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Correspondence Analysis is based on three choices : observed 
frequencies are compared with independence model by a least squares criterion. Modifying these choices, we meet a three dimensional set 
of problems. Taking more than two qualitative variables into consideration, we enter in a fourth dimension. 

1. INTRODUCTION
This paper is related to the study of a contingency table (Pij' i EI, j E J)
with the usual notations for the margins (P. , i E I) and (P ., j E J). ,. .J 
Correspondence Analysis is a method developped for the exploration of this 
kind of data ; it is based on the three following choices : 
a) The calculus are made on the frequenci_es whereas it is well known that other
approaches use the logarithms of the frequencies.
b) The observed P .. are compared with expected values which come from thelJ independence hypothesis made for the variables defining rows and columns of 
the data array. Alternative referenc� hypothesis can be formulated. 
c) The results are given by a singular values decomposition which is a
consequence of the chosen least squares ·criterion. Alternative criteria can be
taken into account. Thus, if we accept to modify these choices, we meet a
three dimensional set of problems which will be explored in this paper.
\,Jhen more than two variables are available, the usual extension of 
Correspondence Analysis is Multiple Correspondence Analysis. In that method, 
if we have three variables, the P .. k are never introduced in the calculus butlJ 
only P .. , P. k' and P "k' \�e will try to go beyond that limit.

lJ. l. .J 

2. LEAST SQUARES CRITERION IN INDEPENDENCE MODEL CONTEXT
(Lebart and al. [10]; Greenacre [6]) 

2.1. Let and 

and let P the matrix, IxJ, �ith element (i,j) equal to Pij"
-1 -1 Let X = D1 (P - D1 }r !J DJ) DJ where !i = (1, ... ,1) is the I-dimensional

vector with its elements all unity. 
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The k order Correspondence Analysis of P can be defined as the search of the 
rank k matrix x(k) with r rows and J columns which minimizes 

- (k) 2 ,: ,: (X .. - X .. ) P. P .iEr jEJ lJ lJ l. .J 
As a consequence of the singular values decomposition of Di12 X D�12 we 

and 
where 

and 

- (k) k x.. = i: IA w . <!> .lJ a=l a al aJ
~ (k) 2 _ v 

l.: l.: (X .. - X .. ) P · P . - l.: ,-iEr jEJ lJ lJ 1 · .J a=k+l a 
X DJ X' Dr ,jla = "a ,jla 
X'DrXDJ 'Pa = "a 'Pa 
"l ;;. "2 ;;. ... ;;. "k 

with 
with 

,jl�Drwa = l
<!>' DJ <!> = 1 a . a 

(1) 

have 

vis the rank of X, that is to say the minimum·of (r-1) and the property �I Dr X = X DJ !J = 0 implies !r Dr ,jla = !J DJ 
(J-1). Moreover,
<j> = 0. a 

Introducing the values of X .. and x(�) in (1) we get 
V 

(( pi j l
)
J k l J

r.- .. 
) 2l.: l.: -- - 1 - l.: v;\ 1[, .·,p·. P. P . iEr jEJ Pi.P.j a=l a al aJ 1. .J l.: " a=k+l a (2)

with the particular cases 

and 
( pij )2 V 

l.: ,: --- - 1 P. P . = l.: ,-'El 'EJ P. P . 1 • •  J =l a l J 1 • •  J a 

(ll pkj ) v 2 
i�r j�J � � - l - a:l n:: Wai 'Paj) Pi. P_j = 0

(3) 

(4) 
In these formulas Correspondence Analysis appears as looking for the model 

l P.. ) k �- 1 = i: !Aw-<!>· i . . j a= l a al aJ (5) 

when the parameters,. , w ., <j> • are solutions of a generalized least squares a al aJ approximation in which item (i,j) receives weight P. P .. 1. .J 
2.2. Goodman [5 J considers the model 

P .. = a. b. exp i: IA ,jJ • <!> . I- k -1l J l J _a= l a al aJ_ 
where a. and b. must be positive numbers and the vectors ,jJ and<!> must 1 J a a satisfy the equality

