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Abstract. Geophysical fluids all exhibit a common feature: their aspect ratio (depth to hori-
zontal width) is very small. This leads to an asymptotic model widely used in meteorology, oceanog-
raphy, and limnology, namely the hydrostatic approximation of the time-dependent incompressible
Navier–Stokes equations. It relies on the hypothesis that pressure increases linearly in the vertical
direction. In the following, we prove a convergence and existence theorem for this model by means
of anisotropic estimates and a new time-compactness criterium.
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1. Introduction. Atmospheric flow in meteorology, water flow in oceanography,
and limnology are all described by the Navier–Stokes equations. Due to the fact that
the aspect ratio

ε =
characteristic depth

characteristic width

is very small in most geophysical domains, asymptotic models have been used; see,
e.g., [9, 15, 22]. One such model is the primitive equations model; see, e.g., [11, 12],
wherein the unknown flow variables are velocity, pressure, temperature, and salinity
(in the case of an ocean). Besides, most geophysical fluids are stratified (i.e., density
is a known function of the temperature (and salinity, if any)) and have a free surface.
We shall not investigate these features in this paper, leaving it, rather, for forthcoming
work.

Instead we shall focus on the assumption that the pressure is hydrostatic, i.e.,
increases linearly with respect to the depth, as in the static case. This law agrees
well with experiment (as first observed by Blaise Pascal around 1650; see [14])) and
is frequently taken as a hypothesis in geophysical fluid dynamics. We justify this
assumption by means of asymptotic analysis (taking ε as the small parameter). Our
derivation is made possible by the use of anisotropic eddy viscosities, namely ν =
(νx, νy, νz), relying on the fact that the ratio between the horizontal and vertical
scales leads to very different sizes for the horizontal and vertical eddies (see [9, 15]).
Specifically, if we assume that ν = (ν1, ν2, ε

2 ν3) with νi = O(1) for i = 1, 2, 3, then
we will see that weak solutions of the Navier–Stokes equations converge to a weak
solution of a limit problem with hydrostatic pressure.
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848 PASCAL AZÉRAD AND FRANCISCO GUILLÉN

The stationary case has already been studied (see [4] for the linear problem and
[5] for the nonlinear one), whereas the linear time-dependent case was solved in [1].
The main task of this paper is then to solve the nonlinear time-dependent case. Our
result was announced in [2], whereas numerical simulations stemming from it were
discussed in [3].

Fluid flow in thin domains (flat, curved, and with various boundary conditions)
has been extensively studied; see [7, 13, 16, 20, 21]. In these works, an isotropic
viscosity is used, and the depth is constant. By averaging along the vertical direction,
two-dimensional (2D) limit models are obtained, together with existence and global
regularity results.

Our approach is different, because we neither eliminate the vertical velocity by
averaging nor assume the depth of the domain to be constant. By making use of differ-
ent horizontal and vertical eddy viscosities, we are able to derive a three-dimensional
(3D) limit nonlinear model. Let us emphasize that the anisotropic viscosity hypoth-
esis is fundamental for the derivation of the primitive equations: in the stationary
case, keeping an isotropic viscosity, the asymptotic model is linear, with vanishing
horizontal diffusion; see [6].

The paper is organized as follows. In section 2, we present the physical model
and the scaling leading to the primitive equations. We state the main theorem in
section 3. The functional setting and weak formulation are described in section 4. In
the next section, we state and prove a time-compactness result, which we shall use in
the proof of the main theorem in section 6. Finally, in section 7, we comment on the
convergence of the pressure and the orders of magnitude of the vertical velocity with
respect to the aspect ratio.

2. Equations governing the flow and scaling. Let us consider an incom-
pressible homogeneous fluid filling a thin domain defined by

Ωε =
{
(x, y, z) ∈ R

3; (x, y) ∈ ω,−ε h(x, y) < z < 0} ,
where ω is an open bounded Lipschitz domain in R

2 and h : ω → R is a nonnega-
tive lipschitzian application, which is arbitrary provided that Ωε is lipschitzian. In
particular, h may vanish, contrary to [12, 9], but in order that the domain Ωε has no
cusps, the slope must not vanish on the shores.1 We denote by Γs = ω×{0} the fluid
surface and by Γε

b = ∂Ωε \ Γs the basin bottom. The fluid flow in Ωε is generated
by the wind traction on the surface Γs, influenced by the Coriolis and centrifugal
forces and governed by the Navier–Stokes equations, in which we take different eddy
viscosities according to the direction; see [5, 9, 15]. Finally, we take the density as
identically equal to one. In a geophysical rotating frame (z pointing upwards, x east,
and y north), the initial-boundary value problem reads as follows.

