Pascal Azerad Home Page

Maître de conférences, HdR, hors-classe, échelon ex.
Institut Montpellierain Alexander Grothendieck UMR CNRS 5149

Numerical, mathematical and stochastic analysis of PDEs.

Publications

  1. P.A., Analyse et approximation du problème de Stokes en bassin peu profond, C.R. Acad. Sci. Paris, T. 318, serie I, pp.53-58, 1994
  2. P. Perrochet and P. A., Space-Time Integrated Least-Squares: solving a pure advection with a pure diffusion operator, J. Comput. Phys., vol. 117, no 2, pp 183-193, 1995
  3. P.A. and J. Pousin, Inégalité de Poincaré courbe pour le traitement variationnel de l'équation de transport, C.R. Acad. Sci. Paris, T. 322, serie I, pp.721-727, 1996.
  4. P.A., P. Perrochet and J. Pousin, Space-Time Integrated Least-Squares: a simple, stable and precise finite element scheme to solve advection equations as if they were elliptic, Progress in partial differential equations: the Metz surveys 4, Pitman Research Notes in Mathematics Series 345, M Chipot and I Shafrir Eds, pp 161-174, Longman, 1996.
  5. P.A., O. Besson, Numerical simulation of fluid flow in a stratified shallow lake Proceedings of the IXth International Conference on Finite Elements in Fluids, M. Morandi Cecchi, K. Morgan, J.Périaux, B.A. Schrefler, O. C. Zienkiewicz (Eds), pp. 1477-1486, Venice, 1995.
  6. P.A., Analyse des équations de Navier-Stokes en bassin peu profond et de l'équation de transport, Thèse de doctorat ès sciences, Neuchâtel, 1996.
    PostScript zipped file, 340 k
    PDF file 1M
  7. P.A., O. Besson and F. Guillén, Fluid flow in shallow domains: mathematical analysis and numerical simulation, Proceedings of the IVth Catalan Days of Applied Mathematics, C. Garcia, C. Olivé , M. Sanroma Eds, pp. 9-16, Universitat Rovira i Virgili, Tarragona, 1998.
  8. P.A., and F. Guillén, Equations de Navier Stokes en bassin peu profond : l'approximation hydrostatique C.R. Acad. Sci. Paris, T. 329, serie I, pp.961-966, 1999.
  9. P.A, Mathematical Analysis and Finite Element stategy for 3D numerical simulation of Navier-Stokes equations in thin domains, Proceedings of ECCOMAS, 8 p, Barcelona , 2000.
  10. P.A. and F. Guillén, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal., Vol. 33, No. 4, pp. 847-859, 2001
  11. P.A. and E. Baensch, Quasi-stability of the primary flow in a cone and plate viscometer, J. Math. Fluid Mech., 6, pp. 253-271, 2004.
  12. P.A., D. Isebe, B. Ivorra, B. Mohammadi and F. Bouchette, Optimal shape design of coastal structures minimizing coastal erosion, Proceedings of workshop on inverse problems, CIRM Marseille, 2005.
  13. P.A. and M. Mellouk, On a stochastic partial differential equation with non-local diffusion, Potential Analysis, 2007, Vol. 27, pp. 183-197, 2007.
  14. D. Isebe, P.A., B. Mohammadi and F. Bouchette, Design of Passive Defense Structures in Coastal Engineering , Int. Rev. Mech. Eng.,1, 2007.
  15. P.A., Contributions a l'etude de quelques equations aux derivees partielles, en mecanique des fluides et en genie cotier, HdR, 2007.
  16. D. Isebe, P.A, B. Mohammadi, F. Bouchette, Optimal shape design of coastal structures minimizing water waves impact, Coastal Engineering, 2008, Vol. 55, pp. 35-46.
  17. D. Isebe, P.A, F. Bouchette, B. Ivorra, B. Mohammadi, Shape optimization of geotextiles tubes for sandy beach protection, International Journal for Numerical Methods in Engineering, 2008, Vol. 74, pp. 1262-1277.
  18. D. Isebe, B. Ivorra, P. A., B. Mohammadi and F. Bouchette, Progress in Global Optimization and shape design,Modeling, Simulation and Optimization of Complex Processes, Proceedings of the Third International Conference on High Performance Scientific Computing, Hanoi, Vietnam, H.G. Bock, E. Kostina, H.X. Phu and R. Rannacher, Eds, pp. 303-312, Springer, 2008
  19. B. Alvarez-Samaniego, P. A., Existence of travelling wave solutions and local well-posedness of the Fowler equation, Disc. Cont. Dyn. Syst., Ser. B, 12, pp. 671-692, 2009.
  20. N. Alibaud, P. A, D. Isebe, A non-monotone conservation law for dune morphodynamics, Differential and Integral Equations, 23, pp. 155-188, 2010.
  21. A. Bouharguane, P.A., F. Bouchette, F.Marche and B. Mohammadi, Low complexity shape optimization and a posteriori high fidelity validation, Disc. Cont. Dyn. Syst., Ser. B, 13, pp. 759-772, 2010.
  22. P. A., S. Brull Inegalites de Poincare cinetiques Comptes Rendus Mathematique Volume 349, Issues 13-14, pp. 759-763, 2011
  23. P. A., A. Bouharguane and J.-F. Crouzet, Simultaneous denoising and enhancement of signals by a fractal conservation law Communications in Nonlinear Science and Numerical Simulation Volume 17, Issue 2, pp. 867-881, 2012
  24. P.A., A. Bouharguane, Finite difference approximations for a fractional diffusion/anti-diffusion equation preprint, 2011.
  25. P.A., J.-L. Guermond and B. Popov, Well-balanced second-order approximation of the shallow water equation with continuous finite elements SIAM J. Numer. Anal., 55(6), 3203-3224, 2017.
  26. P. A. and M. Hanot, Numerical solution of the div-curl problem by finite element exterior calculus submitted, 2022.
  27. About coastal erosion

    Teaching

    Codes

    Professional links

    Jobs for Mathematicians

    Fluids