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Abstract: ACT (STATIS method) is a data analysis technique which computes Euclidean distances 
between configurations of the same observations obtained in K different circumstances, and thus 
handles three-way data as a set of K matrices. In this article, the recent developments of the ACT 
technique are fully described - concepts and theorems related to Euclidean scaling being 
discussed in the Appendix - and the software manipulation is illustrated on real data. 
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1. Introduction 

The ACT (STATIS method) is an exploratory technique of multivariate data 
analysis based on linear algebra and especially Euclidean vector spaces (ACT 
stands for Analyse Conjointe de Tableaux, STATIS stands for Structuration des 
Tableaux A Trois Indices de la Statistique). It has been devised for multiway 
data situations on the basic idea of computing Euclidean distances between 
configurations of points (Escoufier, 1973). 

At the time or writing, ACT (STATIS method) and ACT (dual STATIS 
method) can be obtained from CISIA as executable codes running on a PC 
under DOS. This package encloses also the Fortran 77 code which runs on 
various mainframes. A more general flexible software will be implemented at 
the end of 1993 in SPAD distributed by CISIA too. Besides, writing and running 
the ACT procedure in your own environment is quite simple since only usual 
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routines about matrix computations and eigensystems are required. 
For the time being, the software ACT (STATIS method) handles input data 

of this sort: 
- A set of K matrices X,, . . . , X,, each X, of dimension I X Jk is a data matrix 
of Jk quantitative variables measured on the same I observations. 
- A set of I weights m,,...,m,. 
- Parameters to specify directives of computation and output. 

This program centers obligatorily each variable of each X, according to the 
weights m,, . . . , m,. Denoting by W, the scalar products between observations 
at stage k and D the diagonal matrix 

1 

ml 

*** 1 mr 

resealed to obey Cmi = 1, we obtain the following results: 
- Euclidean distances between IV, and IV,, or, in other words, between configu- 
rations of observations at stages k and k’. These distances are derived from the 
scalar product 

- Trajectories which reflect the contribution of each observation to the Eu- 
clidean distance between the W,‘s. 
- A compromise matrix of dummy scalar products between observations, com- 
puted as a weighted sum of the Wk’s. 

The software ACT (dual STATIS method) deals with the following input 
data: 
- A set of K matrices X1,..., X, corresponding to the same J quantitative 
variables measured on K different groups of I,, . . . , IK observations. 
- K sets Di,..., D, of weights and, as before, parameters to specify directives 
of computation and output. 

If V, = XL D, X, denotes the covariance matrix at stage k, three main results 
are then carried out: 
- Euclidean distances between the covariance matrices Vk and Vk, derived from 
the scalar product Tr(l/,l/,,). 
- Trajectories which reflect the contribution of each variable to the Euclidean 
distance between the Vk’s. 
- A compromise covariance matrix computed as a weighted sum of the Vk’s. 

The next version of the software will let the user work on centred scalar 
products (as it was the case for IV,>, non-centred scalar products (as it was the 
case for l/k) or scalar products centred on one on the I observations, and 
compute scalar products of the form Tr(W,SW,J), S being any positive definite 
symmetric matrix. 
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In the following chapter, we recall well-known underlying mathematics and 
geometric properties of scalar products derived from usual data matrices. 
Chapter 3 describes the up-to-date developments of the ACT technique. The 
software manipulation is illustrated on real data in chapter 4. The Appendix 
reviews concepts and theorems related to Euclidean scaling methods from an 
algebraic viewpoint. 

To conclude this chapter, it should be noted that, in a recent work, Franc 
pointed out connections between different multiway techniques by rewriting 
them in a multilinear algebra context (Franc, 1992). A n-way data matrix is 
considered as an element of the tensor product of n vector spaces. And 
solutions provided by the different methods (TUCKER, PARAFAC/ 
CANDECOMP, CANDELINK among others) are expressed as sums of tensor 
products of vectors which obey specific constraints. 

2. A few remarks on scalar products between observations 

2.1. Scalar products derived from data matrices 

Let XIXJ be a data matrix which consists of .Z variables measured on Z 
observations. 

Example 1. We describe the set of observations as: 
- Vectors x1, x2,..., x1 of a real vector space of dimension J, on which we 
define the scalar product: (xi I xi,) = CjXijXi,j. The scalar product (xi I xi,> is the 
element Wii, of W= XX’. 
- Points of a metric space since d2(i, i’) = Cj(Xij - Xirjj2. 
- A Z-dimensional configuration of points M,, M2, . . . , M,. The coordinates of 
Mi are simply the elements Xil,. . . , Xi, of X. Thus we have 

OMi.OM,:= Kit and ((M,M,:(I = d(i, i’). 

Note that d2(i, i’> = II Xi -xxi, (I 2 where II * II is the norm induced by the scalar 
product (. ) .>. Then 

d2(i, i’) = Wii + W;:si, - 2&, 

which implies that 

Wii, = i[d2(0, i) + d2(0, i’) - d2(i, i’)]. 

Example 2. Suppose now that the columns of XIxJ are centred according to the 
weights m,,..., 
j= l,..., 

m, with the constraint Cimi = 1. That is to say CimiXij = 0 for 
J. Therefore we describe the set of variables as: 

- Vectors x1, x2,..., xJ of a real vector space of dimension I. If we want the 
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scalar product (Xi I xi,> to be the covariance between variables j and j’, it is 
necessary that: 

(Xj 1 Xj,) = CmiXijXij,. 

