Séminaire de Théorie des Nombres de Montpellier :
Le 13 janvier 2015 à 15 - salle 431
Présentée par Guiraud David - Université de Heidelberg
On l-modular Bernstein blocks of p-adic groups
Let $G=GL_n(F)$ be a general linear group over a $p$-adic field. Bernstein's decomposition allows us to write the category of smooth representations of $G$ over an algebraically closed field of finite characteristic $\ell\neq p$ as a direct sum of blocks (i.e. indecomposable subcategories). In this talk, I will describe this decomposition in the level-0 case and give certain results concerning the structure of and the interplay between the occurring blocks