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SUMMARY

This paper describes how to tackle new challenging coastal engineering problems related to beach erosion
with a shape optimization approach. The method modifies the shape of the sea bottom in order to reduce
beach erosion effects. Global optimization is shown to be necessary as the related functionals have several
local minima. We describe the physical model used, the proposed protection devices against beach erosion
and real case applications. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Beach erosion problems bring about increasing engineering demand. Indeed, about 70% of world
beaches are crossing an erosion phase, 20% are stable and 10% show signs of fattening [1, 2].
Obviously, this has major economical and environmental impacts. Groins, breakwaters and other
coastal structures are used to decrease water wave energy or to control sediment flows. The shapes
of these devices are usually determined using simple hydrodynamical assumptions, structural
strength laws or empirical considerations. However, as we will see, these are not fully satisfactory
because of secondary effects. Our aim is to take advantage of shape optimization techniques,
mainly used in aeronautics [3, 4], to propose new solutions to tackle this problem. This approach
is fully innovative in coastal engineering.
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Also, efficient global optimization algorithms are necessary to avoid the design to converge
to local minima. Indeed, we will see that the related functionals have several local minima.
Moreover, the search space is often non-connected. We use a semi-deterministic algorithm (SDA)
to allow global optimization of systems governed by partial differential equations (PDEs) with a
low calculation complexity [5, 6].

This paper is structured as follows. In Section 2, we recall the state of the art on geotex-
tile tubes and we describe their parameterization. Section 3 presents the flow model used
for the water waves propagation. Section 4 is dedicated to the description of the minimiza-
tion problem. Finally, Section 5 displays and discusses optimization results for two beach
protection studies in Northwestern Mediterranean sea with the aim of reducing the energy
available for sediment transport. In Appendix A, we briefly expose the optimization method
used.

2. GEOTEXTILE TUBES AND THE EROSION PROCESS

Water waves propagating toward the coast are characterized by their height H , their period T and
their direction �. The period does not change during the propagation, but the direction and the
height may vary when approaching emerged or submerged structures. This is mainly due to the
scattering phenomenon.

It is known that the height H of the wave is crucial for the study of an erosion problem. Indeed,
the suspension of sediments, produced by water wave action, is the main mechanism of erosion
process. The suspension of sediments is essentially linked to the associated water wave mechanical
energy E= 1

8�gH
2, where � is the water density and g the gravity acceleration [7–9].

Oceanographer observations of erosion show that the water waves can be roughly sorted into
two categories according to their height H , below or above a critical value Hlim. Basically,
those above Hlim, mainly present during storms, are erosive. They generate large mechanical
energy. On the other hand, when H<Hlim, waves foster the reconstruction of eroded beaches.
In what follows, the first class of water waves will be called erosive and the second class
constructive.

In order to decrease water waves’ impact along the coastline many structures have been proposed
[10, 11]. Until recently, the most used are emerged break-waters or groins built with rocks or
concrete. However, these techniques are expensive and only provide a short-term solution for the
beach protection because they mainly transfer in space the erosion process. (Figure 1 shows the
negative impact of emerged groins on erosion. Accretion occurs only upstream from the longshore
drift, whereas erosion is amplified downstream. Hence, it is soon necessary to build another groin
further downstream, etc.).

Currently, interest has been focused on a new generation of soft structures having less impact
on the coastal hydro-sedimentary system [12–14]. These devices are geotextile tubes, also called
geotubes (Figure 2—up). These geotubes are long cylinders made of synthetic textile and filled
with sand.

This paper discusses shape and location optimizations of geotubes for two sites both located on
the Northwestern Mediterranean French Coast.

The first analysis concerns the protection of a 2.4 km beach located between Sète and Agde [15]
(Figure 2—down—(left)). This is a large-scale industrial project under strict feasibility constraints.
The Bas-Rhône Languedoc Company (BRL) is in charge of the device layout and installation.
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Figure 1. Secondary effect of emerged groins: erosion has been amplified on one side of the groins
(downstream from the longshore drift). (Crédits: Hugues Heurtefeux, EID-MED.)

This company has a lot of experience in land-use management and development in Languedoc-
Roussillon (a French area) in order to perform engineering studies and advisory services. With
respect to the studied site, the coastal zone is characterized by a very low tidal excursion and
moderate waves. This beach is subjected to severe erosion, and the coastline has recorded a
shoreward displacement of about 50m since 1967 with a rate of shore retreat of about 1m/year
since 10 years [16]. In this spot, the critical wave height Hlim is about 2m.