The scalar product (xi 1 xi,> is the element jj’ of X’DX where D denotes the 
diagonal matrix whose elements are m,, . . . , m,. 
- A different approach is to consider 

as the matrix of Xi in an orthogonal but unstandardized basis (e,, . . . , e,) 
assuming 11 ei (1 2 = mi for i = 1,. , . , I. Then xi = CiXijei implies (xi I xi,) = 
CiXijXij, (e, 1 e,> = CimiXijXij,. Since the basis (e,, . . . , e,> is unstandardized, 
we do not have any trivial configuration of the variables using the original 
coordinates Xrj, . . . , Xii. 

Generalization Considering that the columns of XIX, are the rows of the 
transpose X&, the two former examples are particular cases of the following 
general formulation. Let XIxJ be a data matrix. We describe the set of the rows 
as vectors xi,. . . , x, of a real vector space of dimension J. We define the scalar 
product (xi I xi,) = CjCj,QjjPXijXi,j, as the element ~ii, of W=XQX’, Q being 
a positive definite symmetric matrix. Then 

is the matrix of Xi in any basis (e,, . . . , e,> obeying (ej ( ej,) = Qjj,. The rows of 
X ,xJ can be plotted as points M, . . . M, generated by the original coordinates in 
a set of axes neither orthogonal nor standardized. Actually this representation is 
unsatisfactory for our perception used to classic Euclidean geometry in which 
axes are assumed to be rectangular and to have unit length. It is the reason why 
methods based on the spectral decomposition of W calculate coordinates of the 
points Ml,..., M, in a new suitable set of axes. 

2.2. Configuration of points 

Let us consider the matrix WIx, of scalar products between I elements, 
forgetting the way it has been calculated. The problem is to plot the I elements 
in a set of orthonormal axes. We briefly note a few results, more or less known, 
which are detailed in the Appendix. 
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W is a positive semi-definite symmetrix matrix. From the spectral decomposi- 
tion of IV: 

W = PlxrArxrP~~l with P’P = I,,, (Identity matrix), 

r denoting the rank of IV, we obtain an Euclidean configuration M,, . . . , MI in a 
r-dimensional space. The r coordinates of iWi are the elements of the ith row of 
PAlI*. Consequently, the scalar products I+$ and the distances d(i, i’) can be 
calculated in a classical Euclidean context since 

OM;.OM,:= IQ and ((M,M,:/ = d(i, i’). 

The spectral decomposition of W is a particular singular value decomposition 
as it is defined in the Appendix. Let S be any Z X Z positive definite symmetric 
matrix. It will be shown that W can be written as 

W= P,xrZ:rxrP~xl with P’SP = I,,, (Identity matrix). 

The columns of P are the eigenvectors of the self adjoint matrix II’S, and x is 
the diagonal matrix whose elements are the corresponding eigenvalues. If we 
denote by r the rank of W (or WS), we obtain another set of r coordinates of 
Mi by taking the elements of the ith row of P2 ‘I*. Similarly the scalar products 
IQ and the distances d(i, i’) can be calculated in an usual Euclidean context 
since 

OM;.OM,:= Tit and /MiMi:(l = d(i, i’). 

Remark If the scalar products have been derived from a data matrix XlxJ, and 
hence from J coordinates, the rank of WIxl is less than the minimum of I and 
J. 

2.3. Centred scalar products 

Let us consider again a matrix of I observations on J variables and suppose 
now that the mean of the I observations is significant. Then we can deal with 
the centred matrix X obeying CiX,j = 0, or more generally CimiXij = 0 if the 
observations are weighted, in order to shift the mean to the origin. This 
derivation is equivalent to the transformation of the original W in WC defined 
by 

I@ = l4$ - W;:.- II$.+ IV.. 

where Wi.= C,~WZ~~~~~/C~UZ~ and IV..= c,c,,mimi,w;:i,/<cimi)2. 
The singular value decomposition of WC, or WCS, S being any positive 

definite symmetric matrix, provides a configuration M,, . . . , it4, in a r-dimen- 
sional space in which the origin 0 is the centroid G of M,, . . . , M, weighted by 
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ml,..., m,. The rank r of WG (or WCS) is less than the minimum of I - 1 and 
J. Note that the case 

ml 
S=D= *.. 

1 1 mr 

with the constraint Cimi = 1 gives the principal components of the PCA of the 
centred data matrix XIxJ when the eigenvalues of WGD are ordered in the 
usual way. This chaise leads to the agreeable interpretation of eigenvalues as 
variances of principal components. 

2.4. Scalar product-like derived from dissimilarity matrices 

If the data are available in the form of an IX I matrix A of dissimilarities 
between pairs of observations, some results are still valid: 
- Choosing the observation i, as origin, we can calculate the scalar product-like 
matrix IV’% of dimension I - 1, defined by 

I$$% = $ [ A$ + A$ - A$] . 

And reciprocally, given W we deduce 

A$ = H$ + w,ri, - 2?4$. 