Find v = (v1, v2, v3) (velocity) and q (pressure), such that

∂tv + (v · ∇)v −∆νv +∇q + 2w × v = g in Ωε × (0,T),(2.1)

divv = 0 in Ωε × (0, T ),(2.2)

v = 0 on Γε
b × (0, T ),(2.3)

νz∂zv1 = τ1, νz∂zv2 = τ2, v3 = 0 on Γs × (0, T ),(2.4)

v(·, t = 0) = v0 in Ωε.(2.5)

1This is a technical hypothesis. One could probably dispense with it due to the specific shape of
the domain.
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In (2.1), ∇ = (∂x, ∂y, ∂z) denotes the gradient vector, and ∆ν denotes the aniso-
tropic Laplacian defined by ∆ν = νx∂

2
xx+νy∂

2
yy+νz∂

2
zz with ν = (νx, νy, νz) the eddy

kinematic viscosity vector. Moreover, w = f (0, cos(l(y)), sin(l(y))) represents the
earth rotation angular speed (f the module and l(y) the latitude), 2w× v represents
the Coriolis acceleration (× denotes the cross-product in R

3), and g represents the
force due to gravity (which also includes the centrifugal effect). It is well known
(cf. [15, p. 18]) that g is a potential, i.e., g = ∇ϕ. It is customary to incorporate the
gravity potential in the pressure term; thus we set

p = q − ϕ.

Equation (2.2) represents the incompressibility condition, and (2.3) represents the
no-slip condition on the bottom.

In (2.4), τi, i = 1, 2, stand for the horizontal tractions exerted by the wind on the
(fixed) surface Γs of the fluid, and w = 0 on Γs comes from the rigid lid hypothesis.
In (2.5), v0 = (v01, v02, v03) designates the initial velocity.

Remark. We have neglected the earth’s curvature, and hence our analysis is valid
only locally, e.g., for lakes; for seas or oceans, spherical coordinates should be used
[12], although this can be somewhat cumbersome.

As usual in asymptotic analysis, we perform a vertical scaling to make the domain
independent of ε, that is,

x = x1, y = x2, z = ε x3,

so that Ω =
{
(x1, x2, x3) ∈ R

3; (x1, x2) ∈ ω, −h(x1, x2) < x3 < 0
}
is the new fixed

domain.
The corresponding kinematic scaling is

v1 = u
ε
1, v2 = u

ε
2, v3 = ε u

ε
3, p = pε,(2.6)

so that uε = (uε1, u
ε
2, u

ε
3) is the new unknown velocity and p

ε is the new pressure.
It is necessary to scale the mechanical quantities accordingly. First, it is only

natural to assume v01 = u01, v02 = u02, and v03 = εu03, where u0i does not depend
on ε, i = 1, 2, 3. Next we assume νx = ν1, νy = ν2, and νz = ε2 · ν3, where ν1, ν2, ν3
are constants. As mentioned in the introduction, in oceanography the vertical eddy
viscosity is usually very small compared to the horizontal one. We refer to [5] for
a mathematical discussion of this assumption, and here we content ourselves with
one heuristic comment. Basically, a kinematic viscosity has the dimension L2/T ,
where L (resp., T ) is a typical length (resp., time) scale so that νx and νy have the
dimension L2

H/T , whereas νz has the dimension L
2
V /T , where LH (resp., LV ) denotes

a typical horizontal (resp., vertical) length scale. It follows that the ratio νz/νx and
νz/νy = O(ε

2).2

Now (2.4) becomes

ν3∂3u
ε
i = τ

ε
i /ε, i = 1, 2.

We see that in order to end up with an O(1)-wind force on the rescaled domain, we
have to assume that τ εi = ε · θi, i = 1, 2, where the θi are functions independent of ε.

2We do not delude ourselves with this sketchy argument. As far as we know, up to now there
has been no rigorous derivation of any eddy viscosity model.
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Remark. This last assumption can also be motivated by dimensional analysis, as
follows. From τi = νz∂zvi, one derives that τi has the dimension of

L2
V

T
· 1
LV

· LH

T
= ε

L2
H

T 2
= O(ε).

With the above considerations, problem (2.1)–(2.5) transforms into the following
anisotropic Navier–Stokes equations:

∂tu
ε
1 + uε · ∇uε1 −∆νu

ε
1 − αuε2 + ε β uε3 + ∂1p

ε = 0 in Ω× (0, T ),(2.7)

∂tu
ε
2 + uε · ∇uε2 −∆νu

ε
2 + αu

ε
1 + ∂2p

ε = 0 in Ω× (0, T ),(2.8)

ε2 {∂tuε3 + uε · ∇uε3 −∆νu
ε
3} − ε β uε1 + ∂3p

ε = 0 in Ω× (0, T ),(2.9)

divuε = 0 in Ω× (0, T ),(2.10)

uε = 0 on Γb × (0, T ),(2.11)