The second situation concerns the protection of the Le Grau du Roi Le Boucanet beach
(Figure 2—down—(right)). This problem leads to a higher dimension design problem, as we shall
see below.

2.1. Geotube parameterization

Along the barred beach between Sète and Agde, the coastal topobathymetric profile includes two
natural sandbars, created under the water wave action. An engineering preliminary study first
suggested to restructure the beach and the two natural sandbars by sand recharging and secondly
to place two geotubes side by side behind the second natural sandbar in order to protect the new
beach [15]. In the sequel, we model the two geotubes as a single one twice larger. Figure 3 shows
a cross-section of the initial topobathymetry, the suggested sand recharging and the location of the
two geotubes.

The initial topobathymetric data available for this study consist of a series of echosounding
data obtained from numerous monitorings since 2000 [16, 17]. Hence, we recreate exactly the real
morphodynamic of the spot.

Geotubes will merely be represented by local modification of the topobathymetry. More precisely,
in each node of the discrete domain we have a given value for the initial topobathymetry. To
add a geotube arbitrarily in the domain, we parameterize its position using a series of N control
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Figure 2. Up—a geotextile tube before submersion (source: BRL engineering); Down—location of the
two studied sites: the barred beach of Sète and the beach of Le Grau du Roi Le Boucanet.

points in the domain. Cubic splines are used to connect these points. Once the location is
known, the shape (cross-section) of the geotube is given by a Gaussian function of the form
f (d)=He−sd2 , where d is the normal distance to the spline. This adds two additional param-
eters (s,H) for the control of the height and width of the geotubes. Thus, we have in each
node a modification of the topobathymetry (see Figure 4) which accounts for the presence of the
geotubes.
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Figure 3. The improvement of the considered site (source: BRL engineering).
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Figure 4. Left: the profile parameterization for the geotube in an academic linear topography; Right: up—the
initial topobathymetry of the barred beach; down—implementation of a geotube in the topobathymetry.

Note that both ends are smoothed by a suitable function.

3. FLOW MODEL

The propagation of water waves over linear irregular bottom bathymetry and around islands involves
many processes such as shoaling, refraction, energy dissipation and diffraction.

To compute the water wave propagation, we use the REF/DIF code [18–20]. REF/DIF is an
open-source software designed for modelling wave propagation over a weakly varying sea bottom.
It takes into account both refraction and diffraction phenomena or wave attenuation. However,
this model does not account for the reflection phenomenon. This appears, for instance, in water
wave propagation in a harbor with vertical emergent structures. Our applications only concern
propagation toward sandy beaches. The model has been validated on various experimental test
cases [21–23].

REF/DIF is based on a parabolic weakly non-linear combined refraction and diffraction model
that incorporates all of the effects mentioned above [24, 20]. This model combines the essen-
tial features of the two specific approaches, a mild slope model [25–28] and a diffraction
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model [29, 30]. In this section, we briefly present the non-linear combined refraction/diffraction
model.

3.1. Non-linear combined refraction/diffraction model

Kirby & Dalrymple, at the Center for Applied Coastal Research (University of Delaware,
US), developed a general formulation governing waves in a domain with slow but arbitrary
depth variations [24, 31]. The following parabolic approximation for refraction/diffraction is
obtained:

2ikCCg
�A
�x

+2k(k−k0)(CCg)A+ iA
�(kCCg)

�x
+

�
(
CCg

�A
�y

)

�y
−k(CCg)K

′|A|2A=0 (1)

where

C =
√
g

k
tanhkh (phase speed) (2)

Cg =C
(1+2kh/sinh2kh)

2
(group velocity) (3)

K ′ = k3
(
C

Cg

)
cosh4kh+8−2tanh2 kh

8sinh4 kh
(4)

h(x, y) is the local water depth and g the gravity. The local wave number, k(x, y), is related to the
angular frequency of the waves, �, and the water depth h by the non-linear dispersion relationship

�2=gk tanhkh (5)

k0 is a reference wave number related to the incoming condition. Equation (1) is valid under the
mild slope assumption ∇h/kh�1 [24].

Equations (1) and (5) are numerically solved by an implicit finite difference method [19, 20] in a
domain of size [0,mr ]×[0,nr ]. We define xi =(i−1)∗�x and y j =( j−1)∗�y where �x and �y
are the space steps on each directions. The axis x=0 is the offshore boundary where the incoming
condition is prescribed. The water wave propagation is computed for the increasing i . The lateral
boundaries y=0 and y=nr have open boundary conditions. Concerning the topobathymetry,
at each node (i, j) of the grid, we have a positive value h(i, j) corresponding to the water
depth.