- On the other hand, if we suppose that the mean of the I observations is 
significant, we can deal with the so-called Torgerson symmetric matrix WG 
defined by 

where A,.= C,,mi,Aii,/Cimi and A..= CiC,~mimi~Aii~/(Cimi)2, m,, . . . , m, being 
the weights of the observations. 
- It is well known that Wwo (or WC) is positive semi-definite if the dissimilari- 
ties are Euclidean distances and reciprocally. In this particular case, the singular 
value decomposition of W or II’S provides a configuration M,, . . . , M, of the 
observations in a r-dimensional space whether W is centred or not. In both 
cases, the rank r of W (or KS) is less than I - 1. 

3. Strategy for ACT: Scalar products between configurations 

The central idea of the ACT technique is to compare configurations of the same 
observations obtained in different circumstances. Thus we need to introduce a 
measure of similarity between two configurations. This is equivalent to define a 
distance between the corresponding scalar product matrices. We can use the 
classic Euclidean norm 

II l+‘l- I+‘, II 2= C C [(WI - W,)iit12=Tr[(W, - W,)‘]7 
i i’ 
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COMPUTATION OF THE W;, s 

I elements 

I W 
I K + pzkq 

I Which elements do you want to compare ? 
According to which configuration ? 

I WI W, non centred ? W to centred on 
element i, ? W p centred on centroid G ? 
or weighted centrold G ? 

TYBel , 

c COMPROMISE 

w== cW,lW,., =Tr(W,SW,,S) 

+ 

I 

lzuclidean di~~~~;~e+ I W=ZakWk 

cl 
1 TRAJECTORIES [ W reflects the majority 

Decomposition of d ;%\lkWv ) element by element of the W;s 

Figure 1. The ACT procedure 

or a weighted version 

II wr - w* II 2 = C FSiiSifjf[(W, - W,)iif12> 
i 

or, more generally 

1) WI - W, II 2 = Tr[ (W,S - W,S)‘] 

for any positive definite symmetric matrix S. Although distances between 
symmetric matrices have been studied for a long time, it is more convenient to 
argue their properties as a particular case of distances between linear mappings. 
Definitions and algebraic derivations are discussed in the Appendix. 

According to the data and the objectives of the analysis, we have first to 
decide which elements have to be compared. Then, it is necessary to specify 
from which origin we compute the scalar products Wk’s (whereas this question 
does not arise when we compute distances). We will illustrate these decisive 
choices and their consequences on a few examples in the last section. 
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3.1. In terstructure 

First step: which distance between the W,‘s? Properties of these distances are 
discussed in the Appendix. We will simply list the different choices. 
- d2(Wk, ?Vk,) = CiCi,[(W, - J%‘~,>~~,I~ deduced from the scalar product 
(W, I Wkp) = Tr(W,W,,) = Tr(W,SW,,S) with S equal to the identity matrix. 
- d2(Wk, Wk,) = CiCi’SiiS,,i,[(Wk - Wk,)ii,12 deduced from (W, I Wk,) = 

Tr(W,SW,,S) with S diagonal. Note that for WkG centred on a weighted 
centroid G with weights m,, . . . , m,, the matrix S can be any diagonal matrix 
and not necessarily 

I 

ml 

*** I* m, 

- d2(Wk, Wk,) = Tr[(W,S - W,S)2] deduced from the scalar product (Wk 1 Wkr) 

= Tr(W,SW,S) where S is any positive definite symmetric matrix. 

Second step: do we compare the Ways or the normed W,‘s? A large distance 
d(W,, W,,) points out a strong difference between W, and W,,. Difference in 
shape or difference in size? To eliminate the second effect, we can compare the 
normed scalar products 

and thus calculate 

i 

wk 1 wF = 

II Jq, II II WV II I 

Tr(W,SW,,S) 

j$iy$$iqiqq’ 

Graphical representation of the interstructure. Let WKxK be the interstructure 
matrix whose elements are the scalar products (I+‘, I W,,). To plot the K stages 
in a two or three-dimensional space, say a h-dimensional space, we use the least 
squares approximation W, of W, equal to the h first elements of the spectral 
decomposition a, p,p; + - * . +u,p,pi = PZP’ of W, with P’P = I. Stage k is 
plotted as point Mk whose coordinates are the h first elements of the kth row 
of PZ1/2. The points M,, . . . , MK satisfy OM, -m’, = (Whjkk,. And the loss 
function is 

IIW-w, 112= F S[(W- W&]” i a:. 
I=h+l 

On this graph, scalar products are not easily readable, except for the norm 
II I+‘, II approximated by the length of vector mk, and for the scalar product 

between normed IV, and normed W,, approximated by the cosine of 
(oM,,oM,J. 

Distances d(W,, IV,,) can also be readable on a graph using the first elements 
of the spectral decomposition of the interstructure matrix WG, centred on the 
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centroid G of the K stages, in a similar way. On these two graphs, the projected 
distance induced by least squares approximation is systematically lower than 
d(W,, IV,,,). Besides, it is possible to distort Euclidean distances d(W,, W,,> into 
ultrametric distances and build a dendrogram, or use another technique of 
visual information. 

3.2. Compromise 

In this section, the Wk’s are required to be positive semi-definite whereas this 
restrictive assumption was not necessary in the interstructure derivations. 

Property 1. Let WI = u1 p1 pi be the first element of the spectral decomposition of 
the inter-structure matrix W. Components of p1 can be chosen positive. 