ν3∂3u
ε
1 = θ1, ν3∂3u

ε
2 = θ2, uε3 = 0 on Γs × (0, T ),(2.12)

uε(·, t = 0) = u0 in Ω.(2.13)

Now ∇ = (∂1, ∂2, ∂3), ∆ν = ν1∂
2
11 + ν2∂

2
22 + ν3∂

2
33, Γb = ∂Ω \ Γs, α = 2f sin(l(x2)),

and β = 2f cos(l(x2)).
If we assume that uε = O(1), then neglecting the ε2 and ε terms in the first and

third momentum equation, (2.7) and (2.9), we formally get the hydrostatic Navier–
Stokes equations, also called the primitive equations:

∂tu1 + u · ∇u1 −∆νu1 − αu2 + ∂1p = 0 in Ω× (0,T),(2.14)

∂tu2 + u · ∇u2 −∆νu2 + αu1 + ∂2p = 0 in Ω× (0,T),(2.15)

∂3p = 0 in Ω× (0,T),(2.16)

divu = 0 in Ω× (0, T ),(2.17)

u1 = u2 = u3n3 = 0 on Γb × (0, T ),(2.18)

ν3∂u1 = θ1, ν3∂3u2 = θ2, u3 = 0 on Γs × (0, T ),(2.19)

ui(·, t = 0) = u0i in Ω, i = 1, 2.(2.20)

Remark. The boundary condition (2.18) differs from its counterpart (2.11) be-
cause u3 is less regular than u1, u2 as we shall see below. Also, the initial condition
(2.20) does not involve u3, the time derivative of which is missing in the hydrostatic
model. The problem is not in the Cauchy–Kowalevska form.3

Remark. If u3 were to be computed directly from (2.17), which is a first order
equation, it is not obvious at all that it would fulfill the two boundary conditions on
the bottom (2.18) and the surface (2.19).

3. Main theorem. Let T be a fixed positive duration. We make the natural
assumption of a wind of finite energy: θ1, θ2 ∈ L2(0, T ;H−1/2(Γs)). Our main result
is the following theorem.
Theorem 3.1. Let u0 ∈ L2(Ω)3, with divu0 = 0, u0 · n = 0 on ∂Ω, and θ1, θ2 ∈

L2(0, T ;H−1/2(Γs)); there exists a weak solution u of the hydrostatic Navier–Stokes
equations (2.14)–(2.20), obtained as a limit of weak solutions uε of the anisotropic
Navier–Stokes equations (2.7)–(2.13), as the aspect ratio ε tends to zero.

3Meteorologists say that u3 is no longer a prognostic variable (see [11, 12]).
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The proof relies on a priori estimates in anisotropic spaces (Propositions 6.1 and
6.2), which are sufficient to take the limit in the linear terms (see [1]), whereas for the
nonlinear terms, we establish a new time-compactness criterium (Theorem 5.1), which
enables us to get strong convergence of the horizontal velocities; see Lemma 6.3. This
theorem states essentially that a small perturbation of an Lp-equicontinuous family
still possesses a strong convergent subsequence. Let us emphasize that this seemingly
technical refinement is by no means superfluous. Indeed, the usual compactness esti-
mate fails: as (uε1, u

ε
2, ε

2uε3) is not divergence free, even if it is easy from (2.7)–(2.9)
to control ∂t(u

ε
1, u

ε
2, ε

2uε3) in some dual space of divergence free velocities, it is not
possible to apply the Aubin–Lions lemma to get compactness.

Another major difficulty of the proof is the lack of regularity of the vertical ve-
locity, which is determined only by the incompressibility equation (2.10).

Remark. It is possible to handle a general force (f1, f2, f3) in problem (2.14)–
(2.20), by simply adding f = (f1, f2,

f3

ε ) to (2.1), in order to end up with (f1, f2, f3)
in (2.7)–(2.9).

4. Weak formulation and anisotropic spaces. We need the following Hilbert
spaces:

H1
b (Ω) = C

∞
b (Ω)

H1(Ω)
=

{
v ∈ H1(Ω); v = 0 on Γb

}

(where C∞
b (Ω) =

{
ϕ ∈ C∞(Ω̄); ϕ = 0 in some neighborhood of Γb

}
),

V =
{
v ∈ H1

b (Ω)×H1
b (Ω)×H1

0 (Ω); divv = 0 in Ω
}
,

H(∂3,Ω) =
{
v ∈ L2(Ω); ∂3v ∈ L2(Ω)

}

(endowed with the norm ‖v‖2
H(∂3,Ω) = ‖v‖2

L2(Ω) + ‖∂3v‖2
L2(Ω) ),

H0(∂3,Ω) = C∞
0 (Ω)

H(∂3,Ω)
= {v ∈ H(∂3,Ω); v n3 = 0 on ∂Ω}

(n3 is the third component of the normal exterior vector on ∂Ω, and v n3 is understood
in the H−1/2(∂Ω) sense (see [19] for these spaces)),

W =
{
u ∈ H1

b (Ω)×H1
b (Ω)×H0(∂3,Ω); divu = 0 in Ω

}
.

