Séminaire des Doctorant·e·s :

Le 24 novembre 2015 à 17h00 - Salle 9.11


Présentée par Mathlouthi Ridha - LIRMM

Amélioration des performances de calcul de bases de Gröbner



Dans le cadre de ce séminaire, je vais d'abord (soigneusement, j'espère) vous présenter les bases de Gröbner, i.e. - le problème auquel elles répondent - leur existence - leur utilité puis je vous présenterai deux algorithmes qui permettent de les obtenir. Le premier, qui est l'original, est dû à Bruno Buchberger (1970), qui co-inventa les bases de Gröbner en 1965 lors de sa thèse. Il se base sur le principe des polynômes de syzygie et sa terminaison repose sur le caractère noethérien de l'anneau $k[x_1,...,x_n]$. Le second, beaucoup plus récent (1998), se nomme $F_4$ et a été imaginé par Jean-Charles Faugère. Celui-ci repose sur une "parallélisation" des réductions, un pré-calcul symbolique et quelques outils d'algèbre linéaire effective.



Retour