To establish this particular case of the Frobenius theorem, see Property 8 in the 
Appendix which implies that all the elements of W are positive. Consequently, 
in the configuration of the K stages, cosines are positive and angles (mk,m’,) 
acute. Thus the points Mk are situated inside a convex cone. 

Definition 1. The IX I compromise matrix W is defined as a weighted sum 
CkcykWk. The coefficient cyk is the coordinate of stage k in the one-dimensional 
plot deduced from the first element W, of the spectral decomposition of W. 

Property 2. As the W,ls are positive semi-definite and the CY;S are positive, the 
compromise matrix W is positive semi-definite. Thus W will be considered as a 
scalar product matrix which induces a compromise configuration of the I elements. 

Property 3. The compromise matrix W is the linear combination of the W,ls the 
most related to each Wk. In other words, W maximizes 

Recalling that W,, equals (Wk I W,>, we develop the numerator into 

c bkak’~(wk 1 wl) = T ~akakttW2)krk. 
k k’ I 

In the spectral decomposition of W, p1 is the eigenvector of wW* = W* 
associated to the largest eigenvalue (see Property 7 of the Appendix). Thus the 
quotient can be written as the Rayleigh quotient 

, 

which is maximum for x = p 1. 
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Constraints on the cyk’s. If the IV/s are centred on a centroid G, or a particular 
element i,, the compromise matrix IV will obviously be centred in the same way. 
Similarly, if the origin is equidistant from the I elements at each stage k, this 
property holds for IV. However when the Wls are correlation matrices, it is 
necessary to rescale the (u;s with the constraint Ckak = 1 in order to obtain a 
compromise of the same nature. If the W,ls are normed, the compromise will be 
resealed to be normed too. 

Interpreting the compromise. If W, and II’,, correspond to similar configura- 
tions in shape and size, the angle (mk,mk,) is small and the lenghts 
IImk II, IImp II are nearly the same. This case leads to identical values for ak 
and ok,. On the other hand, a large difference between the two configurations 
induces either a large angle (mk,mk9) or unequal lenghts for OM, and 
OM,? and different values for ok and ok, in both cases. Consequently W gives 
relatively less weight to outliers, and leads to a compromise configuration which 
reflects the inter-element distances as they are seen by the majority. 

Graphical representation of the compromise. To plot the I elements according 
to the compromise in a h-dimensional space, we use the least squares approxi- 
mation IV, of IV, equal to the h first elements of the singular value decomposi- 
tion a,p,p; + *- - +u,p,p: = PZ’P’ of IV, with P’SP = I. Element i is plotted 
as point Mi whose coordinates are the h first elements of the ith row of P2:‘12. 

The points M,, . . . , h4, satisfy mi * mir = (WJiir and the loss function is 

IIW-IV’, 112=Tr[(WS-lV’J)2] = i a:. 
l=h+l 

Note that it is logical, but not necessary, to take the same matrix S as the one 
used in the computation of the distances d(W,, Wk,). Think, for example, to the 
case where S is not diagonal. 

3.3. Trajectories 

In this section, S is required to be diagonal. Then d*( W,, Wk,) can be written 
element by element, as the sum CiSii(Ci,Si,i,[(Wk - Wk,)iiF]2) and split into 
contributions of the different elements. This decomposition leads to an 
I x [$K(K - l)] matrix from which we can detect which elements are strongly 
perturbed from one configuration to another. 

However knowing the direction of the perturbation needs further investiga- 
tions. We consider the Wk’s and the compromise IV as matrices of linear 
mappings between an Euclidean vector space F and its dual F * (see Appendix, 
Section 6). 

I 

Cwk)il 

)+ : 

(W,)iI 
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is a vector of F * which appears in the decomposition of d*(W,, Wkf) = 
cisii II w: - w;, (I *. It is iow of interest to know the direction of the different 
vectors w: - wit. Eigenvectors pl,. . . , p, of WS which occur in the singular 
value decomposition a, p1 pi + * - * +u,p,pi of W, can be completed to form a 
s-orthonormal basis of F *. The idea is to express w: in this new basis. 

Graphical representation of the trqjectories. Unfortunately, if we want to plot 
the Z elements as they are seen by the different stages in a unique two-dimen- 
sional space, it is obvious that none of the subspaces spanned by pl,. . . , p, 
corresponds to the best choice, Nevertheless, we decide to restrict W; to its 
projection on the two-dimensional space spanned by p1 and p2. 

In this space, we know that a least squares approximation of the compromise 
configuration is provided by the points M,, . . . , M, whose coordinates are the 
components of aii12 Pl =u1 -1/2WSpI (namely the projections on p1 resealed by 
0; ‘I*) and ai/*p, = a; ‘/*WSp2. In order to draw the trajectory of element i 
around its compromise position Mi, we rescale the projections of the w;‘s for 
k=l , . . . , K, in the same way. More precisely, we plot the Z elements, as they 
are seen by stage k, by the points M,k,. . . , M,? whose coordinates are the I 
components of a; 1/2WkSpl on the first axis and a; ‘/*WkSp2 on the second 
axis. In spite of this obvious lack of optimality, numerous examples show that, in 
practice, the vector M:M” 

I+ 
gives a good idea of the importance and the 

direction of the change of position of element i between the stages k and k’. 