In model (1), A= A(x, y) is the complex amplitude related to the water surface displacement by

�(x, y)=�(A(x, y)eikx ) (6)

4. COST FUNCTION

An optimization problem refers to the minimization of a cost function J , also called objective
function (see Appendix A). In this study, our aim is to optimize the shape of a given geotube and
its distance to the coast in order to minimize the energy available for sediment transport in the
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Table I. Typical hydrodynamic data used in our simulations.

South South South East East South East East

Constructive Hs =0.76m Hs =0.85m Hs =0.85m Hs =0.66m
water waves Ts =4.96s Ts =5.21s Ts =5.21s Ts =4.99s

p=24.66% p=22.75% p=22.75% p=17.5%

Erosive Hs =2.91m Hs =3.233m Hs =3.233m Hs =3.55m
water waves Ts =7.54s Ts =7.78s Ts =7.78s Ts =8.03s

p=2.84% p=3.25% p=3.25% p=2.5%

Significative height Hs , mean period Ts and mean frequency of observation p for four significant
directions of propagation.

nearshore zone. We have seen in Section 2 that this cost function can be expressed as a function of
the water wave mechanical energy E= 1

8�gH
2, where � is the water density and H =2A [7, 8].

This energy is crucial in the erosion process as it fosters the motion of sediments.
Another important issue for the modified geometry (i.e. after addition of the geotube) is that the

geotube should not increase the sea bottom fluid particle velocity‡ shoreward. For a water wave
propagation in the x-direction, the stationary bottom orbital velocity Uorb is given by [30]

Uorb= Agk

�
cosk·x (7)

where x=(x, y) and k=k(cos�,sin�), where k is the wave number and � the wave direction.
However, Section 2 and Table I suggest two main categories of water waves: the constructive

and the erosive ones which, as we said, correspond to waves with heights below and above the
critical water height Hlim=2m. Hence, for a given direction of propagation �, the following cost
function is considered:

J� =
∫
D EH>Hlim dS∫
D EH<Hlim dS

+(‖Uorb‖−‖U initial
orb ‖)++

(∫
D
EH<Hlim dS−

∫
D
E initial
H<Hlim

dS

)
+

(8)

where (x)+ =max(x,0) is any regularized max operator in order to have J� differentiable, and
initial is related to the initial unmodified sea bottom. D is the area where minimization is desirable.
The first term of J aims at maximizing the constructive waves and minimize destructive ones (as
a low-pass filter for waves). The second (resp. third) term penalizes orbital velocity energy (resp.
energy produced by constructive waves) greater than their initial values (i.e. for the unperturbed
region).

As we are interested in multi-point optimization, we consider the following weighted
combination:

J =∑
p� J� (9)

where p� is the observation frequency for a given wave direction. This last point again highlights
the importance of global minimization tools.

‡Also called bottom orbital velocity.
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Figure 5. Cost function evolution w.r.t. to the geotube position. This is difficult to solve
with a local minimization algorithm.

This is also clear from Figure 5 which shows a sampling of the functional J along one
dimension for a situation where the only parameter is the distance of the geotube to the beach.
The area D where functional J is computed lies between 100 and 250m far from the coast-
line. The height of the geotube has been set to 3m, its width to 12m and the offshore distance
sampled between 100 and 750m seaward for a simple straight geotube. The minimum is obtained
for a geotube located at around 350m from the coastline (we come back to this simulation in
Section 5).

5. APPLICATION TO BEACH EROSION CONTROL

In this section we apply the optimization algorithm (briefly described in Appendix A) to PDE-
based shape optimization problems arising in the design of beach protection device. We consider
two different sites where the beach is either straight or curved (see Figure 2).

5.1. Straight geotube

We first design a straight geotube. This problem arises in the protection of a beach located between
Sète and Agde (Northwestern Mediterranean Sea, Languedoc-Roussillon, France) where industrial
constraints reduce the number of design parameters to two: the distance from the coast and the
height of the tube. The computational domain for the flow is 2400m longshore and 1200m
shoreward. The mesh size is 1m cross-shore and 5m longshore. The tube is of the same length as
the studied costal zone. In that case, as the tube was already pre-designed, the width is fixed to 12m.
The propagation is performed for water waves data available at 1.2 km of the coastline, stemming
from French National Center Archive for In Situ Wave Data (e.g. from Table I). Recreational
sailing and tourism navigation constraints due to local topobathymetry imply that the search space
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Table II. Multi-point optimization: variations of constructive and destructive energies
for various incidences �.