!r Dr ,jla = !J DJ 'Pa = O 

(6)
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Developping that constraint, we can choose 

and 
Let us then consider the array Y defined by its elements : 

Yij = log(Pij) - log(ai) - log(bj).
It can be shown that 1'r o1 Y = Y DJ 1J = 0
A k order least squares approximation of Y (Escoufier and al. [4 l) by a rank 
k matrix y(k) with I rows and J columns can be searched which minimizes

L L (Y .. - y(�))2 P. p .iEI jEJ l J  lJ 1 .  .J 
The singular values decomposition of Di/2 Y 0312 will give us a generalized
least squares solution for the log-bilinear model and we will get 
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E E ((log(P1.J.)-log(a1.)-log(bJ.)) - � n:- i/1 1. q,aJ·)2 P1._ 
P.J· � "a (7) iEI jEJ a=l a a a=k+l 

2.3. The gaussian model studied by Ihm and al. [7] [8] can be studied in this least squares framework. 
For any !EI and jEJ, we suppose 

r (t--q, .)2
]P. • = a. b. exp I- 1 � lJ 1 J l 2 0 

(8) 
It is evident that if the Ix,l couples (i/li, q,j) are solutions then for every
constant c, the IxJ couples (wi+c, q,j+c) are solutions too. So it is possible
to choose, for instance, a condition such as z i/J· P. = z q,J. P_J. = 0 (9)iEI 1 l. jEJ From (8), we have 

(10) 
The properties (9) give 

E Log(Pij) p. E A.P. + Bj iEI 1 . iEI 1 1 . 

and E Log(Pij) p E B.P + A.jEJ . J jEJ J .J 1 

If the couples (A., B-) are solutions then for every constant c, the couples 1 J (A-+c, B.-c) are solutions too. So we introduce the condition z B.P J. = 0l J jEJ J . which determines the Ai and Bj. 

log(a.) = i: (log(P1-J-)) P J. 
1 jEJ . 

log(b.) = i: (log(P .. )) P. - I I (log(P .. )) P. P · J iEI lJ l. iEI jEJ lJ l •. J 

1/J; cj,; 1/J; cj, j 
Log(P

1
.J.) = Log(a;) - - 2 + Log(b.) - -;;-z + -z 

2a J 2a a 
= A. + B. + /';. iJJ. cj,. 

1 J 1 J 
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Let us now consider the array Z defined by its elements 
Zij = Log(Pij) - Ai - BjIt comes from the previous sections that if 1/J and¢ are respectively the first eigenvectors of Z DJ Z' DI and Z' DI Z DJ and A the first eigenvalue, the

matrix z(l) defined by its elements Z�j) = .fi: l/Ji ¢j is the first order leastsquares approximation of Z. We have : 2 V i: i: (Z-- -VAI/J•¢·) p. P- = i: A iEI jEJ 1 J 1 J 1 · J a=2 a
It is evident that this approach can be extended to models - 2-

1 k (1/J a i -¢ aj) I P .. = a . b. exp - i: ?. 1 J 1 J . [_ a= 1 2 a; _
3. LEAST SQUARES CRITERION FOR ASYMMETRIC MODELS.
3.1. In the previous sections, the observed P .. or their logarithms arelJ compared with models in which I and J play a symmetrical role. Lauro and [9] have introduced an asymmetric method with the aim to replace the x2 criterion (3) by the Goodman-Kruskal criterion

l: l: - - p . p. = l: A (pij )2 V 

iEI jEJ Pi. .J 1· a=l a
p .. To do that, consider the array T with element T .. = _plJ - P .lJ i. .J 

It can be seen that !r DI T = T !J = 0 so that v = min ((I-l),(J- 1)).
A k order least squares approximation of T is 

where 
and 
We have 

T(k) = � /\ 1/J . ¢ .a=l a al aJ 
T T' DI 1/Ja = A a 1/JaT' DI Z ¢ = A ¢

Cl Cl Cl Al ;;;, A2 ;;;, ... ;;;, Ak
!r DI 1/Ja = !J ¢a = O

with 1/J� DI 1/Ja = 1with ¢�¢Cl = 1

and 
l: l: - - p . -(( pi j )

iEI jEJ Pi. .J i: ,r,:---1/J.¢· P. k )2 

a=l a al aJ 1. 