Let us denote that uH = (u1, u2), θH = (θ1, θ2), b(uH) = α (−u2, u1), and ∇ν =

(ν
1/2
1 ∂1, ν

1/2
2 ∂2, ν

1/2
3 ∂3). The scalar product in L

2(Ω)d, or the duality Lp(Ω), Lp′
(Ω),

is denoted by (·, ·), and the duality H−1/2(Γs)H
1/2(Γs), is denoted by 〈·, ·〉Γs .

The weak form of the hydrostatic Navier–Stokes equations (2.14)–(2.20) is then
as follows.

Find u = (uH , u3) ∈ L2(0, T ;W), with uH ∈ L∞(0, T ;L2(Ω)2), such that

∫ T

0

−(uH , ∂tvH)− (uH , (u · ∇)vH) + (b(uH), vH) + (∇νuH ,∇νvH)

= −(u0H , vH(0)) +

∫ T

0

〈θH , vH〉Γs

(4.1)

for allv = (vH , v3) ∈ H1(0, T ;W), with vH(T ) = 0 and ∂3vH ∈ L∞(0, T ;L3(Ω)2).
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Remark. Notice that a weak solution of the Navier–Stokes equations verifies the
following regularity:

u ∈ L2(0, T ;V) ∩ L∞(0, T ;L2(Ω)3)

(cf. [8, 10, 18]). Now the lack of regularity of u3 makes it necessary to change V to
W. Moreover, in general, u3 �∈ L∞(0, T ;L2(Ω)).

Remark. The regularity L∞(0, T ;L3(Ω)2) is required for ∂3vH to give a mean-

ing to
∫ T

0
(uH , u3∂3vH) dt. The regularity L

2(0, T ;L∞(Ω)2) or any interpolated one
L2/a(0, T ;L3/(1−a)(Ω)2) with 0 ≤ a ≤ 1 can also be considered.

5. Compactness by perturbation. We give a compactness criterium, new
to our knowledge, which generalizes the well-known translation criterium of Riesz–
Fréchet–Kolmogorov, extended to the vectorial case by Simon [17]. In the following,
τhf(t) denotes f(t+ h).

Theorem 5.1. Let T > 0, and let the Banach spaces X
compact
↪→ B ↪→ Y. Let

(fε)ε>0 be a family of functions of Lp(0, T ;X), 1 ≤ p ≤ ∞, with the extra condition
(fε)ε>0 ⊂ C(0, T ;Y) if p =∞, such that
(H1) (fε)ε>0 is bounded in Lp(0, T ;X),
(H2) ‖τhfε − fε‖Lp(0,T−h;Y) ≤ ϕ(h) + ψ(ε) with

{
limh→0 ϕ(h) = 0,
limε→0 ψ(ε) = 0.

Then the family (fε)ε>0 possesses a cluster point in Lp(0, T ;B) and also in C(0, T ;B)
if p =∞, as ε→ 0.

Proof. It is enough to prove that, for every sequence (εn)n such as εn > 0 and
εn → 0, the family (fεn)n is relatively compact in L

p(0, T ;B). We apply Theorem
5 of Simon [17, p. 84] to the sequence (fεn)n, while observing that hypothesis (H2)
implies that

‖τhfεn − fεn‖Lp(0,T−h;Y) → 0 as h→ 0

uniformly with respect to n. Indeed, (H2) implies that

∀n, ‖τhfεn − fεn‖Lp(0,T−h;Y) ≤ ϕ(h) + ψ(εn).

Let ε > 0 and then ∃N , such that for alln ≥ N , ψ(εn) ≤ ε/2. On the other hand,
∃ δ > 0, such that for allh : 0 ≤ h < δ, ϕ(h) ≤ ε/2. Therefore, we get the estimate

∀n ≥ N and ∀h : 0 ≤ h < δ, ‖τhfεn − fεn‖Lp(0,T−h;Y) ≤ ε.

In addition, for each k ≤ N , ∃ δk > 0, such that for allh : 0 ≤ h < δk

‖τhfεk − fεk‖Lp(0,T−h;Y) ≤ ε.

This follows from the Lp-continuity by translation of an Lp function for p < ∞ and
for p =∞; this is precisely a hypothesis.

Defining η = min{δ, δ1, . . . , δN}, we obtain the desired uniform estimate
∀h : 0 ≤ h < η, ‖τhfεn − fεn‖Lp(0,T−h;Y) ≤ ε ∀n.

