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1. Introduction and general framework

In recent years, fractional calculus has received a great deal of attention.
Equations involving fractional derivatives and fractional Laplacians
have been studied by various authors (see, e.g. Podlubny [15] and
references therein). In probability theory, fractional calculus has been
extensively used in the study of fractional Brownian motions. In this
work we consider a stochastic partial differential equations where the
standard Laplacian operator is replaced by a fractional one.

Let A > 0. We consider the fractional Laplacian Ay = —(—ﬁA)’V 2=

—(—ﬁaa—;)’\/ 2 the symmetric fractional derivative of order A on IR.

This is a non-local operator defined via the Fourier transform F:

F(Axv)(€) = € F (v) (£).

There are other integral representations, which will not be used here-
after, e.g. for 1 < A < 2,

Myoa) = K [ oo +1) = v(e) = Vole) -} s (L)

for some positive constant K = K, see [7], which identifies it as the
infinitesimal generator for the symmetric A-stable Lévy process (see,
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2 P. Azerad and M. Mellouk

e.g., Ito [8], Stroock [16], Komatsu [9], Dawson and Gorostiza [5]).

Let W = {W(t,z),(t,z) € [0,7] x R} be a Brownian sheet on a
complete probability space (2, G, P). That is, W is a zero-mean Gaus-
sian random field with covariance function

1
EW(t,2)W(s,y)) = 5(s At) (J2] + Iyl — |z —9l),
z,y € R, s,t € [0,T]. Then, for each ¢ € [0,T], we define a filtration
G2 =0 (W(s,z),5 € 0,8,z €R), =00V,

where N is the o-field generated by sets with P-outer measure zero.

The family of o-fields {G;,0 < ¢t < T} constitutes a stochastic basis
on the probability space (2, G, P). Let P the corresponding predictable
o-field on © x [0,T] x IR. The stochastic integral with respect to the
Brownian sheet is explained in Cairoli et al. [3] or Walsh [17].

We focus on the following parabolic stochastic partial differential
equation, driven by space-time white noise in one space dimension on

[0,7] xR

B) L(t2) = At ) + b(t, 2, (1,2)) + 0 (6,2, (4,2)) Wit, ),
with initial condition u(0,z) = wuo(z) Go-measurable and satisfying

some conditions that will be specified later. The process W(t, x) = gigg

is the generalized (distribution) derivative of the Brownian sheet. The
properties of W are described in Walsh [17].

In principle one can think of a wide variety of random forcing terms.
White noise in time and space is very often a candidate. Main mo-
tivations behind this choice are central limit type theorems and the
insufficient knowledge of the neglected effects or external disturbances.

Evolution problems involving fractional Laplace operator have long
been extensively studied in mathematical and physical literature. In the
latter, this type of models has been motivated by fractal (anomalous)
diffusion related to the Lévy flights (see, e.g., Stroock [16], Bardos et
al. [1], Dawson and Gorostiza [5], Metzler and Klafter [12], Mann and
Woyczynski [11]). In fact, in various physical phenomena in statistical
mechanics, the anomalous diffusive terms can be nonlocal and fractal,
i.e. represented by a fractional power of the Laplacian.
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On a non-local stochastic diffusion equation 3

Equation (E) is a generalization of the classical stochastic heat
equation where A = 2 (see, e.g., Walsh [17], Pardoux [14] and the
references quoted therein). In those papers, the authors prove exis-
tence and uniqueness of the mild solution in the space interval [0, 1].
The proof relies strongly on properties of the explicit Green kernel
associated to the operator 6%25 in bounded space interval with Dirichlet
boundary conditions. In the present paper, we consider the above class
of equations in the whole line, instead of a bounded interval, for the
space variable. The main properties of the semigroup generated by the
fractional Laplacian can be derived by Fourier transform techniques.

Consider the fundamental solution G (¢, ), associated to the equa-
tion (E) on [0, 7] x IR i.e. the convolution kernel of the Lévy semigroup
exp(tAy) in IR.

Using Fourier transform, we easily see that G(t, ) is given by :
Gat,z) = FH(e 1 M) (2) = / Hmat e dg = Femt ) (@),

R

For X €]0,2], the most important property of G is its nonnegativity
(see Lévy [10] or Droniou et al. [6] for a quick proof ).

