
Operator related to a data matrix: a survey

Yves Escoufier

Equipe de Probabilités et Statistique, Département des Sciences mathématiques,
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Summary. The reading of this article will allow the readers to understand the
data analysis approach which is proposed. The first paragraph gives the basic tools:
the triplet (X, Q, D), the operator related to a data matrix and the coefficient
RV. The two following paragraphs show how these tools are used for reading out
and solving the problems of joint analysis of several data matrices and of principal
component analysis with respect to instrumental variables. The conclusion recalls of
the construction of this approach along the past thirty five years.

1 The initial choices

1.1 First choice: the triplet (X, Q, D)

When a researcher collects an n × p data array, X, of the values taken by n
observations on p variables, he generally has two goals:

1. Comparison of the variables. If he chooses to conduct this comparison
by way of a linear correlation coefficient, he will use a positive diagonal
matrix D which defines the weights attached to each observation.

2. Comparison of the observations. If he chooses to compute a distance be-
tween the observations, he will need a pxp symmetric positive definite
matrix Q. In the simplest case, Q is a diagonal positive pxp matrix defin-
ing the scale of the different variables. In the general case, Q=LtL where
L is a pxp matrix of rank p which can be viewed as a linear transformation
of X such that Y=XL will replace X.

From the preceding considerations it follows that when we speak of a data
analysis, we must consider the triplet (X, Q, D) to describe the data and their
use.
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1.2 Second choice: the operator XQtXD

Consider now that we are mainly interested in the dispersion of the obser-
vations showed by the transformed data array Y. A usual way to study the
dispersion is to do a principal component analysis of Y. The mapping of the
observations in the space spanned by the principal components will give a way
for studying the similarity of the observations. For simplicity, we suppose that
Y= (Inxn-1nDt1n) Y, which means that the columns of Y are centred for the
weights given by D. Because Y= XL, it is the same for X.

Let S= tYDY, the covariance matrix of Y and {(zα,λα), α= 1,p} the eigen-
vectors and eigenvalues of S such that Szα = λαzα with tzαzβ = δαβ . Then,
{(ψα= Yzα/

√
λα), α= 1, p} are the principal components and tψαDψβ = δαβ .

Proposition 1.2.1
For the principal components we have: XQtXDψα= λαψ

α

Proof: from tYDYzα = λαzα we have: YtYD(Yzα/
√
λα) = λα(Yzα/

√
λα)

and thus XQtXDψα = λαψ
α

So, as long as our interest in studying the dispersion of the observations lies
in the principal components of (X,Q,D), all the needed information is given
by the eigenvectors and eigenvalues of the operator WD= XQtXD which will
be called the operator related to the study (X,Q,D).

Proposition 1.2.2
If φα =tL−1zα then:

1. tXDXQφα = λαφα

2. tφαQφβ = δαβ

3. ψα= XQφα/
√
λα

4. φα =tXDψα/
√
λα

Proof :

1. tY DY zα = λαzα <=> tLtXDXLzα = λαzα <=>
tXDXLtL(tL−1zα) = λα(tL−1zα)

2. tφαQφβ =tzαL−1(LtL)tL−1zβ =tzαzβ = δαβ

3. ψα = Yzα/
√
λα = XL tLφα /

√
λα = XQφα /

√
λα

4. tXDψα =tXDXQφα /
√
λα =

√
λαφα

The two last results of the proposition can be extended to variables and
observations not used for the computation of V and W: they are named sup-
plementary variables and observations. Let X0 be the row of the values of such
an observation (respectively X0 the column of the values of such a variable):
X0Qφα will be the coordinate of this observation on the axis α (Respectively
X0Dψα).