The family (fεn)n fulfills the hypotheses of Simon’s theorem.
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6. Proof of the main theorem. For simplicity in the notation, from now on,
unless we specify otherwise, we will denote u = uε as a weak solution of the anisotropic
Navier–Stokes equations (2.7)–(2.13).

6.1. Energy estimates. The usual energy inequality (cf. [10]) for the Navier–
Stokes equations gives, for a.e. t ∈ [0, T ],

‖uH(t)‖2
L2 + ε2 ‖u3(t)‖2

L2 +

∫ t

0

{‖∇νuH(τ)‖2
L2 + ε2 ‖∇νu3(τ)‖2

L2} dτ

≤ ‖u0H‖2
L2 + ε2‖u03‖2

L2 +

∫ t

0

〈θH , uH〉Γs
.

Hence we obtain as in the isotropic Navier–Stokes system (cf. [1]) the following propo-
sition.
Proposition 6.1. The sequences u1, u2, εu3 are bounded in L∞(0, T ;L2(Ω)) ∩

L2(0, T ;H1(Ω)).
For the vertical velocities, we prove the following.
Proposition 6.2. The sequences u3 and ∂3u3 are bounded in L2(0, T ;L2(Ω));

i.e., u3 is bounded in L2(0, T ;H0(∂3,Ω)).
Proof. As divu = 0, ∂3u3 = −∂1u1 − ∂2u2 is bounded in L

2(0, T ;L2(Ω)). More-
over, the Poincaré inequality in the vertical direction, owing to u3 = 0 on Γs, yields

‖u3‖L2 ≤ hmax ‖∂3u3‖L2 , where hmax = max
ω
h.

Therefore, we have proved the proposition.

6.2. Fractional time derivatives in horizontal spaces. First, we define the
auxiliary Hilbert spaces

BH = PHU (L2)2

, WH = PHU (H1)2

, and YH = PHU (H2)2

,

where

U = {
ϕ ∈ C∞

b (Ω)
2 × C∞

0 (Ω); divϕ = 0
}

and PH is the projection

PH : (x1, x2, x3) ∈ R
3 �→ (x1, x2) ∈ R

2.

Then, from the Sobolev–Rellich embeddings, one deduces easily that

YH ↪→WH ↪→ BH ≡ B′
H ↪→W ′

H ↪→ Y ′
H ,(6.1)

where all are dense and compact embeddings. Here and henceforth, X ′ denotes the
dual space of X.

Now, we have the following lemma.
Lemma 6.3. The estimate ‖τhuH − uH‖L∞(0,T−h;Y ′

H
) ≤ C(h1/4 + ε) holds.

Proof. The spatial weak form of the Navier–Stokes equation (2.7)–(2.13) is

d

dt
(uH , vH)− (uH , (u · ∇)vH) + (b(uH), vH) + (∇νuH ,∇νvH)

+ ε2
{
d

dt
(u3, v3) + (u · ∇u3, v3) + (∇νu3,∇νv3)

}

+ ε
{
(βu3, v1)− (βu1, v3)

}
= 〈θH , vH〉Γs

inD′(0, T )
∀v = (vH , v3) ∈ V.

(6.2)
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Letting vH ∈ YH , there is a null divergence lifting v = (vH , v3) ∈ H2
b (Ω)

2 ×H1
0 (∂3,Ω)

such that

‖v3‖H1 + ‖∂3 v3‖H1 ≤ C‖vH‖YH
.(6.3)

Here, the spaces H2
b (Ω) and H

1
0 (∂3,Ω) are the natural extensions of the spaces H

1
b (Ω)

and H0(∂3,Ω):

H2
b (Ω) = C

∞
b (Ω)

H2(Ω)
=

{
v ∈ H2(Ω); v =

∂v

∂n
= 0 on Γb

}
,

H1(∂3,Ω) =
{
v ∈ H1(Ω); ∂3v ∈ H1Ω)

}
,

H1
0 (∂3,Ω) = C∞

0 (Ω)
H1(∂3,Ω)

=
{
v ∈ H1(∂3,Ω); v = ∂3v = 0 on ∂Ω

}
.

Indeed, as vH ∈ YH , there exists a sequence (ϕ
n
H , ϕ

n
3 ) ∈ U such that ϕn

H → vH in
H2(Ω)2. Then ∂3ϕ

n
3 = −∂1ϕ

n
1 − ∂2ϕ

n
2 is a Cauchy sequence in H

1(Ω), and by vertical
Poincaré inequality, ϕn

3 is also a Cauchy sequence in H
1(Ω). Therefore, ϕn

3 , being a
Cauchy sequence in H1(∂3,Ω), converges to a function v3, which provides the desired
lifting function. The continuous dependence (6.3) results from the above construction.

