Séminaire Gaston Darboux :

Le 03 décembre 2021 à 11:15 - salle 109


Présentée par Seppi Andrea - Univ. Grenoble

Rigidity of minimal Lagrangian diffeomorphisms between spherical cone surfaces



Minimal Lagrangian maps play an important role in Teichmüller theory, with important existence and uniqueness results for hyperbolic surfaces obtained by Labourie, Schoen, Bonsante-Schlenker, Toulisse and others. In positive curvature, it is thus natural to ask whether one can find minimal Lagrangian diffeomorphisms between two spherical surfaces with cone points. In this talk we will show that the answer is negative, unless the two surfaces are isometric. As an application, we obtain a generalization of Liebmann’s theorem for branched immersions of constant curvature in Euclidean space. This is joint work with Christian El Emam.



Retour