X'(I _PI) 

E=RP 4(~ ______ n_x_n _____ 3 ________ F* 

Ql1V w Un 
E* 

______________________ -+)F=Rn 

A 

A 

X'D) 2 

We do the PCA of the residuals of X in the regression 
on X2 , i.e., V is the residual variance matrix. 

ii) WD = (I - P ) X Q X'(1 - PI) D nxn 3 nxn 3 

Because P3 is idempotent, !~ P3 W D = 0 and the 
principal components satisfy 

1 ' P 3 1/Ja. ~n 
= 0 

i. e. 1 ' D 1/Ja. 0, the principal components are centered for D, 
~n 

and 

X' 2 D 1/Ja. 0, the principal components are orthogonal to the 
A 

sub-space of F generated by the columns of X2· 
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iii) Finally, the principal components are orthogonal for D. 

IV.3. Correlated objects 

One of the consequences made apparent by the duality 
A 

diagram is that any change in the weights D and in X modifies V. 
A 

Thus to modify V, the changes in D and X which will produce the 

appropriate V are needed. 

This problem arises, for example, if the observations 
A A 

Xi are linked to the observations Xi - 1 by 
A A 

i.1i=2, ..• ,n X. = P X. 1 + e. 
~ ~- ~ 

with Ip 1< 1 

It is clear that here, V mixes the correlations of 

objects with the correlations of the variables, and that it is 

desirable to eliminate the effect of the correlations between 

obj ects. 

In order to do this, Aragon and Caussinus (1980) 

suggest studying the following diagram 

where C is the 

C 

A 

X' E=RP ~( _________ F* 

Ql IV w 1 fC-1 
E* -------~A--------~)F=Rn 

X 

matrix of auto-correlations 

1 2 
p p 

p 1 p 

p2 p 1 

n-1 
p ........... 

n-l p 

1 
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with inverse 

1 - P 0 0 

-P l+p2 

C- l 1 0 0 
l-p 2 l+p2 -p 

0 - p 1 

lfA (+~ 
o • . . 

o 

D + p 

and /:; 

then C- l = (I - A') /:; (I - A) 

Thus the analysis is equivalent to the following 

A 

The first object is associated with Xl g~ven th: 
weight 1 and those that follow are associated with X. - p X. 1 

l l-

given the weight 1/ (l_p2) > 1. The sum of the diagonal terms of /:; 

can be made equal to unity by multiplying /:; by the necessary 
constant. The principal components, i.e. the eigenvectors of 

A A 

(I-A) X Q X'(I-A') /:;, are orthogonal for /:;. If there is a matrix D 
A 

such that l' 
-n 

D (I-A)X = 0, the principal components are also 
A 

centered for D (this would be true if X was centered with respect 

to a matrix D, giving a weight of 0 to the first object). 
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v - PRACTICAL CONSEQUENCES OF THE USE OF Q 

V.I. In the first place, the explicit use of the metric Q allows 
an explicit discussion of the choice of the scale of measurement, 
and, in particular, the replacement of initial data by standardized 
data. It will be noted, however, that there is a slight difference 
between the PCA on the correlation matrix, as in conventional 
software, and that here. The first is the PCA of the triplet 
(X [Diag(V)]-1/2, I pxp ' ~ Inxn ). The second is the PCA of the 

triplet (X, [Diag(V)]-l, ~ Inxn). They both yield the same WO, 
and therefore the same representation of the units. However, the 
variables are represented differently. The first leads to the 
diagonalization of 

[Diag(V)]-1/2 X'D X [Diag(V)]-1/2 

The second to X'D X [Diag(V)]-l 

Obviously the two solutions are related. 

Recent works on the choice of a metric in special cases 
includes that of Karmierczak (1985), which considers the choice 
of distances between profiles, and that of Besse and Ramsay 
(1986) on the distances between curves. 