Proposition 1.2.3
Let Ψ (respectively Φ) be the matrix with ψα as column α (respectively

φα) and Λ the diagonal matrix with Λαα = λα. We will note Ψ [k] and Φ[k] the
k first columns of Ψ and Φ and Λ[k] the kxk diagonal matrix constructed from
the first k rows and columns of Λ. Then:
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1. Ψ [k]Λ[k] tΨ [k]D is the best approximation of XQtXD and
Tr[(XQtXD − Ψ [k]Λ[k] tΨ [k]D)2] =

∑
i=k+1,I λ

2
i

2. Φ[k]Λ[k] tΦ[k]Q is the best approximation of tXDXQ and
Tr[(tXDXQ− Φ[k]Λ[k]tΦ[k]Q)2] =

∑
i=k+1,I λ

2
i

3. D1/2Ψ [k]Λ[k]tΦ[k]Q1/2 is the best approximation of D1/2XQ1/2 and
Tr[(D1/2Ψ [k]Λ[k]1/2 tΦ[k]Q−D1/2XQ1/2)2] =

∑
i=k+1,I λi

The proof is a part of more general results given in ( Sabatier et al. 1984).It
is easy to see that the usual practices of principal components analysis on the
covariance matrix and on the correlation matrix correspond respectively to
the choices Q= Ipxp and Q= [diag(tXDX)]−1

Consider now a contingency table P= (Pij , i= 1,I; j= 1,J) with the usual
notations for the margins (Pi.,i= 1,I) and (P.j , j= 1,J).With the Pi. (respec-
tively the P.j) we construct a diagonal matrix DI (respectively DJ ). Let X=
D−1

I (P – DI1
t
I1JDJ ) D−1

J . It is easy to see that XDJ1J = 0 and t1IDIX = 0.
The well-known correspondence analysis method can be viewed as the

principal components analysis of the triplet (X, DJ, DI).

1.3 Third choice: the RV coefficient

Consider now two studies E1= (X1, Q1, D) and E2= (X2, Q2, D) for the same
observations and the same D matrix. This is the usual situation when you
want to study the links between two sets of variables.

The respective principal component analyses of E1 and E2 lead to two
configurations of the observations constructed with the two sets of principal
components of W1D and W2D. It is natural to compare these two operators.

Let S(D) be the set of the D – symmetric nxn matrices, i.e the set of
matrices nxn A such that DA = tAD. S(D) contains all the operators WD.

The symmetrical bilinear form Tr(AB) is positive on S(D). Hence, it defines
a scalar product on S(D).By similarity with the usual statistical vocabulary,
we define:

1. COV V (W1D,W2D) = Tr(W1DW2D)
2. V AV (W1D) = Tr[(W1D)2]
3. RV (W1D,W2D) = TR(W1DW2D)/[Tr[(W1D)2]Tr[(W2D)2]]1/2

The following results help for the understanding of the significance of RV.
Their proofs are given in (Escoufier 1986)

1. For any (X1, Q1, D ) and (X2, Q2, D ): 0 ≤ RV (W1D,W2D)≤ 1
2. RV (W1D, W2D) = 1 if and only if W1 = kW2for some non zero scalar

k.
3. If Q1 and Q2 are positive definite, RV (W1D, W2D) = 0 if and only if

tX1DX2 = 0.
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4. Let X1 and X2 be single variables and Q1 = Q2 = 1. Then:
COV V (W1D,W2D) = [cov(X1, X2)]

2

RV (W1D,W2D) = r2(X1, X2)
5. Let X1 be a single variable and Q1 = 1. Let p2 be the number of variables

in X2. We choose Q2 = (tX2DX2)
−1. Then:

RV (W1D,W2D) = R2
X1/X2/

√
p2 where RX1/X2 is the multiple correla-

tion coefficient between X1 and the variables in X2.
6. Let E1 = ( X1, (tX1DX1)

−1, D) and E2 = (X2,(
tX2DX2)

−1, D) then:
RV(W1,W2) = Σi=1,p2 ρ2i /

√
p1p2

where ρi is the canonical correlation coefficient of rank i between X1 and
X2.

