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I. INTRODUCTION 

When performing a correspondence analysis, statisticians 
most frequently have to cope with the following dilemma -
choose either a simple interpretation based on the first two 
or three axes obtained, or a more subtle interpretation 
(obliging them to handle and view more information) based on 
a great number of axes. 

One could wish to find in the inferential statistic 
approaches, efficient processes to objectivize the choice of 
the number of axes. The dramatic limitations of available 
tools are reviewed in Section IV. 

The problem can then be solved to through more explora­
tory approaches based either on least squares approximation 
properties of the solutions, or on cross validation 
techniques. 

Sections II and III of this article introduce those 
approaches. 
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(4) 

(5) 

Therefore /X~* d> . is the barycenter of the . fs bearing a Yaj J ai 
the weights , while /A""1 . is the barycenter of the <(> . 

& P. a ai J on 
p.. 

bearing the weights . 
• j 

II. CORRESPONDENCE ANALYSIS AS AN APPROXIMATION OF THE DATA 
MATRIX 

A. Let P be a table of frequencies the size of which is 
I J 

IxJ, with I Z P.. = 1 . 
i-ij-i 1 J 

and Aj are diagonal matrices defined by marginal 
weights of the rows and columns of P respectively. 

Consider the triplets (A , i|; , d> ) defined for r a a a 
a = 1, N = min(I,J) by 

A" 1 P A*"1 P f * = A * with * f A T * = 1 (1) I J a a a a I a 

A" 1 P ! A" 1 P <|> = A <|> with (j)1 A (J) = 1 (2) 

A X > A 2 5> ... > A N (3) 

For A ^ 0, the so called transition formulas are easily a 
deduced from 1) and 2) 
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N-1 

Sum of latent root significance 

(8) 

B. When seen in the context of an approximation of a 
matrix by a matrix of lower rank, these two formulas seen to 
be particular cases of more general formula. 

by 
In fact consider A = P A" 1 and define N matrices 

A . - 1 T 1! 
0 - I ~3 k 

vk= i..... N-1 A K = i i;+ z / T ^ do) 
a=l 

It was shown (Escoufier and Junca (1986)) that A^ is the 
best approximation of order k+1 for A and very accurately 
that : 

(9) 

Geometric considerations (Lebart (1977), p. 58) lead then 
to the conclusion that for any a, X ^ 1. 

Note 1^ as the vector of R 1, all the components of which 
are equal to the unit, and 1^ as the vector equivalent to R^. 
It is easy to check that : 

A" 1 P A" 1 P' lT = 1 x lT (6) 

A" 1 P- A" 1 P l j - i x Ij (7) 

The triplet (1, 1 , lj) is therefore one of the triplets 
(A^, ij^, <t>a), which leads, when isolating it, to renumber the 
remaining triplets from 1 to N-1. These notations being 
implemented, any presentation of Correspondence Analysis gives 
the two following formulas : 

Data reconstitution formula 
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(12) 
For A Q , the following is obtained 

N-l 
Noticing that A - A, = Z /x"1 \p (()f, formula 11 can be 

a=k+l 
rewritten in order to show the factorizations of the total 

N-l 
error made in the approximation Z X , according to rows, 

a=k+l a 

columns or even cells (i,j) of array P. The following is 
obtained : 

V \, = Tr((A-V A J ( A - A k ) ' V a=k+l 

(121) 

Noticing that fora^B 

the following is obtained : 

(13) 

It can be deduced that as long as the triplet (X , if; , $ ) 
& r a a a 

is not used in the approximation, an error X^ is made, which 
can be attributed to it. 

The error can be factorized by the rows 

N-l 
Tr((A-A^) Aj.(A-A^)f Â .) = Z Xa (11) 

a=k+l 
which also can be written for k ^ 1 
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C. These results can be used to assess the quality of the 
approximations made to the order k+1 in a finer way than for 

N-1 
the simple consideration of the quantity £ X . 

a=k+l a 

When constructing the matrix of the item 
N-1 2 2 

£ P. P . X .) ((!>.) as a contribution from the 
a=k+l J J N-1 
cell (i,j) of P to the approximation error E X , the sum 

th N ~ 1 a = k + 1 2 of terms of the i row is equal to £ X .) P. , as a 
•,,1 (X OCX 1 • th 

contribution from the i row of P to the approximation error. 
th 

Similarly, the sum of the items of the j column is 
N-1 2 th equal to E X (<|> .) P ., as a contribution from the j a=k+l ot aj . j 

column of P to the approximation error. 
A simple visualization of the matrix makes it possible to 

see whether factorizations of the total error show an identi­
fiable structure or not. When this error is both small and 
unstructured, the number of axes used is therefore sufficient. 