Now we take this v = (vH , v3) as a test function in (6.2) and integrate over
(t, t+ h); i.e.,

(τhuH(t)− uH(t), vH) + ε2 (τhu3(t)− u3(t), v3) =

∫ t+h

t

gε(s) ds,(6.4)

where

gε(s) = (uH , (u · ∇)vH)− ε2 (u · ∇u3, v3)− (b(uH), vH)− (∇νuH ,∇νvH)

−ε (∇ν(εu3),∇νv3)− ε {(βu3, v1)− (βu1, v3)}+ 〈θH , vH〉Γs .

Now we prove that

‖gε‖L4/3(0,T ) ≤ C‖vH‖YH
.(6.5)

To this end, we estimate every piece of gε. For the nonlinear terms, we have

(uH , (u · ∇)vH) ≤ ‖uH‖L3‖u‖L2‖∇vH‖L6 ≤ C ‖uH‖L3‖u‖L2‖vH‖YH

and

ε2 (u · ∇u3, v3) ≤ ‖εu‖L3‖∇(εu3)‖L2‖v3‖L6 ≤ C ‖εu‖L3‖εu3‖H1‖vH‖YH
.

By interpolation between L∞(0, T ;L2) and L2(0, T ;L6), uH is bounded in L
4(0, T ;L3);

i.e., ‖uH‖L3 is bounded in L4(0, T ). As ‖u‖L2 is bounded in L2(0, T ), we have
(uH , (u · ∇)vH) bounded in L4/3(0, T ). Similarly, as ‖εu‖L3 is bounded in L4(0, T )
and ‖εu3‖H1 is bounded in L2(0, T ), we have ε2 (u · ∇u3, v3) bounded in L

4/3(0, T ).
The linear terms of gε are handled easily by the Cauchy–Schwarz inequality:

(b(uH), vH) ≤ ‖uH‖L2‖vH‖L2 bounded in L∞(0, T ),
(∇νuH ,∇νvH) ≤ ‖uH‖H1‖vH‖H1 bounded in L2(0, T ),

ε (∇ν(εu3),∇νv3) ≤ ε ‖εu3‖H1‖v3‖H1 bounded in L2(0, T ),

εβ {(u3, v1)− (u1, v3)} ≤ 2f‖εu‖L2‖v‖L2 bounded in L∞(0, T ),
〈θH , vH〉Γs ≤ C ‖θH‖H−1/2(Γs)‖vH‖H1 bounded in L2(0, T ).
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Therefore, taking into account (6.3), according to all previous bounds, (6.5) holds.
Next, applying the Hölder inequality to (6.5), we see that

∫ t+h

t

|gε(s)|ds ≤ C h1/4‖vH‖YH
.

On the other hand,

|ε2 (τhu3(t)− u3(t), v3)| ≤ ε {‖τh(εu3)(t)‖L2 + ‖εu3(t)‖L2}‖v3‖L2 ≤ εC ‖vH‖YH

by virtue of Proposition 6.1.
These last two estimates together with (6.4) yield the required result.

6.3. Convergence. Here we come back to the notation uε. The space-time
weak form of the anisotropic Navier–Stokes equations (2.7)–(2.13) is as follows.

Find uε = (uεH , u
ε
3) ∈ L2(0, T ;V) ∩ L∞(0, T ;L2(Ω)3) such that

∫ T

0

−(uεH , ∂tvH)− (uεH , (uε · ∇)vH) + (b(uεH), vH) + (∇νu
ε
H ,∇νvH)

+ ε2
∫ T

0

−(uε3, ∂tv3) + (uε · ∇uε3, v3) + (∇νu
ε
3,∇νv3)

+ ε β

∫ T

0

(uε3, v1)− (uε1, v3) = −(u0H , vH(0))− ε2(u03, v3(0)) +

∫ T

0

〈θH , vH〉Γs

∀v = (vH , v3) ∈ H1(0, T ;V), with v(T ) = 0.

(6.6)

The purpose of the following is to take the limit as ε → 0 in (6.6) to come to (4.1).
By Propositions 6.1 and 6.2, it follows that uε is bounded in L2(0, T ;W) and uεH is
bounded in L∞(0, T ;BH), allowing us to extract a subsequence, still denoted by uε,
such that

uε = (uεH , u
ε
3)⇀ u = (uH , u3) inL2(0, T ;W) weak,

uεH
�
⇀ uH inL∞(0, T ;BH) weak− 3.

These weak convergences are enough to take the limit in the linear terms of (6.6)
(cf. [1]). In particular, the terms of O(ε) associated with the Coriolis acceleration
vanish as ε tends to zero. Indeed,

ε β

∫ T

0

(uε3, v1)− (uε1, v3) ≤ ε 2f

∫ T

0

‖uε‖L2‖v‖L2

≤ ε 2f ‖uε‖L2(0,T ;L2)‖v‖L2(0,T ;L2) ≤ εC ‖v‖L2(0,T ;L2) ≤ C ε.