3.4. Some applications of the ACT technique 

Example 1. The first set of data, fully discussed in Chapter 4 consists of K 
matrices Xl,. . . , X, of Z rows and J columns, corresponding to the judgment of 
K students on Z of their professors according to J criteria. In this particular 
case, we decide to work on the matrices WkG = X, XL after having centred each 
column of X,. In other words we compare the configurations of the Z professors 
as they are seen by each student, after having standardized severe and generous 
students to the same level of notation. Distances d(W,, W,,> are interpreted as 
disagreements between judgments. The compromise matrix W provides a con- 
figuration of the Z professors reflecting the majority opinion. And the trajecto- 
ries point out who are the professors on which students are not in agreement. 

On the other hand we can decide to study the correlation matrices V, = 
(1/1)X;& (th e columns of X, being standardized to have mean 0 and unit 
variance). The objectives are then different. Forgetting the configurations of 
professors, we are now interested in associations or oppositions between crite- 
ria. Are they different from one student to another? Which criteria make the 
difference? Answers are given by the interstructure and the trajectories, whereas 
the compromise correlation matrix summarizes the Vk’s. 

Example 2. Let us consider a set of five sociological data matrices XS4, X6*, Xb8, 
XT5, X8, describing the evolution of the working population of Z communes 
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around Montpellier in the last forty years. It happens that the definition of 
occupation groups changed from 1975 to 1982. Thus, the population has been 
classified into nine occupation groups for the four first census returns and only 
eight groups for the last one. Nevertheless the five configurations of the I 
communes can be compared through the matrices lVkG (where the centroid G, 
weighted or not, represents a dummy average commune) or through IV’;0 (if we 
take Montpellier, indexed by i,, as a reference). 

Example 3. The third set of data consists of J variables characterizing different 
stages of the sleep, collected on I, narcoleptics and I2 persons in good health, 
after 16 hours, 20 hours and 24 hours of wakefulness. Comparing the six 
correlation matrices by means of the interstructure and the trajectories can be a 
first approach to understand how this disease disturbs the distribution of the 
different stages of the sleep, whereas the compromise matrix is not of interest 
here. 

Example 4. The last set of data concerns I sites described by three specialists: a 
botanist, a pedologist and a biologist. The botanist describes the floristic 
composition of the sites by an IX J, presence-absence data matrix. The 
pedologist provides an I X J2 data matrix of chemical characteristics of the soil, 
and the biologist gives an I x J3 data matrix concerning the abundance of 
various earthworms. 

If two sites are claimed similar by the biologist, are they found similar by the 
pedologist or the botanist? To deal with such a situation, we have to discuss with 
each specialist which dissimilarity or distance is appropriate, then derive scalar 
product-like matrices IV,, IV.. and IV, centred on a reference site i,, and 
compare them by means of the interstructure for which the positivity of the Wk’s 
is not required. Further information can be extracted from the decomposition of 
the squared distance d2(W~o, I&%> between specialists into contributions of the 
different sites. 

Suppose now that the data are available in the form of K dissimilarity matrices, 
each matrix corresponding to a dissimilarity coefficient 6, whose square root is 
an Euclidean distance as Rogers and Tanimoto, Russel and Rao or Ochidi 
coefficients (Fichet and Le Calve, 1984). In this case, instead of performing only 
the first step of ACT on the scalar product-like matrices straightforward derived 
from the a,$, we can operate the whole procedure on the positive semi-definite 
IQ’s derived from the square roots & as follows: 

(W>)ii, = +[6,(i,, i) + 6,(i,, i’) - S,(i, i’)]. 

The compromise matrix W induces Euclidean distances between sites which 
satisfy d*(i, i’) = C,cu,G,(i, i’). And, all things considered, as fi is a monotonic 
function of 6, performing ACT on fi instead of 6 turns out to be a useful 
insight into the structure of the original dissimilarity matrices. 
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4. Input and output of the 01.90 version of ACT (STATIS method) 

Input. K = 8 students judge I = 11 professors by means of J = 7 criteria: 
competence, lucid explanation, pedagogy, cheerfulness, is the professor dy- 
namic? accessible? does the student find the subject interesting? The data are 
given in Table 1. 

“Practice” having missing values, is considered as a supplementary row and 
ignored when we compute the Wk’s and the compromise. The other active rows 
have identical weights m, = l/10. Practice has weight 0. The preprocessing of 
the data consists of centering each column of each X, according to those 
weights. Thus we compare the 10 x 10 matrices WkG centred on the centroid G 
of the ten active rows, WbG being derived from only six criteria. 

Interstructure output. The norms of the Wk’s are derived from the scalar 
product (Wk ) IV,,> = Tr(W,SW,,S) where S is diagonal and equal to 

j 1’1° **. l,lo]. 
These norms are equal to 119, 151, 87, 78, 101,117, 137 and 102. Since they are 
different, we decide to compute the Euclidean distances between the normed 
Wk’s deduced from the RV-coefficients (Definition 9 of the Appendix). We note 
that the opinion of judges no. 2 and no. 8 fairly differs from the others. 