Throughout this work we consider solutions to the spde (E) in
the mild sense, following Walsh [17], given by the following definition
(which is formally equivalent to Duhamel’s principle or the variation
of parameters formula):

DEFINITION 1.1. A stochastic process u : Q2 x [0, T] x IR — IR, which
is jointly measurable and Gi-adapted, is said to be a (stochastically)
mild solution to the stochastic equation (E) with initial condition ug if

there ezists a martingale measure W, defined on 2, such that a.s. for
almost all t € [0,T],z € IR,

wlty3) = Galt) ruoa) + | /]R Gt — 5,2 — y)b(s, y,u(s,y))dyds

t
+ [ Gatt = 5.2~ y)ots.v,uls, )W dy, ), (1.2
o/R
where the last integral is an Ité stochastic integral.

We assume that the reaction term b and the white-noise amplitude ¢
are continuous functions on [0,7] x IR x IR and satisfy the following
growth and Lipschitz-Holder conditions:
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(Ho)
For all T > 0, there exists a constant C = C(T') > 0, such that for all
0<t<T,z € R and u,v € R,
b(t,,w)] + [0t w)] < C(1+ Ju), (13
lo(t,z,u) —o(t,z,v)| < C|lu—v]|, (1.4)

b(s,5,u) = b(t, 3, 0)| < C (|t = 5| +|z—y|"T +|u—v]). (15)

REMARK 1.1. Since 1 < X < 2, hypothesis (1.5) can be replaced by
the more stringent one

lb(s, 2, u) = b(t,y,0)| <C ([t —s[+[z—y[+]u-v]).  (16)
We shall also need some hypotheses on the initial condition ug :

(H1.1)  supgeg E(luo(z)[") < oo, Vp € [1, +oo[.

(Hy.2) Jpe€(0,1),Vze R, Vp € [1,+00[, IC, >0

sup Elug(y + 2) — uo(y)[" < Cplz[.
yeR

Let us recall some well-known properties (see e.g. Droniou, Gallouét
and Vovelle [6] pp. 501-502) of the Green kernel G (¢, z) which will be
used later on.

LEMMA 1.1. Let A €]0,2]. The convolution kernel Gy satisfies the
following properties:
(a) For any t € ]0,4+o00] and z € IR,

Gi(t,z) >0 and / Gi(t,x)dz = 1.
R

(b) (self similarity) For any t € IRy and z € IR
Galtyo) =t AGA(1,t Aa),

(c) Gy is C*® on ]0,400[ x IR and, for m > 0, there exists
Cm > 0 such that for any t € IRy and x € IR

< 1 Cm
= t(14+m)/A (1 +t_2/)‘|l‘|2)'

| 07*GA(t, )
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On a non-local stochastic diffusion equation 5
(d) For any (s,t) €]0,00[x]0, 00|
Ga(8,") * Ga(t,-) = Gx(s + 1, ).
(e) fOT dt [g dzGA(t,2)* <o iff 1/2<a <1+

In this paper, in order to define the stochastic integral, we restrict
ourselves to the case A €]1,2] : we must take A < 2 to have G positive

and we have to take A > 1 in order that [ [i. Gx(t,z)? dtdz < oo, by
lemma 1.1 (e).

Inessential constants will be denoted generically by C, even if they vary
from line to line.

The paper is organized as follows. In section 2, we prove existence and
uniqueness of the solution. In section 3 we prove Hoélder continuity of
the solution in space and time. A Gronwall-type improved inequality
and an Holder inequality frequently used in the paper are collected in
the appendix.

2. Existence and Uniqueness of the solution

The main result of this section is the following:

THEOREM 2.1. Let A €]1,2]. Suppose that the hypothesis (Hg) and
(Hy1.1) hold. Then there exists a unique solution u(t,x) to (E) such
that: for any T >0 and p > 1,

sup sup E(u(t,z)[?) < Cp < 0. (2.1)
0<t<T zeR

Proof. The proof of the existence can be done by the usual Picard
iteration procedure. That is, we define recursively

W0 (t,2) = /}R Gtz — y)uo (y) dy,

t
W (t7) = W (1) + /0 /R Gt — 5,2 — y)o (s, y,u" (s, )W (dy, ds)

¢
+ /O/IR G(t — s,z — y)b(s,y,u"(s,y))dyds, -
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6 P. Azerad and M. Mellouk

for all n > 0. We start by proving that given t > 0, 2 < p < o0,

sup sup sup E([u"(s,z)P) < C < +o0, (2.3)
n>0 0<s<t z€R

where C' is a constant depending on p, ¢, the supremum norm of uy and
the Lipschitz constants of o and b. Indeed,

E(|u"* (t,2)|") < C{E(lu"(t, 2)) + E(|4n(t,2)") + E(IBn(t,ar)(g’)Ll}) :

where A, (t, ) is the second term in (2.2) and By (¢, z) is the third term
in the right-hand side of the same equation.