7. Let X1 be a single variable and Q1 = 1. We suppose that X2 is the nxp2

array of indicator variables for a qualitative variable x2 with p2 levels. If
the observation i takes the modality j, Xj

2i= 1 and Xk
2i = 0 for k
=j. We

choose Q2 = (tX2DX2)
−1 = D−1

2 the inverse of the diagonal matrix of
the weights of the levels. Then:
RV(W1D,W2D) = η2X1/X2/

√
p2

where η2X1/X2 is the rate of correlation between the quantitative variable
X1 and the qualitative variable x2.

8. X1(respectively X2) is the array nxp1 (respectively nxp2) of the indicator
variables of the qualitative variable x1(respectively x2). We choose Q1 =
D−1

1 and Q2 = D−1
2 . Then:

RV (W1D,W2D) = (χ2/n+ 1)/
√
p1p2

9. If moreover, the columns of X1 and X2 are centred for D, we have:
RV (W1D,W2D) = χ2/(n

√
((p1 − 1)(p2 − 1)) = T 2

where T2 is the Tchuprov coefficient.

1.4 Bibliographical hints

The two concepts of operator related to a data matrix and RV coefficient were
first introduced in (Escoufier 1970) and (Escoufier 1973).The distribution of
the RV coefficient was studied in (Cléroux and Ducharme 1989). The study
has been enlarged to rank data in (Cléroux et al. 1994).Going from matrix
language to linear applications allows us to introduce the duality diagram of
which the triplet (X, Q, D) can be seen a summary. We do not follow this
point of view here. Interested readers will find detailed presentation of this
approach either in the book written by its pioneers (Caillez and Pagès 1976)
or in (Escoufier 1987). A very complete recent R package and courses are
available at http://pbil.univ-lyon1.fr/R/enseignement.html with comments in
French and in English; a large collection of sets of data is proposed. See also
(Chessel et al. 2004).
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2 Joint analysis of several data matrices (the STATIS
method)

Consider a set of data analyses (Xi, Qi, D); i = 1, . . . , I on the same obser-
vations provided with the same weights and the family of related operators
Wi, D; i = 1, . . . , I. Our aim is to study the proximities and the differences
between these I analyses.

2.1 Global comparison of the data analyses (Intrastucture)

Let C be the IxI matrix with elements Cij=COVV (WiD, WjD). Let r be
the rank of C (r ≤ I). We note Γ the Ixr matrix of the eigenvectors of C and
Θ the rxr diagonal matrix of the eigenvalues. By the spectral decomposition
theorem, we have: C = ΓΘtΓ with tΓΓ= Irxr.

So there exists a configuration of points (Pi;i=1,I)) in Rr such that each
data analysis is represented by a point. The coordinates of Pi are the elements
of the ith row of ΓΘ1/2. In this configuration the distance between Pi and Pj is

d(Pi,Pj) = (Cii + Cjj – 2Cij)
1/2. Of course practical thought leads to limit

the representation to two or three eigenvectors of C associated with the largest
eigenvalues. The quality of the approximation is evaluated by the usual tools:
rate between the extracted eigenvalues and Tr( C ) for example.

If the norms of the operators are very different, it could be better to
conduct the same analysis with the matrix R with elements RV (Wid,WjD).

In this case the distance between Pi and Pj is (2(1 – RV (Wid,WjD))
1/2.

2.2 Looking for a summary (the compromise)

We have seen that the quantities COVV are always non negative. So, the
matrix C has a first eigenvector, γ1, the elements of which can be chosen non
negative. Let (γ1i, i=1, I) these elements.

Proposition 2.2.1
For all (βi, i=1,I) such that βi ≥ 0 and

∑
i=1,I β

2
i =

∑
i=1,I γ

2
1i = 1, we

have:

1. V AV (
∑

i=1,I βiWiD) ≤ V AV (
∑

i=1,I γ1iWiD) = θ1
2.