V 
l: A a=k+l a

3.2. Following this point of view, it is possible to consider an asymmetric log-model 
p.. ( k I _PlJ = b. exp i: ,r,:---1/J . ¢ ·)i • J a= 1 Cl Cl 1 ClJ 

with the constraints !i DI 1/Ja = !J ¢a = 0

( 11) 

al. 

( 12) 

(13) 

(14)
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and we are led to 
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p .. 
log(b.) = ,: (log(i,I)) P. J iE I i . l .

look at the array U with elements 
pij uij = log(p:-) - log(bj),. 

In this case, we will get 
p .. k 2 ,: ,: ((log(.....:!1_) - log(b.)) -iEI jEJ pi. J ,: nl), . cp .) P. 

a=l a al aJ l.
\) ,: " a=k+l a (15) 

which is a generalized least squares solution for the asymmetric log-model in 
which item (i,j) receives the weights P. whatever the value of j. 

l . 

4. ALTERNAT IVE CRITERIA FOR ANY MODELS : CLUSTERING APPROACH
4.1. The five above cases can be summarized in a sole framework. Let Rand S 
be diagonal positive matrices with diagonal elements (ri. ; i E I) and
(s_j ; j : J). Let A be a IxJ matrix such that !i RA = AS !J = 0. The rank 
k matrix A(k) which minimizes ,: ,: (A .. -A(�))2 r. s . is

iEI jEJ lJ lJ l . .  J 

where 

~ (k) k A.. = ,: /-:;:- 1), • cp . (16) lJ a=l a al aJ
AS A' R ij,a = "a ij,aA' RAS cj,a = "a cj,a"1 ;;,,, "2 ;;,,, · · · ;;,,, "k

with ij,� R 1),a = 1
with cp� S cpa = 1

k < v = min (( I-1) ,( J-1)) 

(17) 
(18) 

Rao [13] has shown that A(k) is the best approximation of A not only for the
least squares criterion but also for all the measures of the discrepancy 
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between A and A(k) which depend only of the singular values of A-A(k). In that
sense, A(k) is a very good and important approximation of A. However, we cannot
forget that others criteria can be conceived. 
For instance, it is well known that for the classical log-models approximation 
the criterion coming from the probabilistic environment is the maximum 
likelihood criterion. We can also consider non-probabilistic criteria such 
that 

min ~(k) P. p .,: ,: JA .. -A .. I 
A(k) iEI jEJ l J l J l . .J

or min max JA .. -A .. I p. p .j
A(k) ( i ,j) lJ lJ l . 

4.2. Going back to (17) and (18), it comes that 
(ij,' RA) s (A' R 1),) = (cp' s A') R (A s'cpN) = "N a a a � �

or, in another writing : 
E s . (ij,' R Aj)2 = ,: r. (A. S cp )2 = >. 

jEJ . J a iE I l . l a a (19)
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where Aj and A; are respectively the jth column and the ; th row of A.
From (19), it can be deduced 
sue� that+*• S +*, = 8 

* * * (Okamoto [ 11]) that whatever (+1, +2, ... , +k)
Cl Cl ClCl 

k 
l: l: a=l iE I 

2 k * 2r. (A.S + ) ;;:,, i: i: r. (A.S + ) 
1 . l Cl a= l iE ! l • 1 Cl 

This optimality property can suggest a new family of criteria substituing 
(A.S + )2 bv any judicious function of + , S and A .. l Cl ' Cl l 

We can use criteria based on the ranks of+ . and A .. or, removing the r ClJ lJ 

(20) 

orthogonality condition+' S + , = 8 , we can use criteria suggested by 
projection pursuit works.a a aa 

