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This article explains the French school of
data analysis known as ‘Analyse des
Données’. It is written by two prominent
French Region biometricians, Prof Yves
Escoufier and Dr Susan Holmes, both of
the Unité de Biomeétrie, ENSA M, INRA,
Montpellier II, 9, Place Pierre Viala,
34060 Montpellier, France.

Data analysis in France

by Yves Escoufier & Susan Holmes

Introduction
The exact translation of the French
expression ‘Analyse des Données’ should
be taken as meaning the effective analysis
of data (statistical practice versus mathe-
matical theory developed on a statistical
problem). In fact the expression more
often refers to graphical techniques, their
practice and basis, as opposed to the
testing of hypotheses (exploratory data
analysis  versus  confirmatory data
analysis). Data Analysis (DA) makes
intensive use of the computer, and, as a
result, can be identified with the numeri-
cal approach to statistical problems, as
opposed to the traditional probabilistic
one (computational statistics versus
mathematical statistics).

An explanation of DA’s popularity
must take the two following points into
account:

1. DA provides users (biologists) with an
easy-to-read graphical display of their
multidimensional data together with a
few numerical values quantifying its
meaningfulness. One doesn’t have to
know too much mathematical vocabu-
lary, and all that has to be learnt is
how to recognize the sort of data one
can analyse, what can be attained, and
how to read the graphical displays.

2. On the other hand, mathematical justi-
fication of the methods has led to a
formalisation that not only provides a
homogeneous presentation of cur-
rently-used methods but has also led to
original developments.

But perhaps the simplest explanation to

the success of Data Analysis in France is

that is enables the biologist to talk about
his data.

Factorial methods for analysing one triple
Let’s assume that the data to be studied is
contained in a matrix Y,,, of p measure-
ments made on 7 observations. The idea is
to find graphical displays where closeness
between two points indicates similarities

between the rows or the columns they
represent. For a mathematician the only
way to formalise these proximities is to
associate the data Y with a positive semi-
definite Q,,, that defines distances
between observations, and a diagonal
matrix D,,, of observations’ weights p,
used for computing the covariances. This
presentation will stress the symmetry
between the rows and columns of Y.

The first thing the user has to learn is
how to choose the method that leads to
the relevant graphical displays: this will
depend on the type of data and the study’s
objective. In order to learn how to read
the graphical display one has to under-
stand the meaning of the two sorts of
numerical criteria provided with the
solution:

® global criteria indicate the amount
of data reconstructed and

® the individual criteria quantify the
part played by each variable or
observation in the definition of the
representation spaces and sym-
metrically the amount of each row
and column reconstructed by these
spaces.

The transition formulae provide the link
between the rows and columns of ¥ and
the co-ordinates issued by the analysis
thus making interpretation easier.

Specific names have been given to the
various triples, as shown in the displayed
box:

Replacement of R" and D by a space L*(Q,
A, P) brings us back to the PCA of p
random variables, whereas that of P’ and
Q by L¥T, B, p) provides a way of
studying the observations when the data
are given as curves.

If we insert additional constraints on
the co-ordinates (positivity, order, equa-
lity, etc.) we widen the scope of the
possible approaches within the same
framework.

Factorial methods for analysing several
triples

If we have a triple (Y, Q, D) that we want
to use as a reference for a data matrix X
of measurements on the same observa-
tions, it seems reasonable to look for the
semi-definite positive matrix M such that
(X, M, D) gives row representations that
are as close as possible to those provided
by (Y, Q, D). This general problem has a
simple mathematical solution which pro-
vides co-ordinates and interpretation cri-
teria in just the same way that PCA does.
Different types of X and Y matrices lead
to various classical methods as outlined in
the displayed box shown overleaf.