∑
i=1,I [COV V (

∑
j=1,I βjWjD,WiD)]2 ≤

Σi=1,I [COV V (
∑

j=1,I γ1jWjD,WiD)]2 = θ21

The proof comes from the two following equalities:

1. V AV (
∑

i=1,I βiWiD) = Tr[(
∑

i=1,I βiWiD)2] =t βCβ

2.
∑

i=1,I [COV V (
∑

j=1,I βjWjD,WiD)]2 =t βC2β

These results look like the results obtained in principal component analysis
for the first component. As a matter of fact, they are analogous. In principal
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component analysis, the objects are the variables and the inner product is the
usual covariance. Here, the objects are the operators related to the statistical
studies and the inner product is COVV.
WD =

∑
i=1,I γ1iWiD which has the largest norm and which maximizes

the sum of squares of the inner products with the initial operators is named
the compromise of the I studies. As a non negative linear combination of
semi definite positive operators, WD is semi definite positive. So let ν be the
number of non zero eigenvalues of WD and let Ψ the n × ν matrix of its
eigenvectors such that tΨDΨ = Iν×ν and Λ the ν × ν diagonal matrix of its
eigenvalues. The ΨΛ1/2coordinates give a representation of n points. One point
represents one initial observation. The proximity of two points is interpreted
as an average similarity of the associated observations.

2.3 Comparison of the initial studies with the compromise
(Interstructure)

2.3.1 Representation of the observations

Let λ
1/2
α Ψα =WDΨα/

√
λα the coordinates of the observations on the axis α

in the representation associated to the compromise.

We define λ
1/2
α Ψα

k =WkDΨα/
√
λα.

If WkD = WD then Ψα
k = Ψα and the representation of the observa-

tions given by WkD is exactly similar to the representation obtained from
the compromise WD .When WkD goes away from WD, the similarity of the
representations decreases.

Moreover,WD =
∑

k=1,I γ1kWkD and thus λ
1/2
α Ψα =

∑
k=1,I γ1kλ

1/2
α Ψα.

The coordinate of one observation given by the compromise is the barycen-
tre of the coordinates of this observation given by the different studies on the
same axis. When the index of the initial studies is the time, it is usual to
speak of the trajectories of the observations in the representation obtained by
the compromise.

2.3.2 Representation of the variables

All the variables of the initial studies and all the linear combinations of these
variables (for instance the principal components of the initial variables) can
be represented as supplementary variables in the compromise. As in principal
component analysis, the proximity between one variable’s projection and one
axis is used to interpret the axis. The coordinate of a variable Xj on the axis
α is given by the covariance cαj =tXjDΨα between Xj and Ψα.

From a practical point of view we must keep in mind that at this step
the number of points in the representations is very large: nx(I+1) for the
observations only .Careful algorithmic and numerical choices have to be made
for method to be feasible.
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2.4 Bibliographical hints

The first publication on this topic is (Escoufier 1977). The two following pa-
pers consider the situation of a set of similarity or covariance matrices (Es-
coufier and L’Hermier 1978), (Escoufier 1980). A very detailed approach of
the practical problems can be found in (Lavit et al. 1994); in an application
, we must choose between the COVV approach and the RV approach; but
choices are also necessary for the representations: they could be centred or
not. All the situations are explained carefully .The book written by (Lavit
1988) gives many examples and suggest some software. An application in the
field of sensometrics is the subject of the paper by (Schlich 1996). STATIS
has been developed for a family of data array. This means that in STATIS we
have three indices: one for each array, one for the observations and one for
the variables. So, we can use the term of three – way multiblock for the data.
(Vivien and Sabatier 2003) and (Sabatier and Vivien 2004) explore extension
of STATIS to the joint analysis of two three – way multiblocks or for a four –
way multiblock.

3 Principal component analysis with respect to
instrumental variables

3.1 The problem and its linear solution

We are interested here with situations in which we have two sets of data ob-
served on the same observations provided with the same weights. We suppose
that the two sets do not play the same role. One of them is a reference, a
target. The objective is to know if the variables of the second set can recon-
struct the principal component analysis of the target set. We will note (Y, Q,
D) the target study where Y is nxp .The pxp Q matrix is known. Let WyD =
YQtYD the operator related to this study. From the second set, we only know
the data array X, nxq, and we use the same diagonal matrix of the weights
D. We consider the following problem:

Find M a q × q semi definite symmetric matrix such that:

Tr[(Y QtY D −XM tXD)2] is minimum.

