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Summary: The aim of this paper is to present a non linear additive extension for the linear 
non symmetrical analysis of two data arrays. The two groups of variables associated with 
each of these arrays playanon symmetrical role (the response variables and the explanatory 
variables). As in the linear approach the graphical issues provided by the additive approach 
are very easy to interpret. An application is given on spatial correlation models relating 
covariance to distance for different regions of the brain. 

1. A spatial correlation problem in neurology 
A set of n :=: 15 regions of the brain have been studied in Worsley et al. (1991) where 
two data arrays, Y and X, are considered. The n x p matrix Y, p :=: 20, contains 
the logarithms of the glucose metabolism measurements made on p subjects for the 
n regions, the n x n covariance matrix being denoted 5J . The matrix X is the n x 3 
centered regions coordinates. 

The aim of the Worsley et al.'s article is to model the covariance matrix 5J as a linear 
function of the squared distances between the regions 

(1) 

where D is the n x n matrix of squared distances, !In the vector of n repeated 1, 
and In the n x n identity matrix. The parameter 01 may be interpreted as a subject 
effect, 02 as a spatial effect and 03 as an error or nugget effect. 

In order to eliminate the subject effect, the Y data have been centered. Let 

be the n x n centering matrix, then the normalised observation matrix is CY, and 
its variance is 

(2) 

It is clear that a sufficient condition for CEC to be positive definite is the nonne ga­
tiveness of 02, 03' Note that the covariance structure model is linear, plus a centered 
white noise. 

The model (2) is extended in the following sections by using a more general fra­
mework: the non symmetrical data analysis of two data sets. Section 2 presents a 
general linear approach for solving problems that concern the structural analysis of 
multivariate data. The linear trend of the model (2) will then be extended in 

(3) 

where the 3 x 3 symmetrie positive semidefinite matrix Q replaces 202 in (2). 
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A non linear additive extension of (3) is detailed in section 3. Each column of X 
is transformed by using a linear combination of normalized B-splines so that X is 
replaced by a matrix X(a) with the same dimensions and depending on a, the vector 
of the spline parameters. Note that there exists a particular vector noted e, veryeasy 
to compute from the spline knots, that gives X(e) = X. The proposed model 

CEC = X(a)QX(a)' + a3C , (4) 

may then be considered as a non linear extension for (3) and (2). 
The last seetion compares the results of the three regression models applied on the 
brain data. 

2. A general linear approach 
2.1 Mathematical background 

Let two statistical studies Ci, i = 1,2, be defined by the tripies (Xi, Qi' W) where Xi 
are n x Pi data matrices whose elements are respectively the values of the Pi variables 
of E; measured on the same n objects. 

The semimetrics Qi that are Pi x Pi symmetrie positive semidefinite matrices, are 
used to compute euclidian distances between objects ofeither Ei. If the data arrays 
Xl and X 2 are generally imposed, the statistician can choose different metries along 
with the nature of the Data Analysis problems, see Sabatier et al. (1989), Escoufier 
and Holmes (1990). 

The matrix W, which is the same for the two studies, is called the matrix of weights 
associated with the objects. It is a n x n diagonal matrix with nonnegative diagonal 
elements that sum to 1. 

A unifying tool for the linear Exploratory Data Analysis is the generalised Principal 
Component Analysis as defined in (Escoufier, 1987), see also Escoufier and Holmes 
(1990). This way of doing uses the eigenanalysis of XiQiX;W in order to have 
graphics for the representation of the objects of Ei. This matrix is called the charac­
teristic operator for the representation of the objects and the corresponding norm is 

IIX;Q;X;WII = )tr((XiQ;X;W)2). 

The aim of the non symmetricallinear data analysis problem is to check the existence 
of linear relationships between the Cl response variables and the C2 explanatory va­
riables by comparing the characteristic operators of those two studies 

min IIXlQlX~W - X2Q2X;W112 . (5) 
Q, 

A solution is Q2 = (X;WX2)-(X;WXt}Ql(X~WX2)(X;WX2)- , see Escoufier 
(1987). If we note PX, the W-orthogonal projector on the columns of X 2, the eigen-
analysis of the two operators respectively associated with the tripies (X2, Q2' W) and 
(PX,Xl , Ql' W) provide the same representation of the objects. Choosing different 
Ql and W than I p1 and n-lIn can be a procedure worth considering, see Sabatier et 
al. (1989); 

2.2 Application to the spatial correlation problem 

Going back to model (3), we want to find the best Q and a3 that are solution of the 
optimization problem 
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The objective function being rewritten, we have 

min IIC(E - 031,.)C - XQX'II 2 • 
"3,Q 

The comparison with (5) leads to the corresponding choices 

Xl = C, Ql = E - 031,., X2 = X, W = n-lln • 

Since X is centered, CX = X and an explicit solution of the normal equations is 

tr( E (C - PX)) 
n -1- r(X) 

Q = (X'Xr X' (E - a3In) X (X'Xr , 

(6) 

where Px is the the usual projector on the columns of X. Note that tr(C) = n - 1 
and tr(PX) = r(X). 

3. Additive spline non symmetrical analysis 
The mathematical background of section 2.1 is now being modified while preserving 
the handy context of euclidian spaces and projectors. The use of regression spline 
functions for transforming the explanatory variables provides a natural nonlinear 
semi-parametric extension for the linear non symmetrical analysis as presented in 
section 2.1, see Durand (1993). 