V.2. Correspondence Analysis of a nxp contingency table, P, has 
been shown (Escoufier 1982) as the PCA of the triplet 

-1 -1 (DI (P - Dr !n ~~ DJ ) DJ ' DJ , Dr) 

It is easy to see that the product of the sum of the 
eigenvalues by the total number of statistical units under study 
is simply the x2 statistic describing the contingency between the 
qualitative variable defining the rows of P and the qualitative 
variable defining the columns. Correspondence analysis can be 
considered as a means of bringing out the modalities of the 
variables which differ the most from the model of independence. 
Lauro and D'Ambra (1983) have shown how x2 could be replaced by 
the asymmetric criterion of Goodman and Kruskal (1954). Here again 
the use of a special PCA is justified because of the natural 
asymmetry between the two gualitative variables being studied. 
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The problem is no longer that of the deviation from the indepen
dence model, but that of the difference between the conditional 
distributions of a variable and its marginal distribution. 

These approaches suggest that the comparison of an .. .. 
experimental variance matrix V = X'D X with a theoretical variance 
matrix E can be developed by the peA of the triplet (X, E- 1, D). 
The eigenvalues of V E- l will be computed. They can be used for 
testing the hypothesis that the variance matrix is equal to E 

(Anderson 1958, p. 265). The peA will indicate those objects that 
contribute most to the different eigenvalues Le .• those that are mainly 
responsible for the difference between V and E. Since E1 in 
general is not diagonal, it is no longer possible to consider the 
absolute contribution of the variables. However, the variables 
having large relative contributions are considered to be respon
sible for any difference between V and E. 

Similarly, Discriminant Analysis can also be considered 
as a peA of the triplet (M, T- l , Dq) in which M is the qxp matrix 
of the means of p variables in each of q classes, Dq is the qxq 
diagonal matrix of the weights of the classes, and T is the 
variance matrix calculated over the set of tmits. Let B = M'Dq M be 
the between-class variance matrix. The sum of the eigenvalues is 
Tr(B T- 1), the criterion which is referred to by Morrison (1967, 
p. 198), to test the equality of the means among the different 
groups. Evaluating the contributions of objects (mean points per 
class) will reveal which groups contribute most towards rejecting 
the hypothesis of equality. 

V.3. Now let us look at a situation in which two sets of quanti
tive variables have been observed for the same objects. 

The first set leads to a completely determined peA, .. 
that of the triplet (X, Q, D). For the second peA we use the data 
Y and we agree to give the same weight D to all statistical units • .. 
What metric R should be chosen so that the peA of (Y, R, D) .. 
"resembles the closest" the peA of (X, Q, D) ? In order to answer 
that question, it is necessary to give a precise meaning to 
"resembles the closest". 
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Choosing the resemblance of representations of the objects, it is 
natural to quantify the distance between the two PCAs by : 

Tr«X Q X'D - Y R Y'D)2) 

Bonifas et al. (1984) show that the best choice is 

R = (Y'D y)-l Y' D X Q X' D Y (Y' D y)-l 

which goes back, from the point of view of the statistical units 
under consideration, to the representation given by the PCA of 

Tr(VQ) 

(Y(Y' D y)-l Y' D X, Q, D) 

Note that the sum of the eigenvalues equals 
Tr«Y'D y)-l Y' D X Q X'D Y) and that Y'D X = Y'D X. 

Consider the case where X is a nxq response pattern 
array associated with a qualitative variable with q categories. 

A A 

We know that X'D Y = DqM where M is the qxp matrix of q mean 
vectors calculated for each category and Dq is the weight matrix 

-1 of each. The choice Q = Dq leads to 

A A 

y'D X Q X'D Y = M' Dq M = B, 

so that setting (Y'D Y) = T we get Tr(VQ) = Tr(T- 1 B). In other 
words, discriminant analysis measures the distance between the i-th 

and i'-th units by the quantity (Xi - Xi') D~l(Xi - Xi')" It is 
possible to question this choice of D~l, and to consider other 
possibilities. 

VI - CONCLUSION 

A deeper mathematical understanding of the steps taken 
in a normal PCA program based upon the variance matrix opens up 
numerous paths for theoretical and practical work. 

This does not challenge the usual methods of data 
analysis, which are still.a reasonable compromise between current 
knowledge and what the user is willing to do in terms of cost, 
whether it be the cost of the mathematical training necessary for 
understanding, or for computations. 
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This formalization allows anyone, who is willing to 

make the effort to acquire the necessary knowledge (and ultimately 
to pay for the expense of special programs), to be able to choose 
the mathematical abstractions best adapted to the concrete problem 
under study. 
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