On the other hand, combining (6.1), Proposition 6.1, and Lemma 6.3, we can apply

Theorem 5.1 for p =∞ and the spaces BH
compact
↪→ W ′

H ↪→ Y ′
H . Therefore, there exists

a subsequence uεH → uH in C(0, T ;W ′
H) strong. Thus we get the weak time-continuity

uH ∈ C(0, T ;W ′
H), so that the initial condition (2.20) makes sense for the horizontal

velocities. On the other hand, the term of 0(ε2) related to the initial condition for
the vertical velocity vanishes as ε tends to zero. Indeed,

−ε2(u03, v3(0)) ≤ ε2‖u03‖L2‖v3(0)‖L2 ≤ ε2‖u0‖L2‖v3‖C(0,T ;L2) ≤ C ε2.(6.7)
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Now the nonlinear terms fall into four types:

(I) ε2
∫ T

0

(uεi∂iu
ε
3, v3) dt, 1 ≤ i ≤ 2,

(II) ε2
∫ T

0

(uε3∂3u
ε
3, v3) dt,

(III)

∫ T

0

(uεiu
ε
j , ∂jvi) dt, 1 ≤ i, j ≤ 2,

(IV)

∫ T

0

(uεiu
ε
3, ∂3vi) dt, 1 ≤ i ≤ 2.

Type (I) term:

ε2
∫ T

0

(uεi∂iu
ε
3, v3) dt ≤ ε

∫ T

0

‖uεi‖L6‖∂i(εuε3)‖L2‖v3‖L3

≤ C ε ‖uεi‖L2(0,T ;H1)‖∂i(εuε3)‖L2(0,T ;L2)‖v3‖C(0,T ;H1) ≤ C ε.

Type (II) term:

ε2
∫ T

0

(uε3∂3u
ε
3, v3) dt ≤ ε

∫ T

0

‖εuε3‖L6‖∂3u
ε
3‖L2‖v3‖L3

≤ C ε ‖εuε3‖L2(0,T ;H1)‖∂3u
ε
3‖L2(0,T ;L2)‖v3‖C(0,T ;H1) ≤ C ε.

Consequently, the type (I) and (II) terms are O(ε) and vanish as ε tends to zero.
To handle the type (III) and (IV) terms, we need some strong convergences. From

compactness by perturbation (Theorem 5.1 for p = 2 and the spaces WH
compact
↪→

BH ↪→ Y ′
H), there exists a subsequence, still denoted by u

ε
H , such that

uεH → uH inL2(0, T ;L2(Ω)2) ≡ L2((0, T )× Ω)2 strong.

By Proposition 6.1, we have uεH bounded in L
∞(0, T ;L2(Ω)2)∩L2(0, T ;L6(Ω)2), which

by interpolation ensures that

uεH is bounded inL
10/3(0, T ;L10/3(Ω)2) ≡ L10/3((0, T )× Ω)2.

By the interpolation inequality again, for all q : 2 ≤ q < 10/3 there exists α : 0 < α ≤
1 such that

‖uεH − uH‖Lq ≤ ‖uεH − uH‖αL2‖uεH − uH‖1−α
L10/3 .

Thus

uεH → uH inLq((0, T )× Ω) strong ∀ q : 2 ≤ q < 10/3.(6.8)

Type (III) term: By the Hölder inequality and (6.8), we have

uεiu
ε
j → uiuj inLr((0, T )× Ω) strong ∀ r : 1 ≤ r < 5/3
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and for all i, j = 1, 2. On the other hand, by interpolation between L∞(0, T ;L2) and
L2(0, T ;L6), uεi (and u

ε
j) is bounded in L

8/3(0, T ;L4), and hence uεiu
ε
j is bounded in

L4/3(0, T ;L2), and finally,

uεiu
ε
j ⇀ uiuj inL4/3(0, T ;L2) weak, 1 ≤ i, j ≤ 2.

In particular, we get

∫ T

0

(uεiu
ε
j , ∂jvi)→

∫ T

0

(uiuj , ∂jvi), 1 ≤ i, j ≤ 2.

Indeed, vi ∈ C(0, T ;H1) so that

∂jvi ∈ L∞(0, T, L2) ⊂ L4(0, T, L2) ≡ (L4/3(0, T, L2))′.

Type (IV) term: We have

uε3 ⇀ u3 inL2(0, T ;L2) weak.

So by the Hölder inequality and (6.8),

uεiu
ε
3 ⇀ uiu3 inLs(0, T ;Ls) weak ∀ s : 1 ≤ s < 5/4

and for all i = 1, 2. On the other hand, it is easy to see that uεiu
ε
3 is bounded in

L8/7(0, T ;L4/3), and hence

uεiu
ε
3 ⇀ uiu3 inL8/7(0, T ;L4/3) weak, 1 ≤ i ≤ 2.

