Séminaire ACSIOM :
Le 12 avril 2005 à -
Présentée par Simons Stephen - Université de Californie, Santa Barbara
The maximal monotonicity of the sum (en franglais)
In this talk, we use a symmetric bivariate version of the Attouch--Brezis theorem, Rockafellar's version of the Fenchel Duality theorem, and Fitzpatrick functions to obtain sufficient conditions for the sum of maximal monotone multifunctions on a reflexive Banach space to be maximal monotone. Our proofs are based entirely on standard convex analysis, and do not use fixed--point related results in any way. The computations on monotonicity are somewhat simplified by the use of an ``indefinite inner product''.