South South South East East South East East

Constructive water waves — — — —

Weights (%) 24.66 22.75 22.75 17.5

Erosive water waves (%) 15% gain 30% gain 16% gain 15% gain

Weights (%) 2.84 3.25 3.25 2.5

Overall gain (%) 23

—Means that the quantity is almost unchanged, less than 0.1% variation.

[100m,200m]∪[300m,850m] is disconnected. This is because no tube should be placed on the
second natural sandy bar (see Figure 3) to maintain a minimum depth of 2m. Coastal engineering
suggests building devices to control the energy generated in the area between 100 and 250m
far from the coastline (denoted by D in the cost function definition, see Section 4). This zone
corresponds to the gap between the first and the second natural sand bar.

Coastal engineering first guess would suggest to set the geotextile tube around 550m from the
coast to recreate the third natural sand bar which is missing in this site. Available geotubes are
3m high which leaves an acceptable depth of water to float ships. The optimization procedure
locates the geotube at 353m far from the coast with a height of 2.5m. This result is confirmed
by the sampling of Figure 5. For this reduced number of parameters, which was imposed by
industrial constraints, we could have manually searched the design space. But we preferred to
test our optimizer on this case for which the cost function J is clearly non-convex and possesses
several local minima (see Figure 5).

Table II shows that the optimized geotube is inactive for the constructive water waves and
reduces the erosive ones. In addition, because of the multi-point problem considered, this is true
for all studied propagation directions: the geotube plays its low-pass filter role.

Global functional histories for the current and best element found are shown in Figure 6. We
plot the output of the core minimization algorithm for different initializations provided by our
multi-layer construction. Several local attraction basins have been visited. The core minimization
algorithm has been called about 50 times. Overall the optimization has required about 700 functional
evaluations. Each state evaluation requires about 15min on a (3GHz–1GB) personal computer.
Figure 7 shows the water wave height for the protected and unprotected beaches for erosive SSE
condition (see Table I).

This shows that a geotube set immediately before the second natural sand bar makes it
possible to break the water waves, therefore, attenuating their energy in the nearshore zone.
More precisely, this study reveals that the geotube must break the water waves sufficiently far
away from the coastline but not too far, otherwise the wave recreates itself. In addition, Figure 8
ensures that this optimized configuration does not increase the bottom orbital velocity compared
with the initial configuration, which guarantees that bottom shear-stress is not amplified (see
Section 4).
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Figure 6. Functional values history for the best element found by the core minimization algorithm and
the current value of the functional. One sees that the optimization algorithm is not a descent method.
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Figure 7. Bottom curve: cross-shore topobathymetry. Solid top curve: water height compared
with the original height (dashed line).

5.2. Curved geotube

The topobathymetry is the one of Le Grau du Roi Le Boucanet beach (Northwestern Mediterranean
Sea, Languedoc-Roussillon, France). The studied area corresponds to a 3 km longshore and 4.4 km
seaward zone with a mesh size of 5m. We consider the design of one geotube defined by eight
control parameters. A spline is defined passing by three nodes (this makes six parameters). The
two remaining parameters are the height and width of the tubes, which are also let free. The length
of the tube is required to remain between 500 and 2000m.
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Figure 8. Bottom curve: cross-shore topobathymetry. Solid top curve: orbital velocity compared with the
velocity on the unprotected beach (dashed line).

Figure 9. Left: the initial topobathymetry where the white box represents the region D for the cost function
computation; Right: the modified topobathymetry with the optimized geotube.

Figure 10. The water height H in the whole domain: (left) for the initial configuration,
(right) for the optimized configuration.
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Figure 11. The bottom orbital velocity in the domain: (left) for the initial configuration,
(right) for the optimized configuration.

Figure 12. The free surface elevation in the cost function region D: (left) for the initial
configuration, (right) for the optimized configuration.

The cost function (8) is minimized in the region D, which lies between 100 and 250m offshore,
depicted in Figure 9 (left). For computation time reasons, we only consider a mono-directional
south incident water wave with a period T =8s and an amplitude A=3m.

The optimized geotextile tube is 1.5 km long with a height of 13m and a width of 70m. Its
location is represented in Figure 9 (right). This optimized configuration reduces drastically the
energy available for sediment transport. In this case, the cost function decreases by more than
65% compared with the unmodified topobathymetry. In practice, it is obvious that putting this
optimized geotube into construction will not be easy, owing to its size. However, in this section,
the objective is to highlight the efficiency of the global optimization algorithm.

