Séminaire de Probabilités et Statistique :

Le 17 octobre 2022 à 13:45 - SupAgro - Bât 6 - Salle 2


Présentée par Métivier David - MISTEA

Robust estimation with Randomized Quasi Monte Carlo (Séminaire SupAgro)



We are given a simulation budget of B points to calculate an expectation/integral. A Monte Carlo method achieves a mean squared error proportional to 1/B, while Randomized Quasi Monte Carlo methods are asymptotically faster. The question we address in this presentation is, given a budget B and some confidence level, what is the optimal confidence interval size one can build? For which estimator? We show that a judicious choice of "robust" aggregation methods coupled with Quasi Monte Carlo techniques allows to reach the optimal error bound. In this talk, I will present Quasi Monte Carlo methods, different concentration inequalities and robust mean estimators (old and new) to get to the solution, with supporting numerical experiments.

This is a joint work with M. Lerasle and E. Gobet.

Séminaire à SupAgro, bâtiment 6, salle 2.



Retour