4.3. I propose to consider a partition approach in which we look for k vectors 
+ E RJ such that+' S + = 1 and kx! numbers w . with values O or 1 such that 

Cl k Cl Cl Cl l 

for every iE!, i: w . = 1 which maximize 
a=l al 

k 2 I I w . r. (A.S + } 
iE! a=l al l l a 

The unknown parameters •a and wai can be found as the solutions of the
following reallocation procedure : 
i) choose k arbitrary •a· For every iE!, if (A.S • )2 = max(A1.s + ,)2 

l a , a 
Cl 

define wai = 1 and wa'i = 0 for a' -/ a

ii) Let I be the set of iE! which realize w . = 1. Let R the diagonala al 
matrix, Ix!, with element (R ) .. = r. if i E I and zero if i '1- I . a 11 l. a a 

(21) 

Define •a as the first eigenvector of A'RaA S and go back to i) with the new
vectors (•1, ... ,+k). 
Because of the optimality property of the first eigenvector, it can be shown 
that this algorithm give an increasing sequence of values 

i: i: w . r. (A.S• )2 with upper bound i: r. (A.S A'. ). So the algorithm
iE ! jEJ al l . l a iE ! l . l l . 
will be stopped when two successive values would be sufficiently near. 
Formula (16) leads to an interpretation of the�• as typical components of 

Cl Cl 

A's rows. In Principal Component Analysis Rao [12] calls the�• "typical 
Cl Ct 

points" of RJ. Any row A. is approximated by a linear combination of rows 
l 

� •• in which the coefficients are the¢ .. But ••s • , = 8 , • So, the 
Ct Cl Cll Cl Cl C<Cl 

question is whether it is judicious in a pratical problem to think that a row 
can be viewed as the weighted sum of orthogonal •a· In the present approach , 
any row is attached to only one typical component • ; the meaning of the
results becomes more obvious. a 
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4.3. Example (Artificial Data) 
The following data array has been constructed to give a caricatured view of the differences between the least square approach and the clustering one. 

Transposed data array 
Variable I 

Variable 140 137 131 128 132 73 72 68 61 66 
J 115 114 88 84 86 111 112 116 87 86 

101 100 99 102 99 98 101 99 101 99 
p .. 
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We consider the asymmetric model (-p1 J - P .,r. = P. ,s .= 1). The least squares 
i. .J l. l. .J 

criterion leads to the following results : 

eigenvalue 0.00875 0.00100 
percentage 89.76 10.24 
cumulative 89.76 100.00 percentage 

Coordinates of the rows 
�li 0.07 0.06 0.10 0.09 0.10 -0.10 -0.10 -0.12 -0.11 -0.08 
�2i 0.04 0.04 -0.01 -0.03 -0.02 0.02 0.02 0.03 -0.05 -0.05 

The graphical representations (figure 1) shows four groups of individuals. The 
groups 6,7,8 and 3,4,5 are the negative and positive aspect of a same behavior 
and this can be said also for the groups 9,10 and 1,2. It is obvious that the 
principal components are not typical existing behaviors. They are combinations 
of behaviors. 
The clustering approach gives the two following axes (typical rows to be pij compared with the V:- - P_j) with cos(�1.�2) = - 0.7698

l . 

�1 -0. 7750 0.6100 0.1651
�2 0. 

3The coordinates of the rows (orthogonal projections on the subspace of R 
spanned by �l and �2) on these axes are

0.00 0.00 -0.09 -0.11 -0.10 0.10 0.10 0.13 0.01 -0.00 
0.08 0.08 0.01 -0.2 0.01 0.00 -0.01 0.01 -0.11 -0.10 

The graphical representations (figure 2) obviously shows that the method has recognized typical behaviors. 