It should be noted that small P . P . values can hide very 
N-1 x* 2 2 high real residuals E X .) (<!>.). These residuals 
a=k+l J 

are negligible from a methodological point of view since they 
are linked to very low weightings. 

Similarly, it can be factorized by columns 

and also by cells : 
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formula (10) requires all items A, and more especially A_̂  . It 
may seem highly favorable to use item Â _. in order to estimate 
this item itself. The principle of cross validation processes 
consists precisely in trying to avoid that situation. Approxi­
mation (A^.)^ j shall be computed without considering A ^ . A 
poor reconstruction of A ^ 1 s by (A^.)^ .. 1 s will show that the 
model underlying the approximation of A by A^ lets too great 
a part of the data variability escape : the specificity of a 
cell A_̂_. escapes the approximation (A^)^ j that can be deduced 
from other items of A. 

B. Omitting item A.. could be considered with references 
to the processes used when data are missing (Greenacre (1984)). 

In order to allow for the objective of cross validation 
this algorithm shall be used for each cell of matrix A, i.e., 
IxJ times. Assuming that r iterations of the algorithm are 
necessary (or deliberately chosen) for each cell of matrix A, 
r x I x J analyses should then be performed. 

A less costly process is preferred. It was introduced 
within a Principal Component Analysis of a triplet (X, Q, D) 
by Holmes-Junca (1985). Adapting it to the Correspondence 
Analysis must allow for the fact that in Correspondence 
Analysis, matrices Q and D depend on data X. 

Consider table P^^ obtained when removing row i from P. 
The size of this table is (1-1) x J. Correspondence Analysis 
of this table will produce N ^ = min((I-l), J) triplets 

(i) (i) (i) 

III. DETERMINING THE NUMBER OF AXES TO BE RETAINED BY CROSS 
VALIDATION 

A. The calculation of item (A^.)^ j as carried out in 
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IV. TESTS ON THE SUM OF THE NON-RETAINED LATENT ROOTS 

A. Basing the determination of the number of axes to be 
retained on a testing process, first implies considering that 
the observations performed consist in a sample representative 
of a greater population. Let E be the table, I x J, of numbers 
from which table P of frequencies was calculated. E^ , E 
and E will be the total numbers for the line i, the column j 
and the entire table, respectively. It is usual practice to 
rewrite formula (9) as 

The following conventional statement is thus obtained. 
Under the Independence Hypothesis of rows and columns of E, 
N-1 
( £ X ) x E respects the law of chi-square with 
a=l 
(1-1) x (J-l) degrees of freedom. 

In fact, this result comes down to checking that none of 
the latent roots observed is significantly different from zero. 

The quality of the reconstruction can be determined in 
calculating the matrix of the following terms 

Similarly column j can be removed from table P in order to 
obtain a table P ^ . The correspondence analysis of this table 
will produce N ( j ) = min (I, (J-l)) triplets ^ ^ ) * 

Let N" = m i n ( N ^ , N ^ ^ ) . For k = 1, ..., N~-l the 
following is then defined 
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where triplets (ua» £a> n ) are defined for II by analogy wit] 
triplets (X^, i)^, (f̂ ) linked to P through formulas (1), (2) 
and (3). 

Let k < N-l 
For any s > k, any t > k and any a ̂  k, set down 

I 

Used strictly, this result should lead not to perform a 
correspondence analysis when the independence hypothesis is 
not rejected. 

In fact, it is often interesting to explore deviations 
from independence model even if those deviations are not 
important enough to be judged significant by the test. 
Symmetrically the chi-square may be significant without the 
correspondence analysis being the method adapted for an 
explanation of the dependence structure. These results follow 
from the independence of latent roots of a Wishart matrix 
with regard to their sum. This point has ben detailed by 
Lebart (1976) and Lebart et al. (1977). 

B. For the problem under discussion, the necessary result 
would be to check that, from a certain index k, latent roots 
are not significantly different from zero. In this respect 
several solutions were proposed. Relying on O'Neill's results 
(1978), Greenacre's (1984) and Goodman's (1986) articles have 
shown that all these proposals were erroneous and produced too 
optimistic results. 

Let IT be the probability table in the population under 
consideration, and state 
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O'Neill has shown that with the hypothesis 
u = 0 for any a > k 

squares of normal dependant variables and that a chi-square 
is obtained with (I-l-k) x (J-l-k) degrees of freedom if, and 
only if 

Most frequently, this purely theoretical condition shows 
above all that any testing process dealing with the last 
latent roots will be questionable, 

C. Conclusion 
At the time being, Correspondence Analysis users are not 

provided with very efficient testing tools for retaining a 
number of axes to be studied. This lack should give rise to 
works on that subject. Experiments were made to use 
Bootstrap's and Jackknife1s techniques which have not brought 
yet a precise and easy-to-implement tool to users. 
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