Proposition 3.1.1
Let R = (tXDX)−1 tXDY QtY DX(tXDX)−1 then:

Tr[(Y QtY D −XM tXD)2] =

Tr[(Y QtY D −XRtXD)2] + Tr[(Y RtY D −XM tXD)2]

The proof is given in (Bonifas et al. 1984).The result shows that the dis-
crepancy between YQtYD and XMtXD is the sum of two terms. The first one
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does not depend on M .It assesses the part of the representation of the ob-
servations given by (Y, Q, D) which will never be reconstructed from a study
based on X. The second term depends of the selected M. It shows obviously
that the best choice for M is R.

Let PX = X(tXDX)−1 tXD the D-orthogonal projector on the subspace
of Rn spanned by the columns of X .We have:

XRtXD = PXY Q
t(PXY )D

Thus, the operators related to the studies (X,R,D) and (PXY,Q,D) are
identical .They give the same representation of the observations. This means
that the best reconstruction of the representation of the observations given
by (Y,Q,D) is obtained when applying the same Q matrix to the projections
of the variables Y on the subspace of Rn spanned by the variables in X .

3.2 Quality of the linear solution

From the properties of the projectors and of the trace, we obtain:
Proposition 3.2.1

1. Tr(tY DY Q) = Tr(t(PXY )D(PXY )Q) + Tr(t((In×n − PX)Y )D((In×n −
PX)Y )Q)

2. Tr(Y QtY D) = Tr((PXY )Qt(PXY )D) + Tr(((In×n − PX)Y )Qt((In×n −
PX)Y )D)

The proposition shows that the total inertia of the study (Y,Q,D) can be
cut in two parts, one given by the projections of the variables Y on the sub-
space of Rn spanned by the variables X and one part given by the projections
in the orthogonal sub-space.

The second result of the proposition says that the decomposition is true for
each diagonal element of Y QtY D which is the norm of this element multiplied
by its weight. This quantity is the inertia of the observation with respect to
the origin.

The first result shows that, when Q is diagonal, an analogous decomposi-
tion is available for the variances and this is well-known.

The ratio Tr(t(PXY )D(PXY )Q)/T r(tY DY Q) can be used for appreciat-
ing the quality of the reconstruction. When Q = Ip×p, this ratio is the coeffi-
cient of Stewart and Loeve. It can be used as a basis for a permutation test
of significance for the reconstruction. The following proposition shows that
RV (Y QtY D, (PXY )Qt(PXY )D) can be also used for such an evaluation.

Proposition 3.2.2

TR((Y QtY D − (PXY )Qt(PXY )D)2) = Tr((Y QtY D)2)×
× (1− (RV (Y QtY D, (PXY )Qt(PXY ))2) (1)
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Let Z be a third data array observed on the same observations provided
with the same weights. We can do for PZ and (In×n − PX)Y what we did
for PX and Y . We will obtain a decomposition of the inertia contained in the
subspace orthogonal to the space spanned by the variables inX . It is clear that
all the results traditionally used in analysis of variance for the decomposition
of the variance with respect to factors, orthogonal or not, can be developed
here for the decomposition of the inertia of (Y,Q,D).

3.3 Non linear solution

We consider a finite set of functions (bk; k = 1, . . . , l) and F the set of the
linear combinations of these functions. Let Bj the matrix n × l in which
Bjk

i = bk(Xj
i ) whereXj

i is the value taken by the observation i for the variable
j. Let tj a vector with l elements. We consider the non linear transformation
of Xj defined by: f(Xj) =

∑
k=1,...,l tjkB

jk = Bjtj .
Let B the n× (q× l) matrix obtained by the juxtaposition of the matrices

Bj and T, the (q × l)× q matrix constructed with the (tj ; j = 1, q) in such a
way that the column j of BT is Bjtj .

We can look for the solution of the following problem: Find T and R such
that Tr((Y QtY D −BTRtT tBD)2) is minimum.