3.1 Transformation of the predictors 

Let us choose, for simplicity, the same kind of B-splines for transforming the predic­
tors: K interior knots and order m so that r = m + K is the dimension of the spline 
space. The jlh column of X2, noted X 2i, is then replaced by 

X 2i(ai ) = Biai , 

where Bi is the n x r co ding matrix of X 2i, and ai the vector of the r parameters. 
The matrix X 2 is now being modified in 

X2(a) = (X2l (al )I ... IXl'(aP')) = BA, 

with B = (B11 ... IBP2), a' = (al'I ... laP2 ') and 

a 1 
1 0 o 

a 1 
r 0 

0 a2 
1 

A= 
a2 

r 

0 

0 0 

The knots sequence used for transforming the jlh predictor being written 

min X2{ = t{ = ... = t~ < t~+1 :::; ... :::; t~+K < t~+1+K = ... = t~m+K = max X2{ , 
k=l, ... ,n k=l, ... ,n 
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the vector ~,i of the parameters whose components are, for i = 1, ... , r, 

ti _ 1 ". i 
o,i - --1 L.... ti+/l: , 

m - k=l ..... m-l 

keeps the P" predictor invariant, 

X 2i(ei ) = X 2i . 

The role of the nodal coefficients (Chenin et al. (1985)) stored in e is twofold. First, 
the additive model as defined in section 3.2 can effectively take intb account linear 
relationships. The numerical relaxation method inititializes with a = e so that the 
solution of the linear problem is obtained at the first step of the algorithm. 

3.2 The additive spline approach 

Denote a and Q2 a solution of the optimization problem extending (5) 

For fixed a, an optimal solution is 

Q2(a) = (X2(a)'WX2(a)t(X2(a)'WXl)Ql(X~WX2(a))(X2(a)'WX2(a)t , 

so that Q2 = Q2(a). 

(7) 

There is not here an explicit solution for the normal equations. The expression of 
the gradient of the objective function with respect to a being computed, see Durand 
(1993), a relaxation method is processed which alternates a step of computing Q2(a) 
for fixed a, with a step of a gradient descent method for fixed Q2' 

The underlying model Xl = PX.(ä')XI is then additive since the characteristic opera­

tors associated with the tripies (X2(a), Q2' W) and (PX.(ä')XI, QI' W) are identical. 
The projection matrix PX.(a) may be considered as a multivariate linear smoother, 
see Hastie and Tibshirani (1990). 

The eigenanalysis of the two preceding tri pies provides graphical displays as in the 
linear case (note that X 2(a) is centered for any a if B has been initially centered). 

Different choices for QI and W allow the user to solve non linear data analysis pro­
blems. For example, Additive Spline Discriminant Analysis is the non symmetrical 
analysis of the indicator matrix Xl of PI classes associated with the Mahalanobis 
metric Ql = (X~ WXd-1 and the training sampie matrix X2, see Durand (1992). 

3.3 The non linear spatial correlation model 

Now returning to the notation of section 1, the model (4) is associated with the 
optimization problem 

(8) 

Unlike the linear case the solution of the normal equations is not explicit. An iterative 
relaxation method is implemented that processes alternatively a step of computing 
Q(a) as Q2(a) defined in section 3.2, a step of a gradient descent method with respect 
to a, and a step of computing o!s as in the linear case. 
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4. Results of the three correlation models 
The present application does not use all the capabilities of the non symmetrical 
data analysis methods that are developped in sections 2 and 3. The only point we 
are interested in is the comparison of the three correlation models of the previous 
sections, see Vie (1993). 

Let us note CEC the estimate of CEC, R and R the corresponding correlation 
matrices. Let f and r be the vectors of the 15 x 7 significant values derived from R 
and R. The subscripts I, Land s point out the respective models (2), (3) and (4). 

The efficiency of the three models can be gauged in Figure 1 where the optimal values 
of the corresponding loss functions are compared . 

., 

2 
indexes for I . L . s 

Figure 1: Gain in fit of the non symmetrical methods Land s compared with the 
simple linear approach 1. 

Another way of testing the efficiency of the methods is to plot f against r for the 
three models, see Figures 2, 3 and 4 . 
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Figure 2: Validity of the linear model. 
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Figure 3: Validity of the generalized linear model. 
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Figure 4: Validity of the additive spline model. 
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The trend of the response r considered as a function of r is summarized by the 
locally-weighted smoother of Cleveland (1979). The gain in fit can easily be seen on 
Figures 2, 3 and 4 along with the three methods. 

The geometry of the brain has been modified by the transformation of the predictors. 
Considering now the methods Land S only, let us write the Choleski decomposition 
of the optimal Q in the (6) and (8) problems 

Q=MM. 

The matrix of the region coordinates are linearily or additively transformed: X is 
replaced by XM in the L method, by X(a)M in the additive spline s. Although 
three dimensions views are more significant, two dimensions scatterplots can bring 
information: for example, Figure 5 shows the 2 and 3 region coordinates for those 
three matrices. A scaling factor (10-2) seems the only transformation for the linear 
method. Projected regions have been more revealingly modified (regions OC and 
MF) for the spline method. 
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Figure 5: Transformation of the geometry of the brain for the vertical projection 
plane. Land s correspond to the generalized linear model and to the additive spline 
model. 
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