Compromise output. The compromise matrix W is defined as the linear combi- 
nation C,(Y,W, of normed Wk’s with (Ye equal to the coordinate of judge k on 
the first axis of Figure 2. W gives relatively less weight to judges nr. 2 and nr. 8, 
and leads to a configuration of the professors which reflects principally the 
opinion of the six judges left. 

ffk 0.18 0.08 0.17 0.17 0.22 0.20 0.21 0.11 

d*(W, W,) 0.46 1.32 0.60 0.61 0.19 0.33 0.27 1.06 

Since the Wk’s are centred on the centroid G of the active rows, the 
compromise W is centred in the same way. In addition, as the data are available 
in the form of observations X variables matrices, we have J, + . . . +.I, variables 
at our disposal. We can then compute their correlations with the coordinates of 
the compromise points in order to explain the position of the different profes- 
sors. 

Trqjectories output. In the interstructure output, we noted that the distances 
between judge no. 2 and the others were quite important. It is interesting to 
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Table 2 
RV-coefficients 

1 
0.17 1 
0.45 0.28 1 
0.43 0.30 0.42 1 
0.69 0.22 0.53 0.54 1 
0.48 0.16 0.54 0.63 0.76 1 
0.63 0.18 0.49 0.41 0.87 0.73 1 
0.42 0.11 0.31 0.23 0.29 0.19 0.40 1 

Table 3 
d’(k, k’)= 2(1-RV) 

0 
1.65 0 
1.10 1.44 0 
1.15 1.39 1.16 0 
0.62 1.56 0.94 0.92 0 
1.04 1.68 0.92 0.74 0.48 0 
0.75 1.64 1.03 1.17 0.26 0.54 0 
1.17 1.78 1.39 1.55 1.42 1.62 1.20 0 

Fig. 2. Graphical representation of the interstucture. Loss function: )I W - W,, 1) 2 = a$ + . . . + U: 
= 1.77 
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b 

Languages 
accessible 
Cheerf"l c$= 0.18 

. Economics 

hf. Sys. Design 
Theo; 

. 
Statistics . 

op. Researd 

English ’ 
Accounting 

. 

kagement 

Architecture 
. 

Fig. 3. Graphical representation of the compromise. Loss function: 11 W - W, 11’ = TrNW - W~hS)* 
= ($)‘Tr(W - W,,>* = u.j + . . . + u; = 0.09 

split those distances into contributions & 11 wi - W; II 2 of the different elements 
i to detect who are the professors on which the opinion of judge no. 2 differs 
from the others. Table 4 shows that the difference comes essentially from 
languages, English, statistics and information system design. 

For sake of readibility, only three trajectories are drawn on Figure 4: 
languages, architecture and the supplementary element practice. The star corre- 
sponds to the compromise point. Recall that the vector between judges no. 2 
and no. 6 is the projection of wd - WI on the two-dimensional space spanned by 
eigenvectors p1 and p2 of the compromise. (For practice, we compute the 
centred scalar products between this supplementary row and the active ones and 

Table 4 
decomposition of the squared distance between judge no. 2 and judge no. k in parts &,/I wi - 
w: (( */d*(2, k) explained by professor i 

squared distance d2(2, k) 
between judge no. 2 and no. 1 no. 3 no. 4 no. 5 no. 6 no. 7 no. 8 

1.65 1.44 1.39 1.56 1.68 1.64 1.78 

contributions (percentage) 
architecture 2.51 3.01 3.36 9.47 2.41 5.70 2.56 
theory 7.97 7.56 9.51 9.61 10.48 9.50 8.06 
languages 10.41 14.53 16.94 18.62 27.26 22.84 12.48 
economics 6.24 2.58 7.07 4.70 3.36 2.84 3.64 
accounting 8.41 9.38 11.64 8.08 8.69 5.47 5.53 
mana.gement 6.94 11.41 7.09 7.20 4.62 4.22 3.64 
inf. sys. design 12.85 27.80 15.87 8.93 14.35 6.71 12.47 
statistics 16.66 6.65 3.37 10.78 4.93 16.89 37.07 
operations research 6.82 6.68 1.14 3.99 2.57 6.41 1.55 
English 21.19 10.39 24.01 18.64 21.31 19.41 12.99 
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Practice 

.3 ‘4 .2 

4 
. 

Fig. 4. Graphical representation of the trajectories. 

project this vector in the same way). Keeping this distortion in mind, we note 
that all the vectors of - w$, have significant norms for languages. It means that 
languages contributes for a large part to any distances d2(k, k’) between judges 
(and not only between judge no. 2 and the others), and between judges and the 
compromise. It seems on the contrary, that disagreements between judgments 
are less crucial for architecture and practice. 

Appendix: Euclidean distances between scalar product matrices 

We review definitions and properties of linear mappings associated with Eu- 
clidean scaling methods. See Rao (1973, 19801, Robert and Escoufier (1976), 
Sabatier (1987) and Lavit (1988) for proofs and complements. 

1. Euclidean vector space 

Definition 1. An Euclidean vector space (E, sJ> is the association of a J-dimen- 
sional real vector space E and a scalar (or inner) product s,. (x I y>,, denotes 
the scalar product of x and y. 

Definition 2 (Dual of an euclidean vector space). The dual E * of an euclidean 
vector space E is the set L( E, [w) of linear mappings between E and the set of 
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real numbers. Note that elements of E* correspond simply 
written as row matrices. 