By Jensen’s inequality

(s, )P < ( ORI |pdy) .

Taking expectation and applying Fubini’s theorem we obtain :

E(lu’(s,z)[P) < SUPE(\Uo(pr)/ dy G\(s,z —y) < sup E(|uo(y)[").
yeR R yeER

Now as (H;.1) holds, we get :

sup sup E(|u’(s,z)[P) < C < oo, (2.5)
0<s<T zeR

for some positive constant C.

Burkholder’s inequality yields, for any p > 2

t p/2
B(|An(t, 2)|)? < CF ( [/ Gi(t—s,w—wa?(s,y,u"(s,y))dyds) .
0JIR
Set

t
= [ 68— e
0/IR

Since A > 1, 1y < fOTf]R G3(t — s, — y)dyds < oo by lemma 1.1(e).
Consider

J(t—s) = / G2(t — s,y)dy. (2.6)
R
Due to the scaling property (see lemma 1.1 (b) ), one easily checks that

J(t—s)=C(t—s)" VA (2.7)
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On a non-local stochastic diffusion equation 7

Because of the linear growth of o (1.3), Holder’s inequality (4.1) applied
withf = o%(s,y,u"(s,y)), h = G5(t — s,z — y) and ¢ = p/2 implies

p_
2

E(|4n(t,a))P < Cvp B (/Ot/]R GX(t — 5,2 — y)oP(s,y,u"(s,y)) dyd8>

! n 204 o S
< C (/0 (1+53£E(Iu (s, »)IP) (/]RG,\(t 8, y)dy>d>-
i
E(|An(t,2)))f < C ; <1+ sup supE(IU”(s,y)I”)> J(t — s)ds. (2.8)

0<s<tyeR

The linear growth assumption on b (1.3) and Holder’s inequality applied
to integrals with respect to the measure G (t — s,z — y)dsdy implies

t
E(|Bn(t,z)[") < 0/ <1+ sup sup E(lun(s,y)lp)) ds.  (2.9)
0 0<s<tyeR
Collecting (2.4),(2.5),(2.8),(2.9) and (2.7) we conclude that

E(|u"*" (t,2)]")

t
<C (E(\uo(t,xﬂp) +/0 (1 + sup E(|u”(s,y)|p)) (J(t—s)+ l)ds)

yeR

t 1
<C <1+/0 (t—s)™x sup supE(|u"(s,y)|p)ds>.

0<s<tyelR

Thus by lemma 4.2 (see appendix) we obtain (2.3).

In order to prove that (un(t,z), n > 0) converges in LP, let n > 0,
0 <t <T and set

Mn(t) = Sup sup E(|Un+1 (37'7") —u" (S,.CC) |p)
0<s<tzeR

Using the Lipschitz property of o and b, a similar computation implies
t
M, (1) < C / ds My () (J(t — 8) + 1).
0

Moreover, owing to (2.3) we have supy<;«p My(t) < co. Therefore, by
lemma 4.2 the sequences (u,(t,z), n > 0) converges in L?(Q,G,P),
uniformly in z € IR and 0 < ¢ < T, to a limit u(¢, z). It is easy to see
that u(¢, z) satisfies (1.2), (2.1) which proves the existence of a solution.
Following the same approach as in Walsh [17], we can prove that the
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8 P. Azerad and M. Mellouk

process (u(t,z), t > 0,z € IR) has a jointly measurable version which is
continuous in L? and fulfills (1.2). Uniqueness of the solution is checked
by standard arguments. O

3. Holder continuity of the solution

In this section we analyze the path regularity of u(¢,z). The next result
extends and improves similar estimates known for the stochastic heat
equation (corresponding to the case A\ = 2).

THEOREM 3.1. Let A €]1,2]. Suppose that (Hp), (H;.1) and (H;.2)
are satisfied. Then, w-almost surely, the function (t,x) — u (t,z) (w)
belongs to Holder space C*P ([0,T] x R) for 0 < a < (4 A )‘2_/\1) and
0<B<(pA2F).

Proof. Fix T' > 0,0 < h < 1 and p €]1,1/p[. We show first that

sup sup E(| u(t + h,z) — u(t,z) |P) < ChP, (3.1)
0<t<T z€R

fora,ny0<a<(§/\)‘2—_)\1).