Other couples (X, Y) can be considered
within the same mathematical scheme
leading to alternatives to the classical
methods. For instance in (4) one could
replace Q Z Sy thus obtaining new types
of discriminant analysis. Once the part of
(Y, Q, D)’s dispersion rebuilt by (X, M, D)
has been identified it seems natural to
look at the residual dispersion, in fact this
has led to recent work on the decomposi-
tion of variability. If Z is a data matrix of
the same measurements on other observa-
tions, we can look for R such that (Z, Q, R)

1. Y centred quantitative
Q identity matrix I,

2. Y centred quantitative
Q diagonal matrix of the variances’
inverses

3. Y centred quantitative
D a non-diagonal matrix

4. YZ D 'PQ', P a contingency table
Q and D are the diagonal matrices
made from P’s marginals

5. Y defined as above for an indicator
matrix P

6. P and D as in 4.
YZD'PandQZ1,,

7. Y is a row and column centred
matrix of log (P;), Q and D as in 4

8. Y a symmetrical n X n similarity
matrix

PCA (Principal Component Analysis)
of variance-covariance matrix
PCA of correlation matrix

PCA on correlated observations

Correspondence Analysis

Multiple Correspondence Analysis

Non-symmetric Correspondence
Analysis

Mean-squares solution to the log-linear
model

Multidimensional scaling
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1. Y centred quantitative

X centred quantitative
2. Yand X as in 1.

but Y with only one column
3. Yand X as in 1.

QZ Sy
4, Y indicator matrix

X and Q as in 3.
5. Y issued from

a contingency table, X as in 1.
6. Yasin 1.

X indicator matrix

(one or several categorical variables)
7. Xand Y asin 1.

M a rotation matrix

PCA with respect to instrumental
variables

Multiple Regression

Canonical Analysis

Discriminant Analysis
Correspondence Analysis with respect

to instrumental variables
Geometrical approach to MANOVA

Procrustes Analysis

gives column representations that are
as close as possible to those provided by
(Y, Q, D). This approach can be com-
bined with the preceding one.

Now, let us suppose that we have
several triples {(Y,, Q., D),; . &}, relative
to the same observations, it is quite easy
to form a K X K similarity matrix based
on the comparison of how the K analyses
represent the observations. Then any
method used for analysing dissimilarity
matrices can provide the multiway
analysis of the K triples.

Clustering

Clustering has a special place in our view
of multidimensional analysis; the pioneers
in this area have always kept close to
applications, providing software with
efficient algorithms that enable many
types of clustering, with different indices.
In partitioning methodology the most
popular technique is the ‘Nuées Dyna-
miques’ method that generalizes the
k-means procedure to many types of
kernels: linear regressions, factorial
spaces, density functions. From the out-
set, work on hierarchies has always given
an important role to the algebraic proper-
ties of dissimilarities, in particular the
bijection between ultrametrics and hierar-
chies is well-known, recent work has been
done on similar equivalences between

distances and other types of

representations:

1. Ultrametric Hierarchical trees
distances

2. Distances with Single knotted
a centre additive trees

3. Quadrangular Additive Trees
distances

4. Robinson Pyramids
distances

Thus there are all sorts of methods
available for faithful representations of a
user’s data. For hierarchical trees, algo-
rithms are available that include con-
straints on the solution such as a certain
order on the tree’s branches or simulta-
neous clustering of two sets.

Where are we going next?

It must be admitted that the computer has
played a crucial role in developing these
techniques. Making multidimensional
methods available on all the commonest
configurations was the first step, but now
the ever increasing computational power
influences today’s research:

® First of all, current advances in
numerical analysis have enlarged
the scope of the initial optimiza-
tion problem. Solutions to the
factorial methods have, up to now,
been given as linear combinations
of the original variables. Today it
is possible to look for non-linear
functions of such a combination or
even a linear combination of
smooth transformations of the ori-
ginal variables.

® A second contribution of the com-
puter has been to produce pro-
cedures based on resampling, such
as the bootstrap and cross-valida-
tion. Combination of geometry
and these resampling techniques
has shed a new light on the inferen-
tial approach because initial
hypotheses can now be left out.

@ Finally, the computer enables des-
cription of a phenomenon not only
through a few numerical values but
also through non-numerical oper-
ations such as those developed in
the analysis of symbolic data, a
domain close to artificial
intelligence.

If you want to go a little further

A small bibliography is provided that
should make a first contact easy. The
French books have been chosen for their
popularity, the English books for their
proximity to our presentation, and the
articles because they are in direct relation
with the results stated here.
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