This supplementary mathematical concept will appear to be an 
later. 

to vectors of E 

appropriate tool 

Property 1. It is convenient to consider the scalar product on E as an one to one 
linear correspondence 9 between E and E * (which implies that 9-l does exist). 
Vx E E, 23 x) E E * is defined as the row vector which, applied to y, gives 

(~(X)>(Y) = (x 1 YL* 

Definition 3. s* is defined as follows: 

Vu VVEE” (u I L$* = up-l(u)) 

is a scalar product on E *, called dual scalar product of s. 

2. Adjoint of a linear mapping 

Notation. E and F being two vector spaces, L(E, F) denotes the vector space 
of linear mappings between E and F. 

Definition 4 (Transpose of a linear mapping). Let ti be any element of 
L( E, F). The transpose of &’ is the element M’ of L(F *, E *) defined as: 

VXEE VUEF” W’WW = ~kw>~ 

Definition 5 (Adjoint of a linear mapping). Let B? be any linear mapping 
between (E, sJ) and (F, s,). The adjoint of JX? is the element M* of L(F, E) 
defined as: 

VXEE VY EF (-h’*(~))s,=(~(x)I~),, 

or &* =~;5&f’91. 

3. Self adjoint operator 

Definition 6. An element of L(E, E) is called operator of E. 

Definition 7. An operator of (E, s) is self adjoint if JV =M *, or YB’ =&‘9’. 

Property 2 (Spectral decomposition of a self adjoint operator _w’ of (E, s)). x is 
an eigenvector of _M if there exists a real number u such that M (x) = u x. It can 
be shown that there exists a s-orthonormal basis of eigenvectors. In other words, 
the matrix A can be written as A = PZP’ with P’SP = I. 2 is diagonal and its 
elements are the eigenvalues of A, the columns of P are the corresponding 
eigenvectors, S is the matrix of s and I is the identity matrix. 
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4. Singular value decomposition 

Property 3. Let JX? be any linear mapping between (E, sJ) and (F, st). Then JX’*B’ 
and JV~ * satisfy the following statements: 
- &*.w’ is a self adjoint operator of E, and it is positive, that is to say: 

VXEE (~*~‘(x)(x)~,~O. 

&JX? * is a positive self adjoint operator of F, as well. 
- Ker (M*&) = Ker (B!). 
- &*.w’ and &JZ?* have the same eigenvalues. If x is an eigenvector of B’*& 
obeying 11 n II s, = 1, and u the corresponding eigenvalue, then y = o-‘i2 M (x) is 
the corresponding eigenvector of MM* obeying (1 y II s, = 1. 
- &, &*, MM* and JY’*@ have identical rank. 

Property 4 (Singular value decomposition of ~‘1. Let r be the rank of M. The 
operator JZ’ *zz’ being self adjoint and positive, have positive eigenvalues of, . . . , ur2. 

The square roots ul, . . . , ur are called singular values of zz’. Let pl, . . . , pr be a set 
or s,-orthonormal eigenvectors of MM*, and ql,. . . , qr a set of sflrthonormal 
eigenvectors of &*&, corresponding to the eigenvalues of,. . . , a,=. Then, the 
matrix A,, can be written as the sum 

A = o,p,q;S, + - * - +q-+q:S,, 

or as the matrix product 

A = PCQ’S, with P’S,P = I and Q’S,Q = I. 

z1 ,xT is a diagonal matrix whose elements are the singular values ul, . . . , a, and the 
columns of PI,, (respectively Q,,,) are the eigenvectors pl,. . . , p, (respectively 
41, f * * 7 q,) of 23?&* (respectively H*ti). 

5. Euclidean distances between linear mappings 

Definition 8 (Scalar product on L(E, F). Let JX’ and 9 two linear mappings 
between (E, s,) and (F, sr). Then 

(MIS?) = Tr(&B*) = Tr(M9’;19?‘PI) 

defines a scalar product on L(E, F). The induced norm is d2(&, 9) = (1 _ZY - 
39 II = = Tr(W -9)~‘(& -B’)‘.YJ 

Property 5 (Approximation of a linear mapping). Let d be any linear mapping of 
rank r between E and F. Let us consider its singular value decomposition with 
singular values ul, . . . , u, in decreasing order. Then 

r 
min 11~-~(12= IId-dh(12= C uF, 

B’EL(E,F) 
rankofS& l=h+l 

where tir, is the sum of the h first elements of the singular value decomposition of 
&. 
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6. Embedding W into an Euclidean vector space 

Let us consider again a matrix W,, of scalar products (or scalar product-like) 
between I elements. 

(a) W can be viewed as an element of L(F, F *>. Let F be an I-dimensional 
vector space, and (f,, . . . , f,> a basis of F, each vector fi being associated to one 
of the I elements. The symmetric matrix W can be regarded as the matrix of a 
bilinear mapping w between F X F and the set of real numbers R, defined on 
the basis vectors by w(fi, fir> = Wji,. 

Now, as it has been done for a scalar product in Property 1, we associate to w 
the following element $V of L(F, F*). For any vector x of F, Y(x) is the 
element of F *, which, applied to any vector y of F, gives 

(W(X)>(Y) = w(-? Y). 