We display in Figure 10 the water height H in the whole domain for the two configurations. We
observe that, in the region D (close to the east coast), the water height is reduced from 2 to 1m
by the use of the optimized geotextile tube. Also, we observe an important decrease in the bottom
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orbital velocity in the optimized configuration (see Figure 11). This is important to reduce sand
suspension and displacement by water waves. Finally, free surface elevation is clearly reduced in
region D after the introduction of a geotube (see Figure 12).

6. CONCLUSION

A coastal engineering problem has been modelled and optimal shape design performed
for sandy beach protection. Results have shown that geotubes can be designed to reduce
beach erosion, under the constraint of minimum water draught for coastal navigation.
These devices permit reduction of wave energy, orbital velocity and free surface elevation.
Finally, complementary studies have shown that despite not being accounted for during
design, the generated currents [32] are also lower after the introduction of the protection
device.

APPENDIX A: OPTIMIZATION METHOD

In this appendix, we briefly present the global optimization method used for the applications.
We consider the following minimization problem:

min
x∈�

J (x) (A1)

where J :�→R is the cost function, x is the optimization parameter belonging to an admissible
space �⊂RN , with N ∈N. Replacing J by J− Jmin, where Jmin is the minimum of J , we can
assume that minx∈� J (x)=0.

In this section, we give a short presentation of an original global optimization method used to
solve (A1) (a full description can be found in [5]).

Consider any optimization algorithm (gradient, Newton, etc.) to solve (A1). We call this the
core optimization algorithm. It has an output denoted by A0(v0,N0,�)∈�, where v0∈� is one of
its initial condition, N0∈N+ is the number of iterations and �∈R defines the stopping criterion.
The parameters N0 and � are fixed at the beginning of the optimization process. In the sequel, we
denote A0(v0,N0,�) by A0(v0).

We assume that there exists an initial condition v� ∈� such that A0(v�) approximates the solution
of (A1) with a precision �∈R+. The general idea of the optimization method presented here is
to improve the efficiency of any particular core optimization algorithm A0 by making it global.
Hence, we consider that the minimization problem is solved if and only if the initial condition v0
lies in the global minimum attraction basin of J . To find such an initial condition, we consider
v0=s as a new variable and solve the following optimization problem, which is a reformulation
of (A1):

min
s∈�

J (A0(s)) (A2)

To perform the minimization (A2), we propose to use a two-layer SDA based on the secant
method [33].
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The first layer algorithm A1(v1,N1,�), where the number of iterations N1∈N+ is fixed, requests
the algorithm A0. It reads as follows:

• Input: v1,N1,�
• v2 chosen randomly
For i going from 1 to N1

• oi = A0(vi )

• oi+1= A0(vi+1)

• If J (oi )= J (oi+1) EndFor
• If min{J (ok)k=1,...,i }<�
EndFor

• vi+2=vi+1− J (oi+1)
vi+1−vi

J (oi+1)−J (oi )
EndFor
• Output: A1(v1,N1,�) :=arg min{J (ok),k=1, . . . , i}
Note that the step

vi+2=vi+1− J (oi+1)
vi+1−vi

J (oi+1)− J (oi )

is the secant method applied to the new functional v �→ J (A0(v)).
However, as this line search minimization algorithm might fail, an external level A2 is added

to the algorithm A1 to have a multi-dimensional search. Hence, v1=w is seen as a new variable
in A1 and the following optimization problem is solved, which is a reformulation of (A2):

min
w∈�

J (A1(w)) (A3)

To perform the minimization (A3), we consider a two-layer algorithm, with an output called
A2(w1,N2,�), where the number of iterations N2∈N+ is fixed, which calls algorithm A1 (which
in turn calls A0). It reads as follows:

• Input: w1,N2,�
• w2 chosen randomly
For i going from 1 to N2

• pi = A1(wi )

• pi+1= A1(wi+1)

• If J (pi )= J (pi+1) EndFor
• If min{J (pk)k=1,...,i }<�
EndFor

• wi+2=wi+1− J (pi+1)
wi+1−wi

J (pi+1)−J (pi )
EndFor
• Output: A2(w1,N2,�) :=arg min{J (pk),k=1, . . . , i}
Again, the step

wi+2=wi+1− J (pi+1)
wi+1−wi

J (pi+1)− J (pi )

is the secant method applied to the new functional w �→ J (A1(w)).
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In practice, we randomly choose the initial condition w1∈� and we consider (N0,N1,N2)=
(10,5,5). These values give a good compromise between computation complexity and result
accuracy. This algorithm was first described in [33], along with mathematical background. It has
been validated on various benchmark test cases [5] and industrial applications [6, 34–36].
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