,..____________l-1-ljj I ljjj 

I I I 

I I I I I I I I I I 

I ""' I -o. m, I -0. "" I 

I I I I I I 
I I I I I I 
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Figure 1 (least squares criterion) 
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Figure 2 (clustering approach) 
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5. BEYOND THE Pij
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3 
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axis 1 

7 

c/>1 
8 

5.1. Suppose now that we have three qualitative variables studied on the same 
n individuals provided with weights given by the diagonal of a nxn diagonal 
positive matrix C. We suppose that l'D 1 = 1. Let X, Y and Z be the three -n -n 
dummy matrices nxI, nxJ, nxK associated with the three variables. We introduce
the following notations. 

and 
D1 = X'D X 
PIJ = X'D Y 

DJ = Y' D Y 
PIK = X'D Z 

DK = Z' DZ 
PJK = Y'D Z. 

6 

4 

9 
0 

6 
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Pij. will denote item (i,j) of PIJ and Pi .. item (i,i) of DI. We will use the
analogous Pi.k for PIK' P_jk for PJK' P.j. for DJ and P __ k for DK.
Let nz = Z(Z'DZ)-l Z'D the □-orthogonal projector onto the subspace S(Z) of
Rn spanned by the columns vectors of Z. 
Oz =,1nxn - nz is the □-orthogonal projector onto S(z,1° and we have
nz D Oz = 0. 
5.2. The projections of X and Y onto S(Z) are nz(X) = Z DK1 PKI and 
nz(Y) = Z DK1 PKJ" Following Daudin [l ], we will denote by MfJ the IxJ
matrix (nz(X))'D(nz(Y)) = PIK oK1 PKJ It can be easily verified that

which 

P. kp "k i: _l__. _._J_ M kEK p .. k . IJ 
is explained by Z. 

represents the part of the link between X and Y 

We see that I M .. = P . and I M .. = P. iEI lJ .J. jEJ lJ l. · 

So following section 2.1, we consider the matrix A with element M •. Aij P. �J. - 1 which realises the identities A DJ lJ = 11 DI A= 0.
,. . .J. The k order Correspondence Analysis of M will provide us with the best least squares approximation of A by a matrix of rank k and we will be able to study the discrepancy between the part of the link of X and Y which is explained by Z and the independence model for X and Y. 

5.3. Looking now to the projections of X and Y onto S(X)10 , we obtain (Oz(X))'D (Oz(Y)) = PIJ - MIJ . Matrices PIJ and MIJ have the same margins 
DI and DJ. So following the work made by Escofier [2] on Correspondence 
Analysis with respect to a model (see also Escoufier [3]) we consider the 

pij-Mijmatrix A with element A .. = p p .l J i.. . j.
We know that A(k) which minimizes

k -(k} A. . = z A lj, . qi • wherelJ a=l a al aJ 

and 

l: l: iEI jEJ (A .. -A!�l)2 P. P . is given byl J l J l.. . J. 

(22) 

Daudin [l] leads us to consider a matrix Mst with element P. P .  + (P .. -M .. ),l .. . J. lJ lJ the margins of which 
P. P . + (P. --�1- .)l. . .  J. lJ lJ 

p. p . 
l.. .J. 

are DI and DJ. So following section 2.1, we will look to 
- 1 and Daudin and Escofier -do the same study.= A .. 

lJ 
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Yanai [1� reminds that, for two qualitative variables, Corrspondence Analysis is a Canonical Correlation Analysis for the two dummy matrices. He proposes to consider the Canonical Correlation Analysis of Oz(X) and Oz(Y) and call this 
technic "Partial Correspondence Analysis''. In this approach, the A , * and � are given by the usual equations. For instance the* verify : a a 

a a 

[(Qz(X))'D(Qz(X))l-l(P1J-MIJ) [(Qz(Y))'D(Qz(Y))l-l (P1J-MIJ)' *a= Aa *a (23)
Going back to (22) we see that, as quoted by Daudin, (22) is in fact a simplication of (23). 
Remark : The approach presented in section 4 can be considered for exploring matrices MIJ and P1J-MIJ' The log-model can be used for MIJ but it is not easy
to use for P1J-MIJ and for M7J because these matrices can have negative items.
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