(b) Euclidean structure of F. To calculate euclidean distances between the w’s 
as we did in Section 5 between linear mappings, we need to enrich the structure 
of F with a scalar product denoted 9-l instead of the straightforward 
designation 9 for a simple question of notation. Thus, the dual scalar product 
on F * corresponds to 9 and the adjoint mapping of V is simply 979 (and 
not 9-‘5VY-‘>. 

(cl Euclidean structure of L(F, F *>. Suppose that W, and W, are two matrices 
of scalar products (or scalar product-like) between the same I elements. We 
associate to WI and W, the corresponding linear mappings rr and w2 
between (F, s- ‘> and (F *, s). Then the scalar product 

(Wr I ST..) = Tr(ZYrZY;) = Tr(W,SW,S) 

induces the Euclidean distance 

d*(W,, W,) = Tr[(W, - W,)S(W, - W2)S]. 

This general formulation includes two usual distances: 
- If S is the identity matrix I, then d* <WI, W2> = CiCif[( W, - W2)iif]** The 
basis (fl,...,fr) is required to be s-orthonormal. 

Ff 

If S is diagonal, then d*(W,, W,) = C,Ci,Si,Sif,,[(W, - W2)iif]*. The basis 
1,. . . , f,) is required to be s-orthogonal but not necessarily standardized. In 

other words, weights of the elements are taken into account in the calculation of 
d(W,, W,). 

The more general case where S is not diagonal can be interpreted as some 
exogenous constraint of contiguity between elements, which should be taken 
into consideration in the calculation of d(W,, WJ. 

7. Special case of positive semi-definite W ‘s. 

Property 6. If Y is p.s.d., then Z&KY k a positive self adjoint operator of F *. 
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Property 7 (Singular value decomposition of F). If w is p.s.d., the sing&r 
value decomposition of W is deduced from the spectral decomposition of the 
self-adjoint operator 2KY. Namely W= a,p,p; + - - - +u,p,p: = P2P’ with 
P’SP = I, where the singular values ul,. . . , or are the eigenvalues of WY, and 

Pl, * * *, p, are eigenvectors of WY. 

It can be shown that eigenvectors pl,. . . , pr of W2V* are eigenvectors of WY 
and q1 =9’(pl>, . . . , q, =Y( p,) are eigenvectors of 9F* W. Then the singular 
value decomposition of W = PZQ’S-’ turns out to PZP’. 

If S is the identity matrix, the singular value decomposition of W is simply 
designated as spectral decomposition of W: PXP’ with P’P = I. 

Property 8. If F is p.s.d., (W, I TJ = Tr(YiF~) is a positive real number. 

Property 9. Suppose that Y1 p.s.d. has rank r and 2F2 p.s.d. has rank h less 
than r. If ul,..., a,. denote the singular values of %V1 in decreasing order, then the 
scalar product between W,/ 1) W, (I and Y2/ II 5~~ II verify 

r 

To establish this inequality, apply Property 5 to & = wl,/II 5Y1 II and 9 = 
w2/ )I w2 II recalling that (B’ IS’) = it II d II * + I( 9’ II * - II d -9 II *>. This 
property must be kept in mind while interpreting the ACT’s results on Example 
4 of Chapter 3, as the number of flower species might be five times greater than 
the number of variables measured by the pedologist. 

8. Special case of matrices W = XQX ‘. 

Let X, be an I x J, matrix of I observations on J, variables, and X2 an Z x .J2 

matrix of the same observations on J2 variables. The J, columns of X, are 
centred according to weights m,, . . . , m,, with the constraint Cm, = 1, and .J2 
columns of X2 are likewise centred according to the same weights. 

Thus W, =X,QIX; and W, =X,Q,X; are two matrices, obtained in two 
different circumstances, of centred scalar products between the I elements. If, 
in addition, we choose S equal to the diagonal matrix 

usually denoted D, the scalar product Tr(Fiw2*l = Tr(W,DW,D) have the 
following interesting statistical interpretation. 
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Property -10. Tr( W, DW, 0) is the sum of the squared covariances between each 
variable of X, and each variable of X2. If each column of X, and X2 is 
standardized to have unit variance, Tr(W, DW, D) is the sum of the squared 
correlations . 

Definition 9. The scalar product between normed W’s 

Tr(W,DW,D) 

is known as Rv-coefficient [Robert and Escoufier, 19761. 

Remark. Whether S is equal to D with m, = - * - = m, or equal to the identity 
matrix, the scalar product 

Tr( W,SW,S) 

/T$g/* 

has the same value. 
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Availability of the software 

Distributor: CISIA, 1, Avenue Herbillon, 94160 Saint MandC France. Tel.: (1) 
43 74 20 20. Fax: (1) 43 74 17 29 
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Author: Christine Lavit, Unite de Biometric, ENSA.M.-INRA-UM II, Place 
Viala - 34060 Montpellier, France. 

Release for IBM-compatible micro-computers: User’s guide + executable code 
for ACT (STATIS method) and ACT (dual STATIS method) + source code 
written in portable FORTRAN 77 on floppy disks. Minimal hardware required 
to run the executable code: 512 K RAM. 

Other computers: The source code is available for implementing the software on 
other kind of computers, work stations under UNIX and mainframes as IBM, 
VAX, UNIVAC.. . 

Cost: 1500 FF. 