Indeed, we have
4

E(|u(t+h,z) —u(t,z) ) <CY_ It h, ), (3.2)
=1
where

Lt hz) = E‘ A (Cr(t+ by — ) — Gl 2 — y)uoy)dy|

b

t
//[G,\(tJrh—Saiv—y)—G,\(t—5,$—y)]
0 R
)

t+h
/ Galt +h — s, — y)o(s,y, u(s, y)) W (dy, ds)
t R

I(t,h,z) = E(

x o(s,y,u(s,y))W(dy,ds)

Is(t,h,z) = E(

t+h
/ ds / dy Gt + h— 5,2 — y)b(s,y, uls,y))
0 R

)

Ii(t,h,z) = E(

t
—/ ds/ dy GA(t — s,z — y)b(s, y,u(s,y))
0 R
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On a non-local stochastic diffusion equation 9

Using the semigroup property of the convolution kernel G,
Ga(t+h,z —y) = /]RG,\(t,x —y—2)Gx(h,2)dz
Hence
ntha) = 2 (| [ ) ([ 6t = ) oty =) = o) dy ) ds

With Holder’s inequality (4.1), the assumption (H;.2) and Fubini’s
theorem we obtain

)

1(t, h,x) / G(h,z) sup E|ug(y — z) — uo(y)|P d=
yeER

<c / G (h, 2) | )PP dz. (3.3)
R
Now, due to the self-similarity property (see lemma 1.1 b )

/G,\(h,z)|z|”pdz:/ h=UAG, (1, =12 ) |2]P dz
R R

% / Ga(L,y)|yl°” dy.

Using the fact that G (1,y) < 15 5> (see lemma 1.1 ¢), and that pp < 1
we obtain that

/]R Ga(L,y)lyl*? dy < oo.
Therefore we have proved that
Ii(t,h,z) < Ch'Y. (3.4)
Burkholder’s and Holder’s inequalities applied to integrals with respect

to the measure [Gy(t+h— s,z —1y) — Gi(t — s,z —y)]2dsdy, the growth
assumption on o (1.3) and (2.1) yield the following bound on I.

I(t,h,z) < C (1 + sup sup E(IU(&@/)\’”))

0<s<t yeR
p/2
X

0 /R
<o ([ (210 e P) a)

-8, T— y) - G/\(t — 5T y)]Zdey

azmel-vil.tex; 29/11/2006; 12:30; p.9
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Therefore, using Plancherel identity one easily checks that

/Ot/IR (Fle 091 _ Fe- -9 -\*))2 (y) dsdy

t

_ / / (e—(t+h—8)\y|)‘_e—(t—S)\y|>‘)2dsdy
0 JR
t 2

= // 6_2("’_5)‘:’/')\ (e_h‘yp_l) dsdy
0/IR

Decomposing the integral on IR into integrals on {|y| > 1} and its
complementary set, we have

IQ(ta h’a 3)) S C (IQ,I(ta h’a .Z‘) + IQ,Q(ta h’a J)))

where

¢ A A 2 v/
o (t, ) = / / e 2= (o 1) dedy |,

0J]y|<1

¢ . . ) p/2
Toa(t o) = / / e 2= (o 1) dsdy |

0J|y[>1

Then by the mean value theorem,

! —2(t—3)|y|* ( ,—hly* 2 g —2(t—s)|y|* 1,2
// o 2(t-9)ly] (e ] _1) dsdy < // 29 p2 sy
o/jy/<1 0 Jjyl<1

< Ch2.

On the set {Jy| > 1}, let 0 < a < 23%, then the same argument as
above implies

t
/ / o~ 2(t=35)y1* (efhw _ 1)2dsdy
0/ |y[>1
. _
_ // o—2(t—9)ly]* (1 B efh\yl*)h (1 — e*h\yp)Z . dsdy
0J|y[>1

00
C/ / e—25|y|>‘|h|2a|y|2)\ad8dy
0 Jly|>1

c / B2y Py Ay
ly|>1

IA

IN

IN

Ch?a/ |y|)\(2a71)dy < Ch2e.
yl>1
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On a non-local stochastic diffusion equation 11
Consequently, for 0 < a < )‘2—_/\1, we have proved that
I (t,h,z) < ChP,
Iro(t,h,z) < Ch.
Since 0 < a < )‘2—;\1 < 1, VX €]1,2], we obtain
I(t,h,z) < C hP. (3.5)