For a given T , we obtain from the preceding paragraphs an explicit solution
for R. When R is known, T can be computed through a numerical algorithm.
The solution will be obtained by an iterative algorithm based on these two
steps.

3.4 Bibliographical hints

The method of principal components with respect to instrumental variables is
a part of the basic paper by (Rao 1965).It has been presented through the use
of the RV coefficient in (Robert and Escoufier 1976). Canonical analysis and
discriminant analysis are also presented in that paper as an RV optimisation
problem. Here we have followed the presentation published in (Bonnifas et al.
1984).For the paragraph 3.2, we recommend (Fraile et al. 1993) which gives
the details of an application in the correspondence analysis context and also
the paper by (Kazi – Aoual et al. 1995) which gives the explicit first three
moments for the distribution of the permutation test. The non linear approach
is mainly based on the work of (Durand 1992, 1993). (Imam et al. 1998; Schlich
and Guichard 1989) are applications. In the beginning of the research on RV,
the choice of variables in principal components analysis was the main goal.
This topic has been presented as a contributed paper in Compstat 1974 in
Vienna (Escoufier et al. 1974).See also (Escoufier and Robert 1979).

We have considered before the operator (In×n − PXY )Qt(In×n − PXY )D
related to the study ((In×n−PX)Y,Q,D). In such a study, all the information
orthogonal to the X variables is deleted. Consider Z a qx × r matrix and
PZ = Z(tZQZ)−1ZQ. The array (In×n − PX)Y t(Iq×q − PZ) has its columns
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D – orthogonal to X and its rows Q – orthogonal to Z. Some authors use
these results in correspondence analysis to avoid linear, quadratic or cubic
components. They introduce suitable constraint matricesX and Z (Beh 1997),
(D’Ambra et al. 2002).

4 Conclusions

It could be useful in this survey to recall the construction of the results along
the years.

1. First Steps: The initial work (Escoufier 1970) focussed on sampling of
variables in a family of variables. The aim was to quantify the discrepancy
between the principal component analysis of the family and the principal
component analysis of the sample of variables. The not yet called RV
coefficient was proposed. The immediate consequence was an interest for
the choice of variables in principal component analysis (Escoufier et al.
1974). We stress the applied focus of this approach.

2. Then two theoretical orientations appeared. The first was the use of the RV
coefficient as a unifying tool for the presentation of the different methods
of multivariate analysis (Robert and Escoufier 1976).They were presented
as solutions of optimization problems under various constraints. The sec-
ond orientation sprang to mind from collaboration with JP. Pagés and F.
Caillez. It appeared that the operator related to a data matrix found a
natural place in the duality diagram which was at the centre of their own
work on data analysis. All the work accomplished after that to present the
different multivariate analysis methods through a particular triplet (X, Q,
D) have their beginning in this convergence.

3. STATIS came from another convergence. Two topics were often discussed
in statistical literature: multidimensional scaling and joint analysis of sev-
eral data matrices. The operators related to data matrices and their scalar
product COVV gave a very straightforward solution for the global com-
parison of the studies. The property of the solution (the compromise is
also an operator) has been exploited for the definition of the two other
steps of the method.

4. In France, the use of supplementary observations and supplementary vari-
ables was frequent in principal component analysis and correspondence
analysis. This practice which uses at the end of a study information known
at its beginning is rather questionable from a logical point of view even if
it is useful. The principal component analysis with respect to instrumental
variables method allows one to take into account the instrumental vari-
ables from the beginning of the study and moreover gives a quantification
of their effects. This is the reason for its development.

The reader will recognize three types of references in this article. The
oldest, often in French, are given for historical reasons. They had opened
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the field. The second, in English, can be found more easily. They have been
chosen for the interested readers who want to go further in this approach of
data analysis. The third, the most recent, are by colleagues younger than me,
who have been actors of this story and who are always very active. When I
name them, I know that I commit two injustices: One towards them because
their works do not find in my article a sufficient place and one towards other
researchers who made important contributions to the topic. I hope that they
will forgive me.
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