Now we shall have to slightly increase the regularity of the test functions of (4.1) to
finish the limit process in the Type (IV) terms. For instance, assuming the additional
regularity for the test functions ∂3vi ∈ L8(0, T ;L4), we get

∫ T

0

(uεiu
ε
3, ∂3vi)→

∫ T

0

(uiu3, ∂3vi), 1 ≤ i ≤ 2.

In conclusion, the limit function u is a solution of the variational formulation (4.1)
for all v = (vH , v3) ∈ H1(0, T,V) with vH(T ) = 0 and ∂3vH ∈ L8(0, T ;L4). Finally,
we can argue by density, taking advantage of the regularity of each term of (4.1),
and obtain that (4.1) holds for all v = (vH , v3) ∈ H1(0, T,W) with vH(T ) = 0 and
∂3vH ∈ L∞(0, T ;L3); hence the proof of Theorem 3.1 is finished.

7. Concluding remarks.

7.1. Convergence of the pressure. By using the De Rham lemma [18] in
the formulation (6.6) (resp., (4.1)), we can recover the potentials pε (resp., p) as
distributions

∇pε =

 −∂tuε1 − uε · ∇uε1 +∆νu

ε
1 + αu

ε
2 − εβuε3

−∂tuε2 − uε · ∇uε2 +∆νu
ε
2 − αuε1

−ε2 {∂tuε3 + uε · ∇uε3 −∆νu
ε
3}+ εβuε1


 ,(7.1)

respectively,

∇p =

 −∂tu1 − u · ∇u1 +∆νu1 + αu2

−∂tu2 − u · ∇u2 +∆νu2 − αu1

0


 .(7.2)
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Moreover, (7.1) is also verified in H−1(0, T ;H−1(Ω)3) (i.e., in the dual space of
H1

0 (0, T ;H
1
0 (Ω)

3)), whereas (7.2) holds in H−1(0, T ;W−1,3/2(Ω)3) (i.e., in the dual
space of H1

0 (0, T ;W
1,3
0 (Ω)3)). Proceeding as in subsection 6.3, we may derive that

∂ip
ε �
⇀ ∂ip inH−1(0, T ;W−1,3/2(Ω)), i = 1, 2,

and

‖∂3p
ε‖H−1(0,T ;H−1(Ω)) ≤ Cε.

In particular, we have the strong convergence of ∂3p
ε to ∂3p.

Remark. The strong convergence of ∂3p
ε takes place in a better space than the

weak convergence of ∂ip
ε, i = 1, 2. In some sense, this means that the validity of

the hydrostatic approximation is less demanding than the validity of the horizontal
momentum equations.

Remark. The above convergences can be slightly improved with respect to time.
They remain true, replacing the spaceH−1(0, T ;W−1,3/2(Ω)) (resp.,H−1(0, T ;H−1(Ω)))
with the space W−1,∞(0, T ;W−1,3/2(Ω)) (resp., W−1,∞(0, T ;H−1(Ω))).

7.2. Orders of magnitude of the vertical velocity in the original domain.
The purpose of this last subsection is to interpret the previous results in the original
domain Ωε. Consequently, we are going to consider v = (v1, v2, v3), the weak solution
in Ωε of problem (2.1)–(2.5), related to uε = (uε1, u

ε
2, u

ε
3), a weak solution of problem

(2.7)–(2.13) in Ω; see (2.6). First, it is important to notice that the true vertical
velocity v3 = εu

ε
3 is small with respect to the horizontal velocities vi, i = 1, 2. Indeed,

taking into account the estimates in Proposition 6.1 for uεi , i = 1, 2, and Proposition
6.2 for uε3, scaling off Ω to Ωε, we obtain

‖v3‖L2(0,T ;L2(Ωε))

‖vi‖L2(0,T ;L2(Ωε))
= 0(ε), i = 1, 2.

By the same argument, we obtain

‖∂zv3‖L2(0,T ;L2(Ωε))

‖∂zvi‖L2(0,T ;L2(Ωε))
= 0(ε), i = 1, 2.

This phenomenon is actually observed in most geophysical flows, which, therefore,
are quasi-horizontal. It is striking that the vertical velocity goes to zero even if the
initial vertical velocity is not assumed to be small. Looking at (6.7) in the proof of
convergence, we need only that ε2‖u03‖L2(Ω) → 0, that is, ‖v03‖L2(Ωε)/‖v0i‖L2(Ωε) =
O(ε−α), α < 1.

Whereas, for the horizontal gradient, we cannot avail ourselves of Proposition 6.2,
and we obtain only

‖∇x,y v3‖L2(0,T ;L2(Ωε))

‖∇x,y vi‖L2(0,T ;L2(Ωε))
= 0(1), i = 1, 2.
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