As before, Burkholder’s and Holder’s inequalities applied to integrals
with respect to the measure G3(t + h — s,z — y)dsdy, the growth
assumption on o (1.3) and (2.1) yield

Lt o) < c(1+ sup sup E(\u(s,wnp))
0<s<tzeR

t+h p/2
x(/ /G?\(t—f—h—s,m—y)dsdy) i
t R

Recalling from (2.7) that

/]RGi(t—l-h—s,x—y)dy:J(t+h—s):C(t+h—s)1/’\

t+h o1
we compute / (t+h—s)"Ys=Ch'> .
t
Thus

p(A—1)

It h,z) < Ch o . (3.6)

A change of variable yields

I4(t, h, .’L‘) S C (14’1(t, h, .’L') + I4,2 (t, h, .’L'))
with

)
)

Applying Holder’s inequality (4.1) to integrals with respect to the mea-
sure G)(t + h — s,x — y) dsdy, the growth assumption on b (1.3) and

h
/ dS/ dyGr(t+h — s,z —y)b(s,y,u(s,y))
0 R

t
/ ds/ dy Gx(t — s,z — y)
0 R

X (b (3 + hayau(s + hay)) - b(s,y,u(s,y)))

I471(t,h,fﬂ) = E(

I4,2(t,h,:v) = E(
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(2.1) we get

ialtha) < 0 (1+ sup sup Bilu(s, o))
0<s<tz€R

h p
x(/ ds/dyGA(t—I—h—s,x—y)) .
0 R

Since [ GA(t+ h — s,z —y) dy = 1, we obtain
I4’1(t, h, :I?) S Chp (37)

Again Holder’s inequality applied to integral w.r.t. the measure G (¢t —
8,z —y) dsdy, Fubini’s theorem and the Holder-Lipschitz property of b
(1.5) imply

t
Iip(t hyz) < C (/ (h(g_?l)p +sup E(fu(s + R, y) — U(s,y)lp)) d8>
0

yeR

x (/OT/]RGA(t—s,a:—y)dsdy>.

t
Lio(t,hz) < C (h“?‘f)p + / sup B(lu(s + hyy) — u(s,y)[") ds) .
0 yeR
(3.8)

Hence

. . A1
Then, putting together (3.2)-(3.8) we obtain for 0 < o < %5

sup E(|u(t + h,z) — u(t,z)|P) < C ppmin(5.e)
z€R
t

+ C [ sup E(|lu(s+ h,z) — u(s,z)|P)ds.
0 z€R
Finally, the estimates (3.1) follows from standard Gronwall’s Lemma.
Consider now the increments in the space variable. We want to check
that for any 7' > 0, p € [2,00),z € IR, z in a compact set K of IR and

Be0,pA(2F),

sup sup E(| u(t,z + z) — u(t,z) [P) < C 2°P, (3.9)
0<t<T z€R
We write
3
E(|u(t,z + 2) —u(t,z) [P) < C Y _ Jit, z,2), (3.10)
i=1
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with
P

?

Ji(t,z,x) = ‘/ Ga(t,x+ 2z —y) — Gx(t,z — y))uo(y)dy

Jo(t, z,x) = (// [GA(t — s,z 4+ 2z —1y) — GA(t — s,z — 1)]
xo s,y u(s, y)) W (dy, ds)| )
J3(t,z,z) = E(/Otds/]Rdy[G)\(t—s,acikz—y)—G)\(t—s,:c—y)]

X b(s,y,u(s,y))‘p) .

In the remainder of the proof we are going to establish separate upper
bounds for Ji,Jy and Js.

A change of variable gives immediately

p
Ti(tz2) = ‘/me—w(uo(wz)—uo())dy

Applying again Holder’s inequality (4.1) to integral w.r.t. the measure
Gi(t,z —1y) dy, the assumption (Hj.2) and Fubini’s theorem we obtain

y€R

o(/ G)\(t,ac—y)\z|”pdy> < Clafer.
R

Burkholder’s inequality and Holder’s inequality (4.1) applied to inte-
grals w.r.t. [G\(t — 8,7 + z — y) — G\(t — 5,2 — y)]? dsdy, the linear
growth assumption on o (1.3) and (2.1) imply

Ji(t,2,2) < (/ Gtz —y) sup E(luo(y + 2) — uo(y )I”)dy)

IA

Jao(t,z,x) < C <1+ sup supE(|u(t,m)|p))

0<t<T z€R
i
ds | dy |G(t—s,x+2—y) = GA(t — s,z —y)[°
0 R
¢ . A A2 p/2
< C(/ / ‘]:(6727rzz-ef(tfs)|-| ) — F(e t (m—y))

IA

/2
(/ ds/dy‘ —amizyy—(t-s)ly 1 _ g—(t—5)|y >

(J2 1(t z x) +J22(t z .’II))

VAN
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where we have used the property that F (f(z)) (§+a) = F (e=279% f(z)) (€)
and the Plancherel identity and denote
2) p/2

t
Jo1(t, z,z) = (/ ds/ dy‘e_Zﬂizye_(t_S)‘yP‘_e—(t—5)|y|>‘
0 ly|<1
2)1)/2

1
Jop(t,z,z) = / ds/ dy ‘6—27”'2116—(t—s)\y|A _ e (t=s)y
0 y[>1
Tt 2,7) < Oz (3.11)

We therefore have, by the mean value theorem

On the other hand, for any 0 < 8 < %

J2’2 (t, zZ, .’E)

t p/2
— // e (t=3)ly |g=2mizy _ 1|28\ e=2mizy _ 1|2-28 gy
0J]y[>1

. p/2
<C /ds/ dy e~ (=Y |y 28|28

0 ly|>1

. p/2
< Clz* / dylyl”/ ds e~(t=9)lv*
yl>1 0

dy
< C|z|ﬂp/ W< e, (3.12)
yi>1 |y} 28

Finally, by a change of variable, the Holder-Lipschitz property of b (1.5)
and Holder’s inequality,

t
/ ds/ dy G(t — s,z — y)
0 R

X [b(say + Z,’U,(S,y + Z)) - b(s,y,u(s,y))ﬂp)

J3(t,z,z) < E(

¢
<C (z(%)p —I—/ sup E(|u(s,y + 2z) — u(s,y)|P) ds>(3.13)
0 yeR

Then (3.9) follows from (3.10)-(3.13) and Gronwall’s lemma. The Hélder
continuity in the time and space variables results from Kolmogorov
criterion. O
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REMARK 3.1. Hypothesis (H1.2) is useful to have Hélder continuity
up to time 0. If we discard (H1.2) and assume instead that

#3) ([ o) <o

then w-almost surely, the function (t,x) — u(t,z) (w) belongs to
CoP ([e, T] x IR) for 0 < a < 25 and 0 < B < 232, for any € > 0.

Indeed, we slightly modify the preceding proof to bound

Ii(t,h,z) = E /]R(G)‘(t—i—h,x—y)—G,\(t,x—y))uo(y)dy ,

and

Ji(t,z,0) = B / (Galtsz + 2 — ) — Ga(t,z — y))uo(y)dy
R
First we bound

P
Lt hy2) < sup |Ga(t + by 2) — Cr(L, )P - B ( / |uo<y)|dy) |
z€RR R

The following estimates are elementary

GA(t+h,z) — Gi(t,2) = /]R et (e (LRI — o=tel) g,

|GA(t+ hy2) — Ga(t, 2)] < / e UEM e hlEN _ 1) g,
R

|Gt + h,2) — Ga(t, 2)| < h / e “¢PlePrde = Oh.
R

Hence
Li(t,h,z) < CHP.

As for the space increments, we bound

Ga(t,z +2) — Ga(t,z) = / e2imat o—tlE[ (g2imzE _ 1) ge
R

|Gtz + 2) — Ga(t,3)] < || / el ore| de = O,
R

Hence
Ji(t,z,x) < C2P.
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The rest of the proof is the same as for theorem 3.1. O

4. Appendix

LEMMA 4.1. ( Holder). Let f,h be two functions defined on IR and p
a positive measure such that f-h € L*(u). Then, for all ¢ > 1, we have:

[ wa] < ([ mian) ([ 1n1an) RRRRY

The following elementary Lemma is an extension of Gronwall’s Lemma
akin to lemma 3.3 established in Walsh [17], see [4] for an elegant proof.

LEMMA 4.2. Let 6 > 0. Let (fn,n € IN) be a sequence of non-negative
functions on [0,T] and a, B be non-negative real numbers such that for
0<t<T,n>1

t
fult) < o+ /0 B far(s)(t — 5)P~1ds. (4.2)

If supg<i<y fo(t) = M, then for n > 1, sup,>qsupoc<r fn(t) < oo,
and if o =0, then Y, - fn(t) converges uniformly on [0,T).

Acknowledgments. We thank the anonymous referee for suggest-
ing us hypothesis (1.5) instead of (1.6).
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